| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for Linear Technology LTC4215 I2C Hot Swap Controller |
| * |
| * Copyright (C) 2009 Ira W. Snyder <iws@ovro.caltech.edu> |
| * |
| * Datasheet: |
| * http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697 |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/jiffies.h> |
| |
| /* Here are names of the chip's registers (a.k.a. commands) */ |
| enum ltc4215_cmd { |
| LTC4215_CONTROL = 0x00, /* rw */ |
| LTC4215_ALERT = 0x01, /* rw */ |
| LTC4215_STATUS = 0x02, /* ro */ |
| LTC4215_FAULT = 0x03, /* rw */ |
| LTC4215_SENSE = 0x04, /* rw */ |
| LTC4215_SOURCE = 0x05, /* rw */ |
| LTC4215_ADIN = 0x06, /* rw */ |
| }; |
| |
| struct ltc4215_data { |
| struct i2c_client *client; |
| |
| struct mutex update_lock; |
| bool valid; |
| unsigned long last_updated; /* in jiffies */ |
| |
| /* Registers */ |
| u8 regs[7]; |
| }; |
| |
| static struct ltc4215_data *ltc4215_update_device(struct device *dev) |
| { |
| struct ltc4215_data *data = dev_get_drvdata(dev); |
| struct i2c_client *client = data->client; |
| s32 val; |
| int i; |
| |
| mutex_lock(&data->update_lock); |
| |
| /* The chip's A/D updates 10 times per second */ |
| if (time_after(jiffies, data->last_updated + HZ / 10) || !data->valid) { |
| |
| dev_dbg(&client->dev, "Starting ltc4215 update\n"); |
| |
| /* Read all registers */ |
| for (i = 0; i < ARRAY_SIZE(data->regs); i++) { |
| val = i2c_smbus_read_byte_data(client, i); |
| if (unlikely(val < 0)) |
| data->regs[i] = 0; |
| else |
| data->regs[i] = val; |
| } |
| |
| data->last_updated = jiffies; |
| data->valid = true; |
| } |
| |
| mutex_unlock(&data->update_lock); |
| |
| return data; |
| } |
| |
| /* Return the voltage from the given register in millivolts */ |
| static int ltc4215_get_voltage(struct device *dev, u8 reg) |
| { |
| struct ltc4215_data *data = ltc4215_update_device(dev); |
| const u8 regval = data->regs[reg]; |
| u32 voltage = 0; |
| |
| switch (reg) { |
| case LTC4215_SENSE: |
| /* 151 uV per increment */ |
| voltage = regval * 151 / 1000; |
| break; |
| case LTC4215_SOURCE: |
| /* 60.5 mV per increment */ |
| voltage = regval * 605 / 10; |
| break; |
| case LTC4215_ADIN: |
| /* |
| * The ADIN input is divided by 12.5, and has 4.82 mV |
| * per increment, so we have the additional multiply |
| */ |
| voltage = regval * 482 * 125 / 1000; |
| break; |
| default: |
| /* If we get here, the developer messed up */ |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| return voltage; |
| } |
| |
| /* Return the current from the sense resistor in mA */ |
| static unsigned int ltc4215_get_current(struct device *dev) |
| { |
| struct ltc4215_data *data = ltc4215_update_device(dev); |
| |
| /* |
| * The strange looking conversions that follow are fixed-point |
| * math, since we cannot do floating point in the kernel. |
| * |
| * Step 1: convert sense register to microVolts |
| * Step 2: convert voltage to milliAmperes |
| * |
| * If you play around with the V=IR equation, you come up with |
| * the following: X uV / Y mOhm == Z mA |
| * |
| * With the resistors that are fractions of a milliOhm, we multiply |
| * the voltage and resistance by 10, to shift the decimal point. |
| * Now we can use the normal division operator again. |
| */ |
| |
| /* Calculate voltage in microVolts (151 uV per increment) */ |
| const unsigned int voltage = data->regs[LTC4215_SENSE] * 151; |
| |
| /* Calculate current in milliAmperes (4 milliOhm sense resistor) */ |
| const unsigned int curr = voltage / 4; |
| |
| return curr; |
| } |
| |
| static ssize_t ltc4215_voltage_show(struct device *dev, |
| struct device_attribute *da, char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(da); |
| const int voltage = ltc4215_get_voltage(dev, attr->index); |
| |
| return sysfs_emit(buf, "%d\n", voltage); |
| } |
| |
| static ssize_t ltc4215_current_show(struct device *dev, |
| struct device_attribute *da, char *buf) |
| { |
| const unsigned int curr = ltc4215_get_current(dev); |
| |
| return sysfs_emit(buf, "%u\n", curr); |
| } |
| |
| static ssize_t ltc4215_power_show(struct device *dev, |
| struct device_attribute *da, char *buf) |
| { |
| const unsigned int curr = ltc4215_get_current(dev); |
| const int output_voltage = ltc4215_get_voltage(dev, LTC4215_ADIN); |
| |
| /* current in mA * voltage in mV == power in uW */ |
| const unsigned int power = abs(output_voltage * curr); |
| |
| return sysfs_emit(buf, "%u\n", power); |
| } |
| |
| static ssize_t ltc4215_alarm_show(struct device *dev, |
| struct device_attribute *da, char *buf) |
| { |
| struct sensor_device_attribute *attr = to_sensor_dev_attr(da); |
| struct ltc4215_data *data = ltc4215_update_device(dev); |
| const u8 reg = data->regs[LTC4215_STATUS]; |
| const u32 mask = attr->index; |
| |
| return sysfs_emit(buf, "%u\n", !!(reg & mask)); |
| } |
| |
| /* |
| * These macros are used below in constructing device attribute objects |
| * for use with sysfs_create_group() to make a sysfs device file |
| * for each register. |
| */ |
| |
| /* Construct a sensor_device_attribute structure for each register */ |
| |
| /* Current */ |
| static SENSOR_DEVICE_ATTR_RO(curr1_input, ltc4215_current, 0); |
| static SENSOR_DEVICE_ATTR_RO(curr1_max_alarm, ltc4215_alarm, 1 << 2); |
| |
| /* Power (virtual) */ |
| static SENSOR_DEVICE_ATTR_RO(power1_input, ltc4215_power, 0); |
| |
| /* Input Voltage */ |
| static SENSOR_DEVICE_ATTR_RO(in1_input, ltc4215_voltage, LTC4215_ADIN); |
| static SENSOR_DEVICE_ATTR_RO(in1_max_alarm, ltc4215_alarm, 1 << 0); |
| static SENSOR_DEVICE_ATTR_RO(in1_min_alarm, ltc4215_alarm, 1 << 1); |
| |
| /* Output Voltage */ |
| static SENSOR_DEVICE_ATTR_RO(in2_input, ltc4215_voltage, LTC4215_SOURCE); |
| static SENSOR_DEVICE_ATTR_RO(in2_min_alarm, ltc4215_alarm, 1 << 3); |
| |
| /* |
| * Finally, construct an array of pointers to members of the above objects, |
| * as required for sysfs_create_group() |
| */ |
| static struct attribute *ltc4215_attrs[] = { |
| &sensor_dev_attr_curr1_input.dev_attr.attr, |
| &sensor_dev_attr_curr1_max_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_power1_input.dev_attr.attr, |
| |
| &sensor_dev_attr_in1_input.dev_attr.attr, |
| &sensor_dev_attr_in1_max_alarm.dev_attr.attr, |
| &sensor_dev_attr_in1_min_alarm.dev_attr.attr, |
| |
| &sensor_dev_attr_in2_input.dev_attr.attr, |
| &sensor_dev_attr_in2_min_alarm.dev_attr.attr, |
| |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(ltc4215); |
| |
| static int ltc4215_probe(struct i2c_client *client) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| struct device *dev = &client->dev; |
| struct ltc4215_data *data; |
| struct device *hwmon_dev; |
| |
| if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -ENODEV; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->client = client; |
| mutex_init(&data->update_lock); |
| |
| /* Initialize the LTC4215 chip */ |
| i2c_smbus_write_byte_data(client, LTC4215_FAULT, 0x00); |
| |
| hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, |
| data, |
| ltc4215_groups); |
| return PTR_ERR_OR_ZERO(hwmon_dev); |
| } |
| |
| static const struct i2c_device_id ltc4215_id[] = { |
| { "ltc4215", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, ltc4215_id); |
| |
| /* This is the driver that will be inserted */ |
| static struct i2c_driver ltc4215_driver = { |
| .driver = { |
| .name = "ltc4215", |
| }, |
| .probe_new = ltc4215_probe, |
| .id_table = ltc4215_id, |
| }; |
| |
| module_i2c_driver(ltc4215_driver); |
| |
| MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>"); |
| MODULE_DESCRIPTION("LTC4215 driver"); |
| MODULE_LICENSE("GPL"); |