| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Cryptographic API. |
| * |
| * Support for VIA PadLock hardware crypto engine. |
| * |
| * Copyright (c) 2004 Michal Ludvig <michal@logix.cz> |
| * |
| */ |
| |
| #include <crypto/algapi.h> |
| #include <crypto/aes.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/padlock.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/smp.h> |
| #include <linux/slab.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/byteorder.h> |
| #include <asm/processor.h> |
| #include <asm/fpu/api.h> |
| |
| /* |
| * Number of data blocks actually fetched for each xcrypt insn. |
| * Processors with prefetch errata will fetch extra blocks. |
| */ |
| static unsigned int ecb_fetch_blocks = 2; |
| #define MAX_ECB_FETCH_BLOCKS (8) |
| #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) |
| |
| static unsigned int cbc_fetch_blocks = 1; |
| #define MAX_CBC_FETCH_BLOCKS (4) |
| #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) |
| |
| /* Control word. */ |
| struct cword { |
| unsigned int __attribute__ ((__packed__)) |
| rounds:4, |
| algo:3, |
| keygen:1, |
| interm:1, |
| encdec:1, |
| ksize:2; |
| } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); |
| |
| /* Whenever making any changes to the following |
| * structure *make sure* you keep E, d_data |
| * and cword aligned on 16 Bytes boundaries and |
| * the Hardware can access 16 * 16 bytes of E and d_data |
| * (only the first 15 * 16 bytes matter but the HW reads |
| * more). |
| */ |
| struct aes_ctx { |
| u32 E[AES_MAX_KEYLENGTH_U32] |
| __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); |
| u32 d_data[AES_MAX_KEYLENGTH_U32] |
| __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); |
| struct { |
| struct cword encrypt; |
| struct cword decrypt; |
| } cword; |
| u32 *D; |
| }; |
| |
| static DEFINE_PER_CPU(struct cword *, paes_last_cword); |
| |
| /* Tells whether the ACE is capable to generate |
| the extended key for a given key_len. */ |
| static inline int |
| aes_hw_extkey_available(uint8_t key_len) |
| { |
| /* TODO: We should check the actual CPU model/stepping |
| as it's possible that the capability will be |
| added in the next CPU revisions. */ |
| if (key_len == 16) |
| return 1; |
| return 0; |
| } |
| |
| static inline struct aes_ctx *aes_ctx_common(void *ctx) |
| { |
| unsigned long addr = (unsigned long)ctx; |
| unsigned long align = PADLOCK_ALIGNMENT; |
| |
| if (align <= crypto_tfm_ctx_alignment()) |
| align = 1; |
| return (struct aes_ctx *)ALIGN(addr, align); |
| } |
| |
| static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) |
| { |
| return aes_ctx_common(crypto_tfm_ctx(tfm)); |
| } |
| |
| static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm) |
| { |
| return aes_ctx_common(crypto_skcipher_ctx(tfm)); |
| } |
| |
| static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct aes_ctx *ctx = aes_ctx(tfm); |
| const __le32 *key = (const __le32 *)in_key; |
| u32 *flags = &tfm->crt_flags; |
| struct crypto_aes_ctx gen_aes; |
| int cpu; |
| |
| if (key_len % 8) { |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| return -EINVAL; |
| } |
| |
| /* |
| * If the hardware is capable of generating the extended key |
| * itself we must supply the plain key for both encryption |
| * and decryption. |
| */ |
| ctx->D = ctx->E; |
| |
| ctx->E[0] = le32_to_cpu(key[0]); |
| ctx->E[1] = le32_to_cpu(key[1]); |
| ctx->E[2] = le32_to_cpu(key[2]); |
| ctx->E[3] = le32_to_cpu(key[3]); |
| |
| /* Prepare control words. */ |
| memset(&ctx->cword, 0, sizeof(ctx->cword)); |
| |
| ctx->cword.decrypt.encdec = 1; |
| ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; |
| ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; |
| ctx->cword.encrypt.ksize = (key_len - 16) / 8; |
| ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; |
| |
| /* Don't generate extended keys if the hardware can do it. */ |
| if (aes_hw_extkey_available(key_len)) |
| goto ok; |
| |
| ctx->D = ctx->d_data; |
| ctx->cword.encrypt.keygen = 1; |
| ctx->cword.decrypt.keygen = 1; |
| |
| if (aes_expandkey(&gen_aes, in_key, key_len)) { |
| *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| return -EINVAL; |
| } |
| |
| memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); |
| memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); |
| |
| ok: |
| for_each_online_cpu(cpu) |
| if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || |
| &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) |
| per_cpu(paes_last_cword, cpu) = NULL; |
| |
| return 0; |
| } |
| |
| static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len); |
| } |
| |
| /* ====== Encryption/decryption routines ====== */ |
| |
| /* These are the real call to PadLock. */ |
| static inline void padlock_reset_key(struct cword *cword) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (cword != per_cpu(paes_last_cword, cpu)) |
| #ifndef CONFIG_X86_64 |
| asm volatile ("pushfl; popfl"); |
| #else |
| asm volatile ("pushfq; popfq"); |
| #endif |
| } |
| |
| static inline void padlock_store_cword(struct cword *cword) |
| { |
| per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; |
| } |
| |
| /* |
| * While the padlock instructions don't use FP/SSE registers, they |
| * generate a spurious DNA fault when CR0.TS is '1'. Fortunately, |
| * the kernel doesn't use CR0.TS. |
| */ |
| |
| static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, |
| struct cword *control_word, int count) |
| { |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ |
| : "+S"(input), "+D"(output) |
| : "d"(control_word), "b"(key), "c"(count)); |
| } |
| |
| static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, |
| u8 *iv, struct cword *control_word, int count) |
| { |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ |
| : "+S" (input), "+D" (output), "+a" (iv) |
| : "d" (control_word), "b" (key), "c" (count)); |
| return iv; |
| } |
| |
| static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, |
| struct cword *cword, int count) |
| { |
| /* |
| * Padlock prefetches extra data so we must provide mapped input buffers. |
| * Assume there are at least 16 bytes of stack already in use. |
| */ |
| u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; |
| u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); |
| |
| memcpy(tmp, in, count * AES_BLOCK_SIZE); |
| rep_xcrypt_ecb(tmp, out, key, cword, count); |
| } |
| |
| static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, |
| u8 *iv, struct cword *cword, int count) |
| { |
| /* |
| * Padlock prefetches extra data so we must provide mapped input buffers. |
| * Assume there are at least 16 bytes of stack already in use. |
| */ |
| u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; |
| u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); |
| |
| memcpy(tmp, in, count * AES_BLOCK_SIZE); |
| return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); |
| } |
| |
| static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, |
| struct cword *cword, int count) |
| { |
| /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. |
| * We could avoid some copying here but it's probably not worth it. |
| */ |
| if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) { |
| ecb_crypt_copy(in, out, key, cword, count); |
| return; |
| } |
| |
| rep_xcrypt_ecb(in, out, key, cword, count); |
| } |
| |
| static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, |
| u8 *iv, struct cword *cword, int count) |
| { |
| /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ |
| if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE)) |
| return cbc_crypt_copy(in, out, key, iv, cword, count); |
| |
| return rep_xcrypt_cbc(in, out, key, iv, cword, count); |
| } |
| |
| static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, |
| void *control_word, u32 count) |
| { |
| u32 initial = count & (ecb_fetch_blocks - 1); |
| |
| if (count < ecb_fetch_blocks) { |
| ecb_crypt(input, output, key, control_word, count); |
| return; |
| } |
| |
| count -= initial; |
| |
| if (initial) |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ |
| : "+S"(input), "+D"(output) |
| : "d"(control_word), "b"(key), "c"(initial)); |
| |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */ |
| : "+S"(input), "+D"(output) |
| : "d"(control_word), "b"(key), "c"(count)); |
| } |
| |
| static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, |
| u8 *iv, void *control_word, u32 count) |
| { |
| u32 initial = count & (cbc_fetch_blocks - 1); |
| |
| if (count < cbc_fetch_blocks) |
| return cbc_crypt(input, output, key, iv, control_word, count); |
| |
| count -= initial; |
| |
| if (initial) |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ |
| : "+S" (input), "+D" (output), "+a" (iv) |
| : "d" (control_word), "b" (key), "c" (initial)); |
| |
| asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */ |
| : "+S" (input), "+D" (output), "+a" (iv) |
| : "d" (control_word), "b" (key), "c" (count)); |
| return iv; |
| } |
| |
| static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
| { |
| struct aes_ctx *ctx = aes_ctx(tfm); |
| |
| padlock_reset_key(&ctx->cword.encrypt); |
| ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); |
| padlock_store_cword(&ctx->cword.encrypt); |
| } |
| |
| static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
| { |
| struct aes_ctx *ctx = aes_ctx(tfm); |
| |
| padlock_reset_key(&ctx->cword.encrypt); |
| ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); |
| padlock_store_cword(&ctx->cword.encrypt); |
| } |
| |
| static struct crypto_alg aes_alg = { |
| .cra_name = "aes", |
| .cra_driver_name = "aes-padlock", |
| .cra_priority = PADLOCK_CRA_PRIORITY, |
| .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct aes_ctx), |
| .cra_alignmask = PADLOCK_ALIGNMENT - 1, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .cipher = { |
| .cia_min_keysize = AES_MIN_KEY_SIZE, |
| .cia_max_keysize = AES_MAX_KEY_SIZE, |
| .cia_setkey = aes_set_key, |
| .cia_encrypt = padlock_aes_encrypt, |
| .cia_decrypt = padlock_aes_decrypt, |
| } |
| } |
| }; |
| |
| static int ecb_aes_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aes_ctx *ctx = skcipher_aes_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| padlock_reset_key(&ctx->cword.encrypt); |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, |
| ctx->E, &ctx->cword.encrypt, |
| nbytes / AES_BLOCK_SIZE); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| padlock_store_cword(&ctx->cword.encrypt); |
| |
| return err; |
| } |
| |
| static int ecb_aes_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aes_ctx *ctx = skcipher_aes_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| padlock_reset_key(&ctx->cword.decrypt); |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, |
| ctx->D, &ctx->cword.decrypt, |
| nbytes / AES_BLOCK_SIZE); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| padlock_store_cword(&ctx->cword.encrypt); |
| |
| return err; |
| } |
| |
| static struct skcipher_alg ecb_aes_alg = { |
| .base.cra_name = "ecb(aes)", |
| .base.cra_driver_name = "ecb-aes-padlock", |
| .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct aes_ctx), |
| .base.cra_alignmask = PADLOCK_ALIGNMENT - 1, |
| .base.cra_module = THIS_MODULE, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = aes_set_key_skcipher, |
| .encrypt = ecb_aes_encrypt, |
| .decrypt = ecb_aes_decrypt, |
| }; |
| |
| static int cbc_aes_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aes_ctx *ctx = skcipher_aes_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| padlock_reset_key(&ctx->cword.encrypt); |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, |
| walk.dst.virt.addr, ctx->E, |
| walk.iv, &ctx->cword.encrypt, |
| nbytes / AES_BLOCK_SIZE); |
| memcpy(walk.iv, iv, AES_BLOCK_SIZE); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| padlock_store_cword(&ctx->cword.decrypt); |
| |
| return err; |
| } |
| |
| static int cbc_aes_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct aes_ctx *ctx = skcipher_aes_ctx(tfm); |
| struct skcipher_walk walk; |
| unsigned int nbytes; |
| int err; |
| |
| padlock_reset_key(&ctx->cword.encrypt); |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, |
| ctx->D, walk.iv, &ctx->cword.decrypt, |
| nbytes / AES_BLOCK_SIZE); |
| nbytes &= AES_BLOCK_SIZE - 1; |
| err = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| padlock_store_cword(&ctx->cword.encrypt); |
| |
| return err; |
| } |
| |
| static struct skcipher_alg cbc_aes_alg = { |
| .base.cra_name = "cbc(aes)", |
| .base.cra_driver_name = "cbc-aes-padlock", |
| .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct aes_ctx), |
| .base.cra_alignmask = PADLOCK_ALIGNMENT - 1, |
| .base.cra_module = THIS_MODULE, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = aes_set_key_skcipher, |
| .encrypt = cbc_aes_encrypt, |
| .decrypt = cbc_aes_decrypt, |
| }; |
| |
| static const struct x86_cpu_id padlock_cpu_id[] = { |
| X86_FEATURE_MATCH(X86_FEATURE_XCRYPT), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id); |
| |
| static int __init padlock_init(void) |
| { |
| int ret; |
| struct cpuinfo_x86 *c = &cpu_data(0); |
| |
| if (!x86_match_cpu(padlock_cpu_id)) |
| return -ENODEV; |
| |
| if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) { |
| printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); |
| return -ENODEV; |
| } |
| |
| if ((ret = crypto_register_alg(&aes_alg)) != 0) |
| goto aes_err; |
| |
| if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0) |
| goto ecb_aes_err; |
| |
| if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0) |
| goto cbc_aes_err; |
| |
| printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); |
| |
| if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) { |
| ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; |
| cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; |
| printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); |
| } |
| |
| out: |
| return ret; |
| |
| cbc_aes_err: |
| crypto_unregister_skcipher(&ecb_aes_alg); |
| ecb_aes_err: |
| crypto_unregister_alg(&aes_alg); |
| aes_err: |
| printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); |
| goto out; |
| } |
| |
| static void __exit padlock_fini(void) |
| { |
| crypto_unregister_skcipher(&cbc_aes_alg); |
| crypto_unregister_skcipher(&ecb_aes_alg); |
| crypto_unregister_alg(&aes_alg); |
| } |
| |
| module_init(padlock_init); |
| module_exit(padlock_fini); |
| |
| MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Michal Ludvig"); |
| |
| MODULE_ALIAS_CRYPTO("aes"); |