| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* This file implements reading and writing the master node */ |
| |
| #include "ubifs.h" |
| |
| /** |
| * ubifs_compare_master_node - compare two UBIFS master nodes |
| * @c: UBIFS file-system description object |
| * @m1: the first node |
| * @m2: the second node |
| * |
| * This function compares two UBIFS master nodes. Returns 0 if they are equal |
| * and nonzero if not. |
| */ |
| int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2) |
| { |
| int ret; |
| int behind; |
| int hmac_offs = offsetof(struct ubifs_mst_node, hmac); |
| |
| /* |
| * Do not compare the common node header since the sequence number and |
| * hence the CRC are different. |
| */ |
| ret = memcmp(m1 + UBIFS_CH_SZ, m2 + UBIFS_CH_SZ, |
| hmac_offs - UBIFS_CH_SZ); |
| if (ret) |
| return ret; |
| |
| /* |
| * Do not compare the embedded HMAC as well which also must be different |
| * due to the different common node header. |
| */ |
| behind = hmac_offs + UBIFS_MAX_HMAC_LEN; |
| |
| if (UBIFS_MST_NODE_SZ > behind) |
| return memcmp(m1 + behind, m2 + behind, UBIFS_MST_NODE_SZ - behind); |
| |
| return 0; |
| } |
| |
| /* mst_node_check_hash - Check hash of a master node |
| * @c: UBIFS file-system description object |
| * @mst: The master node |
| * @expected: The expected hash of the master node |
| * |
| * This checks the hash of a master node against a given expected hash. |
| * Note that we have two master nodes on a UBIFS image which have different |
| * sequence numbers and consequently different CRCs. To be able to match |
| * both master nodes we exclude the common node header containing the sequence |
| * number and CRC from the hash. |
| * |
| * Returns 0 if the hashes are equal, a negative error code otherwise. |
| */ |
| static int mst_node_check_hash(const struct ubifs_info *c, |
| const struct ubifs_mst_node *mst, |
| const u8 *expected) |
| { |
| u8 calc[UBIFS_MAX_HASH_LEN]; |
| const void *node = mst; |
| int ret; |
| |
| ret = crypto_shash_tfm_digest(c->hash_tfm, node + sizeof(struct ubifs_ch), |
| UBIFS_MST_NODE_SZ - sizeof(struct ubifs_ch), |
| calc); |
| if (ret) |
| return ret; |
| |
| if (ubifs_check_hash(c, expected, calc)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| /** |
| * scan_for_master - search the valid master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function scans the master node LEBs and search for the latest master |
| * node. Returns zero in case of success, %-EUCLEAN if there master area is |
| * corrupted and requires recovery, and a negative error code in case of |
| * failure. |
| */ |
| static int scan_for_master(struct ubifs_info *c) |
| { |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| int lnum, offs = 0, nodes_cnt, err; |
| |
| lnum = UBIFS_MST_LNUM; |
| |
| sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); |
| if (IS_ERR(sleb)) |
| return PTR_ERR(sleb); |
| nodes_cnt = sleb->nodes_cnt; |
| if (nodes_cnt > 0) { |
| snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, |
| list); |
| if (snod->type != UBIFS_MST_NODE) |
| goto out_dump; |
| memcpy(c->mst_node, snod->node, snod->len); |
| offs = snod->offs; |
| } |
| ubifs_scan_destroy(sleb); |
| |
| lnum += 1; |
| |
| sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); |
| if (IS_ERR(sleb)) |
| return PTR_ERR(sleb); |
| if (sleb->nodes_cnt != nodes_cnt) |
| goto out; |
| if (!sleb->nodes_cnt) |
| goto out; |
| snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list); |
| if (snod->type != UBIFS_MST_NODE) |
| goto out_dump; |
| if (snod->offs != offs) |
| goto out; |
| if (ubifs_compare_master_node(c, c->mst_node, snod->node)) |
| goto out; |
| |
| c->mst_offs = offs; |
| ubifs_scan_destroy(sleb); |
| |
| if (!ubifs_authenticated(c)) |
| return 0; |
| |
| if (ubifs_hmac_zero(c, c->mst_node->hmac)) { |
| err = mst_node_check_hash(c, c->mst_node, |
| c->sup_node->hash_mst); |
| if (err) |
| ubifs_err(c, "Failed to verify master node hash"); |
| } else { |
| err = ubifs_node_verify_hmac(c, c->mst_node, |
| sizeof(struct ubifs_mst_node), |
| offsetof(struct ubifs_mst_node, hmac)); |
| if (err) |
| ubifs_err(c, "Failed to verify master node HMAC"); |
| } |
| |
| if (err) |
| return -EPERM; |
| |
| return 0; |
| |
| out: |
| ubifs_scan_destroy(sleb); |
| return -EUCLEAN; |
| |
| out_dump: |
| ubifs_err(c, "unexpected node type %d master LEB %d:%d", |
| snod->type, lnum, snod->offs); |
| ubifs_scan_destroy(sleb); |
| return -EINVAL; |
| } |
| |
| /** |
| * validate_master - validate master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function validates data which was read from master node. Returns zero |
| * if the data is all right and %-EINVAL if not. |
| */ |
| static int validate_master(const struct ubifs_info *c) |
| { |
| long long main_sz; |
| int err; |
| |
| if (c->max_sqnum >= SQNUM_WATERMARK) { |
| err = 1; |
| goto out; |
| } |
| |
| if (c->cmt_no >= c->max_sqnum) { |
| err = 2; |
| goto out; |
| } |
| |
| if (c->highest_inum >= INUM_WATERMARK) { |
| err = 3; |
| goto out; |
| } |
| |
| if (c->lhead_lnum < UBIFS_LOG_LNUM || |
| c->lhead_lnum >= UBIFS_LOG_LNUM + c->log_lebs || |
| c->lhead_offs < 0 || c->lhead_offs >= c->leb_size || |
| c->lhead_offs & (c->min_io_size - 1)) { |
| err = 4; |
| goto out; |
| } |
| |
| if (c->zroot.lnum >= c->leb_cnt || c->zroot.lnum < c->main_first || |
| c->zroot.offs >= c->leb_size || c->zroot.offs & 7) { |
| err = 5; |
| goto out; |
| } |
| |
| if (c->zroot.len < c->ranges[UBIFS_IDX_NODE].min_len || |
| c->zroot.len > c->ranges[UBIFS_IDX_NODE].max_len) { |
| err = 6; |
| goto out; |
| } |
| |
| if (c->gc_lnum >= c->leb_cnt || c->gc_lnum < c->main_first) { |
| err = 7; |
| goto out; |
| } |
| |
| if (c->ihead_lnum >= c->leb_cnt || c->ihead_lnum < c->main_first || |
| c->ihead_offs % c->min_io_size || c->ihead_offs < 0 || |
| c->ihead_offs > c->leb_size || c->ihead_offs & 7) { |
| err = 8; |
| goto out; |
| } |
| |
| main_sz = (long long)c->main_lebs * c->leb_size; |
| if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) { |
| err = 9; |
| goto out; |
| } |
| |
| if (c->lpt_lnum < c->lpt_first || c->lpt_lnum > c->lpt_last || |
| c->lpt_offs < 0 || c->lpt_offs + c->nnode_sz > c->leb_size) { |
| err = 10; |
| goto out; |
| } |
| |
| if (c->nhead_lnum < c->lpt_first || c->nhead_lnum > c->lpt_last || |
| c->nhead_offs < 0 || c->nhead_offs % c->min_io_size || |
| c->nhead_offs > c->leb_size) { |
| err = 11; |
| goto out; |
| } |
| |
| if (c->ltab_lnum < c->lpt_first || c->ltab_lnum > c->lpt_last || |
| c->ltab_offs < 0 || |
| c->ltab_offs + c->ltab_sz > c->leb_size) { |
| err = 12; |
| goto out; |
| } |
| |
| if (c->big_lpt && (c->lsave_lnum < c->lpt_first || |
| c->lsave_lnum > c->lpt_last || c->lsave_offs < 0 || |
| c->lsave_offs + c->lsave_sz > c->leb_size)) { |
| err = 13; |
| goto out; |
| } |
| |
| if (c->lscan_lnum < c->main_first || c->lscan_lnum >= c->leb_cnt) { |
| err = 14; |
| goto out; |
| } |
| |
| if (c->lst.empty_lebs < 0 || c->lst.empty_lebs > c->main_lebs - 2) { |
| err = 15; |
| goto out; |
| } |
| |
| if (c->lst.idx_lebs < 0 || c->lst.idx_lebs > c->main_lebs - 1) { |
| err = 16; |
| goto out; |
| } |
| |
| if (c->lst.total_free < 0 || c->lst.total_free > main_sz || |
| c->lst.total_free & 7) { |
| err = 17; |
| goto out; |
| } |
| |
| if (c->lst.total_dirty < 0 || (c->lst.total_dirty & 7)) { |
| err = 18; |
| goto out; |
| } |
| |
| if (c->lst.total_used < 0 || (c->lst.total_used & 7)) { |
| err = 19; |
| goto out; |
| } |
| |
| if (c->lst.total_free + c->lst.total_dirty + |
| c->lst.total_used > main_sz) { |
| err = 20; |
| goto out; |
| } |
| |
| if (c->lst.total_dead + c->lst.total_dark + |
| c->lst.total_used + c->bi.old_idx_sz > main_sz) { |
| err = 21; |
| goto out; |
| } |
| |
| if (c->lst.total_dead < 0 || |
| c->lst.total_dead > c->lst.total_free + c->lst.total_dirty || |
| c->lst.total_dead & 7) { |
| err = 22; |
| goto out; |
| } |
| |
| if (c->lst.total_dark < 0 || |
| c->lst.total_dark > c->lst.total_free + c->lst.total_dirty || |
| c->lst.total_dark & 7) { |
| err = 23; |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| ubifs_err(c, "bad master node at offset %d error %d", c->mst_offs, err); |
| ubifs_dump_node(c, c->mst_node, c->mst_node_alsz); |
| return -EINVAL; |
| } |
| |
| /** |
| * ubifs_read_master - read master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function finds and reads the master node during file-system mount. If |
| * the flash is empty, it creates default master node as well. Returns zero in |
| * case of success and a negative error code in case of failure. |
| */ |
| int ubifs_read_master(struct ubifs_info *c) |
| { |
| int err, old_leb_cnt; |
| |
| c->mst_node = kzalloc(c->mst_node_alsz, GFP_KERNEL); |
| if (!c->mst_node) |
| return -ENOMEM; |
| |
| err = scan_for_master(c); |
| if (err) { |
| if (err == -EUCLEAN) |
| err = ubifs_recover_master_node(c); |
| if (err) |
| /* |
| * Note, we do not free 'c->mst_node' here because the |
| * unmount routine will take care of this. |
| */ |
| return err; |
| } |
| |
| /* Make sure that the recovery flag is clear */ |
| c->mst_node->flags &= cpu_to_le32(~UBIFS_MST_RCVRY); |
| |
| c->max_sqnum = le64_to_cpu(c->mst_node->ch.sqnum); |
| c->highest_inum = le64_to_cpu(c->mst_node->highest_inum); |
| c->cmt_no = le64_to_cpu(c->mst_node->cmt_no); |
| c->zroot.lnum = le32_to_cpu(c->mst_node->root_lnum); |
| c->zroot.offs = le32_to_cpu(c->mst_node->root_offs); |
| c->zroot.len = le32_to_cpu(c->mst_node->root_len); |
| c->lhead_lnum = le32_to_cpu(c->mst_node->log_lnum); |
| c->gc_lnum = le32_to_cpu(c->mst_node->gc_lnum); |
| c->ihead_lnum = le32_to_cpu(c->mst_node->ihead_lnum); |
| c->ihead_offs = le32_to_cpu(c->mst_node->ihead_offs); |
| c->bi.old_idx_sz = le64_to_cpu(c->mst_node->index_size); |
| c->lpt_lnum = le32_to_cpu(c->mst_node->lpt_lnum); |
| c->lpt_offs = le32_to_cpu(c->mst_node->lpt_offs); |
| c->nhead_lnum = le32_to_cpu(c->mst_node->nhead_lnum); |
| c->nhead_offs = le32_to_cpu(c->mst_node->nhead_offs); |
| c->ltab_lnum = le32_to_cpu(c->mst_node->ltab_lnum); |
| c->ltab_offs = le32_to_cpu(c->mst_node->ltab_offs); |
| c->lsave_lnum = le32_to_cpu(c->mst_node->lsave_lnum); |
| c->lsave_offs = le32_to_cpu(c->mst_node->lsave_offs); |
| c->lscan_lnum = le32_to_cpu(c->mst_node->lscan_lnum); |
| c->lst.empty_lebs = le32_to_cpu(c->mst_node->empty_lebs); |
| c->lst.idx_lebs = le32_to_cpu(c->mst_node->idx_lebs); |
| old_leb_cnt = le32_to_cpu(c->mst_node->leb_cnt); |
| c->lst.total_free = le64_to_cpu(c->mst_node->total_free); |
| c->lst.total_dirty = le64_to_cpu(c->mst_node->total_dirty); |
| c->lst.total_used = le64_to_cpu(c->mst_node->total_used); |
| c->lst.total_dead = le64_to_cpu(c->mst_node->total_dead); |
| c->lst.total_dark = le64_to_cpu(c->mst_node->total_dark); |
| |
| ubifs_copy_hash(c, c->mst_node->hash_root_idx, c->zroot.hash); |
| |
| c->calc_idx_sz = c->bi.old_idx_sz; |
| |
| if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS)) |
| c->no_orphs = 1; |
| |
| if (old_leb_cnt != c->leb_cnt) { |
| /* The file system has been resized */ |
| int growth = c->leb_cnt - old_leb_cnt; |
| |
| if (c->leb_cnt < old_leb_cnt || |
| c->leb_cnt < UBIFS_MIN_LEB_CNT) { |
| ubifs_err(c, "bad leb_cnt on master node"); |
| ubifs_dump_node(c, c->mst_node, c->mst_node_alsz); |
| return -EINVAL; |
| } |
| |
| dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs", |
| old_leb_cnt, c->leb_cnt); |
| c->lst.empty_lebs += growth; |
| c->lst.total_free += growth * (long long)c->leb_size; |
| c->lst.total_dark += growth * (long long)c->dark_wm; |
| |
| /* |
| * Reflect changes back onto the master node. N.B. the master |
| * node gets written immediately whenever mounting (or |
| * remounting) in read-write mode, so we do not need to write it |
| * here. |
| */ |
| c->mst_node->leb_cnt = cpu_to_le32(c->leb_cnt); |
| c->mst_node->empty_lebs = cpu_to_le32(c->lst.empty_lebs); |
| c->mst_node->total_free = cpu_to_le64(c->lst.total_free); |
| c->mst_node->total_dark = cpu_to_le64(c->lst.total_dark); |
| } |
| |
| err = validate_master(c); |
| if (err) |
| return err; |
| |
| err = dbg_old_index_check_init(c, &c->zroot); |
| |
| return err; |
| } |
| |
| /** |
| * ubifs_write_master - write master node. |
| * @c: UBIFS file-system description object |
| * |
| * This function writes the master node. Returns zero in case of success and a |
| * negative error code in case of failure. The master node is written twice to |
| * enable recovery. |
| */ |
| int ubifs_write_master(struct ubifs_info *c) |
| { |
| int err, lnum, offs, len; |
| |
| ubifs_assert(c, !c->ro_media && !c->ro_mount); |
| if (c->ro_error) |
| return -EROFS; |
| |
| lnum = UBIFS_MST_LNUM; |
| offs = c->mst_offs + c->mst_node_alsz; |
| len = UBIFS_MST_NODE_SZ; |
| |
| if (offs + UBIFS_MST_NODE_SZ > c->leb_size) { |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| offs = 0; |
| } |
| |
| c->mst_offs = offs; |
| c->mst_node->highest_inum = cpu_to_le64(c->highest_inum); |
| |
| ubifs_copy_hash(c, c->zroot.hash, c->mst_node->hash_root_idx); |
| err = ubifs_write_node_hmac(c, c->mst_node, len, lnum, offs, |
| offsetof(struct ubifs_mst_node, hmac)); |
| if (err) |
| return err; |
| |
| lnum += 1; |
| |
| if (offs == 0) { |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| } |
| err = ubifs_write_node_hmac(c, c->mst_node, len, lnum, offs, |
| offsetof(struct ubifs_mst_node, hmac)); |
| |
| return err; |
| } |