blob: 8675613e142b64a54ac6a2acf8dd0afb934dc7e5 [file] [log] [blame]
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <engine/falcon.h>
#include <core/gpuobj.h>
#include <subdev/mc.h>
#include <subdev/timer.h>
#include <engine/fifo.h>
static int
nvkm_falcon_oclass_get(struct nvkm_oclass *oclass, int index)
{
struct nvkm_falcon *falcon = nvkm_falcon(oclass->engine);
int c = 0;
while (falcon->func->sclass[c].oclass) {
if (c++ == index) {
oclass->base = falcon->func->sclass[index];
return index;
}
}
return c;
}
static int
nvkm_falcon_cclass_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
int align, struct nvkm_gpuobj **pgpuobj)
{
return nvkm_gpuobj_new(object->engine->subdev.device, 256,
align, true, parent, pgpuobj);
}
static const struct nvkm_object_func
nvkm_falcon_cclass = {
.bind = nvkm_falcon_cclass_bind,
};
static void
nvkm_falcon_intr(struct nvkm_engine *engine)
{
struct nvkm_falcon *falcon = nvkm_falcon(engine);
struct nvkm_subdev *subdev = &falcon->engine.subdev;
struct nvkm_device *device = subdev->device;
const u32 base = falcon->addr;
u32 dest = nvkm_rd32(device, base + 0x01c);
u32 intr = nvkm_rd32(device, base + 0x008) & dest & ~(dest >> 16);
u32 inst = nvkm_rd32(device, base + 0x050) & 0x3fffffff;
struct nvkm_fifo_chan *chan;
unsigned long flags;
chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
if (intr & 0x00000040) {
if (falcon->func->intr) {
falcon->func->intr(falcon, chan);
nvkm_wr32(device, base + 0x004, 0x00000040);
intr &= ~0x00000040;
}
}
if (intr & 0x00000010) {
nvkm_debug(subdev, "ucode halted\n");
nvkm_wr32(device, base + 0x004, 0x00000010);
intr &= ~0x00000010;
}
if (intr) {
nvkm_error(subdev, "intr %08x\n", intr);
nvkm_wr32(device, base + 0x004, intr);
}
nvkm_fifo_chan_put(device->fifo, flags, &chan);
}
static int
nvkm_falcon_fini(struct nvkm_engine *engine, bool suspend)
{
struct nvkm_falcon *falcon = nvkm_falcon(engine);
struct nvkm_device *device = falcon->engine.subdev.device;
const u32 base = falcon->addr;
if (!suspend) {
nvkm_memory_unref(&falcon->core);
if (falcon->external) {
vfree(falcon->data.data);
vfree(falcon->code.data);
falcon->code.data = NULL;
}
}
if (nvkm_mc_enabled(device, engine->subdev.index)) {
nvkm_mask(device, base + 0x048, 0x00000003, 0x00000000);
nvkm_wr32(device, base + 0x014, 0xffffffff);
}
return 0;
}
static void *
vmemdup(const void *src, size_t len)
{
void *p = vmalloc(len);
if (p)
memcpy(p, src, len);
return p;
}
static int
nvkm_falcon_oneinit(struct nvkm_engine *engine)
{
struct nvkm_falcon *falcon = nvkm_falcon(engine);
struct nvkm_subdev *subdev = &falcon->engine.subdev;
struct nvkm_device *device = subdev->device;
const u32 base = falcon->addr;
u32 caps;
/* determine falcon capabilities */
if (device->chipset < 0xa3 ||
device->chipset == 0xaa || device->chipset == 0xac) {
falcon->version = 0;
falcon->secret = (falcon->addr == 0x087000) ? 1 : 0;
} else {
caps = nvkm_rd32(device, base + 0x12c);
falcon->version = (caps & 0x0000000f);
falcon->secret = (caps & 0x00000030) >> 4;
}
caps = nvkm_rd32(device, base + 0x108);
falcon->code.limit = (caps & 0x000001ff) << 8;
falcon->data.limit = (caps & 0x0003fe00) >> 1;
nvkm_debug(subdev, "falcon version: %d\n", falcon->version);
nvkm_debug(subdev, "secret level: %d\n", falcon->secret);
nvkm_debug(subdev, "code limit: %d\n", falcon->code.limit);
nvkm_debug(subdev, "data limit: %d\n", falcon->data.limit);
return 0;
}
static int
nvkm_falcon_init(struct nvkm_engine *engine)
{
struct nvkm_falcon *falcon = nvkm_falcon(engine);
struct nvkm_subdev *subdev = &falcon->engine.subdev;
struct nvkm_device *device = subdev->device;
const struct firmware *fw;
char name[32] = "internal";
const u32 base = falcon->addr;
int ret, i;
/* wait for 'uc halted' to be signalled before continuing */
if (falcon->secret && falcon->version < 4) {
if (!falcon->version) {
nvkm_msec(device, 2000,
if (nvkm_rd32(device, base + 0x008) & 0x00000010)
break;
);
} else {
nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, base + 0x180) & 0x80000000))
break;
);
}
nvkm_wr32(device, base + 0x004, 0x00000010);
}
/* disable all interrupts */
nvkm_wr32(device, base + 0x014, 0xffffffff);
/* no default ucode provided by the engine implementation, try and
* locate a "self-bootstrapping" firmware image for the engine
*/
if (!falcon->code.data) {
snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03x",
device->chipset, falcon->addr >> 12);
ret = request_firmware(&fw, name, device->dev);
if (ret == 0) {
falcon->code.data = vmemdup(fw->data, fw->size);
falcon->code.size = fw->size;
falcon->data.data = NULL;
falcon->data.size = 0;
release_firmware(fw);
}
falcon->external = true;
}
/* next step is to try and load "static code/data segment" firmware
* images for the engine
*/
if (!falcon->code.data) {
snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03xd",
device->chipset, falcon->addr >> 12);
ret = request_firmware(&fw, name, device->dev);
if (ret) {
nvkm_error(subdev, "unable to load firmware data\n");
return -ENODEV;
}
falcon->data.data = vmemdup(fw->data, fw->size);
falcon->data.size = fw->size;
release_firmware(fw);
if (!falcon->data.data)
return -ENOMEM;
snprintf(name, sizeof(name), "nouveau/nv%02x_fuc%03xc",
device->chipset, falcon->addr >> 12);
ret = request_firmware(&fw, name, device->dev);
if (ret) {
nvkm_error(subdev, "unable to load firmware code\n");
return -ENODEV;
}
falcon->code.data = vmemdup(fw->data, fw->size);
falcon->code.size = fw->size;
release_firmware(fw);
if (!falcon->code.data)
return -ENOMEM;
}
nvkm_debug(subdev, "firmware: %s (%s)\n", name, falcon->data.data ?
"static code/data segments" : "self-bootstrapping");
/* ensure any "self-bootstrapping" firmware image is in vram */
if (!falcon->data.data && !falcon->core) {
ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
falcon->code.size, 256, false,
&falcon->core);
if (ret) {
nvkm_error(subdev, "core allocation failed, %d\n", ret);
return ret;
}
nvkm_kmap(falcon->core);
for (i = 0; i < falcon->code.size; i += 4)
nvkm_wo32(falcon->core, i, falcon->code.data[i / 4]);
nvkm_done(falcon->core);
}
/* upload firmware bootloader (or the full code segments) */
if (falcon->core) {
u64 addr = nvkm_memory_addr(falcon->core);
if (device->card_type < NV_C0)
nvkm_wr32(device, base + 0x618, 0x04000000);
else
nvkm_wr32(device, base + 0x618, 0x00000114);
nvkm_wr32(device, base + 0x11c, 0);
nvkm_wr32(device, base + 0x110, addr >> 8);
nvkm_wr32(device, base + 0x114, 0);
nvkm_wr32(device, base + 0x118, 0x00006610);
} else {
if (falcon->code.size > falcon->code.limit ||
falcon->data.size > falcon->data.limit) {
nvkm_error(subdev, "ucode exceeds falcon limit(s)\n");
return -EINVAL;
}
if (falcon->version < 3) {
nvkm_wr32(device, base + 0xff8, 0x00100000);
for (i = 0; i < falcon->code.size / 4; i++)
nvkm_wr32(device, base + 0xff4, falcon->code.data[i]);
} else {
nvkm_wr32(device, base + 0x180, 0x01000000);
for (i = 0; i < falcon->code.size / 4; i++) {
if ((i & 0x3f) == 0)
nvkm_wr32(device, base + 0x188, i >> 6);
nvkm_wr32(device, base + 0x184, falcon->code.data[i]);
}
}
}
/* upload data segment (if necessary), zeroing the remainder */
if (falcon->version < 3) {
nvkm_wr32(device, base + 0xff8, 0x00000000);
for (i = 0; !falcon->core && i < falcon->data.size / 4; i++)
nvkm_wr32(device, base + 0xff4, falcon->data.data[i]);
for (; i < falcon->data.limit; i += 4)
nvkm_wr32(device, base + 0xff4, 0x00000000);
} else {
nvkm_wr32(device, base + 0x1c0, 0x01000000);
for (i = 0; !falcon->core && i < falcon->data.size / 4; i++)
nvkm_wr32(device, base + 0x1c4, falcon->data.data[i]);
for (; i < falcon->data.limit / 4; i++)
nvkm_wr32(device, base + 0x1c4, 0x00000000);
}
/* start it running */
nvkm_wr32(device, base + 0x10c, 0x00000001); /* BLOCK_ON_FIFO */
nvkm_wr32(device, base + 0x104, 0x00000000); /* ENTRY */
nvkm_wr32(device, base + 0x100, 0x00000002); /* TRIGGER */
nvkm_wr32(device, base + 0x048, 0x00000003); /* FIFO | CHSW */
if (falcon->func->init)
falcon->func->init(falcon);
return 0;
}
static void *
nvkm_falcon_dtor(struct nvkm_engine *engine)
{
return nvkm_falcon(engine);
}
static const struct nvkm_engine_func
nvkm_falcon = {
.dtor = nvkm_falcon_dtor,
.oneinit = nvkm_falcon_oneinit,
.init = nvkm_falcon_init,
.fini = nvkm_falcon_fini,
.intr = nvkm_falcon_intr,
.fifo.sclass = nvkm_falcon_oclass_get,
.cclass = &nvkm_falcon_cclass,
};
int
nvkm_falcon_new_(const struct nvkm_falcon_func *func,
struct nvkm_device *device, int index, bool enable,
u32 addr, struct nvkm_engine **pengine)
{
struct nvkm_falcon *falcon;
if (!(falcon = kzalloc(sizeof(*falcon), GFP_KERNEL)))
return -ENOMEM;
falcon->func = func;
falcon->addr = addr;
falcon->code.data = func->code.data;
falcon->code.size = func->code.size;
falcon->data.data = func->data.data;
falcon->data.size = func->data.size;
*pengine = &falcon->engine;
return nvkm_engine_ctor(&nvkm_falcon, device, index,
enable, &falcon->engine);
}