blob: 4e78e8812a045feb3e58576354be1988f6bcc046 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hnae3.h"
#define hclgevf_is_csq(ring) ((ring)->flag & HCLGEVF_TYPE_CSQ)
#define hclgevf_ring_to_dma_dir(ring) (hclgevf_is_csq(ring) ? \
DMA_TO_DEVICE : DMA_FROM_DEVICE)
#define cmq_ring_to_dev(ring) (&(ring)->dev->pdev->dev)
static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
{
int ntc = ring->next_to_clean;
int ntu = ring->next_to_use;
int used;
used = (ntu - ntc + ring->desc_num) % ring->desc_num;
return ring->desc_num - used - 1;
}
static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
{
struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
u16 ntc = csq->next_to_clean;
struct hclgevf_desc *desc;
int clean = 0;
u32 head;
desc = &csq->desc[ntc];
head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
while (head != ntc) {
memset(desc, 0, sizeof(*desc));
ntc++;
if (ntc == csq->desc_num)
ntc = 0;
desc = &csq->desc[ntc];
clean++;
}
csq->next_to_clean = ntc;
return clean;
}
static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
{
u32 head;
head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
return head == hw->cmq.csq.next_to_use;
}
static bool hclgevf_is_special_opcode(u16 opcode)
{
u16 spec_opcode[] = {0x30, 0x31, 0x32};
int i;
for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
if (spec_opcode[i] == opcode)
return true;
}
return false;
}
static void hclgevf_cmd_config_regs(struct hclgevf_cmq_ring *ring)
{
struct hclgevf_dev *hdev = ring->dev;
struct hclgevf_hw *hw = &hdev->hw;
u32 reg_val;
if (ring->flag == HCLGEVF_TYPE_CSQ) {
reg_val = (u32)ring->desc_dma_addr;
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
} else {
reg_val = (u32)ring->desc_dma_addr;
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
reg_val = (u32)((ring->desc_dma_addr >> 31) >> 1);
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
reg_val |= HCLGEVF_NIC_CMQ_ENABLE;
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
}
}
static void hclgevf_cmd_init_regs(struct hclgevf_hw *hw)
{
hclgevf_cmd_config_regs(&hw->cmq.csq);
hclgevf_cmd_config_regs(&hw->cmq.crq);
}
static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
{
int size = ring->desc_num * sizeof(struct hclgevf_desc);
ring->desc = dma_alloc_coherent(cmq_ring_to_dev(ring), size,
&ring->desc_dma_addr, GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
{
int size = ring->desc_num * sizeof(struct hclgevf_desc);
if (ring->desc) {
dma_free_coherent(cmq_ring_to_dev(ring), size,
ring->desc, ring->desc_dma_addr);
ring->desc = NULL;
}
}
static int hclgevf_alloc_cmd_queue(struct hclgevf_dev *hdev, int ring_type)
{
struct hclgevf_hw *hw = &hdev->hw;
struct hclgevf_cmq_ring *ring =
(ring_type == HCLGEVF_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
int ret;
ring->dev = hdev;
ring->flag = ring_type;
/* allocate CSQ/CRQ descriptor */
ret = hclgevf_alloc_cmd_desc(ring);
if (ret)
dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
(ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
return ret;
}
void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
enum hclgevf_opcode_type opcode, bool is_read)
{
memset(desc, 0, sizeof(struct hclgevf_desc));
desc->opcode = cpu_to_le16(opcode);
desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
HCLGEVF_CMD_FLAG_IN);
if (is_read)
desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
else
desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
}
/* hclgevf_cmd_send - send command to command queue
* @hw: pointer to the hw struct
* @desc: prefilled descriptor for describing the command
* @num : the number of descriptors to be sent
*
* This is the main send command for command queue, it
* sends the queue, cleans the queue, etc
*/
int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
{
struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
struct hclgevf_desc *desc_to_use;
bool complete = false;
u32 timeout = 0;
int handle = 0;
int status = 0;
u16 retval;
u16 opcode;
int ntc;
spin_lock_bh(&hw->cmq.csq.lock);
if (num > hclgevf_ring_space(&hw->cmq.csq) ||
test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) {
spin_unlock_bh(&hw->cmq.csq.lock);
return -EBUSY;
}
/* Record the location of desc in the ring for this time
* which will be use for hardware to write back
*/
ntc = hw->cmq.csq.next_to_use;
opcode = le16_to_cpu(desc[0].opcode);
while (handle < num) {
desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
*desc_to_use = desc[handle];
(hw->cmq.csq.next_to_use)++;
if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
hw->cmq.csq.next_to_use = 0;
handle++;
}
/* Write to hardware */
hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
hw->cmq.csq.next_to_use);
/* If the command is sync, wait for the firmware to write back,
* if multi descriptors to be sent, use the first one to check
*/
if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
do {
if (hclgevf_cmd_csq_done(hw))
break;
udelay(1);
timeout++;
} while (timeout < hw->cmq.tx_timeout);
}
if (hclgevf_cmd_csq_done(hw)) {
complete = true;
handle = 0;
while (handle < num) {
/* Get the result of hardware write back */
desc_to_use = &hw->cmq.csq.desc[ntc];
desc[handle] = *desc_to_use;
if (likely(!hclgevf_is_special_opcode(opcode)))
retval = le16_to_cpu(desc[handle].retval);
else
retval = le16_to_cpu(desc[0].retval);
if ((enum hclgevf_cmd_return_status)retval ==
HCLGEVF_CMD_EXEC_SUCCESS)
status = 0;
else
status = -EIO;
hw->cmq.last_status = (enum hclgevf_cmd_status)retval;
ntc++;
handle++;
if (ntc == hw->cmq.csq.desc_num)
ntc = 0;
}
}
if (!complete)
status = -EAGAIN;
/* Clean the command send queue */
handle = hclgevf_cmd_csq_clean(hw);
if (handle != num) {
dev_warn(&hdev->pdev->dev,
"cleaned %d, need to clean %d\n", handle, num);
}
spin_unlock_bh(&hw->cmq.csq.lock);
return status;
}
static int hclgevf_cmd_query_firmware_version(struct hclgevf_hw *hw,
u32 *version)
{
struct hclgevf_query_version_cmd *resp;
struct hclgevf_desc desc;
int status;
resp = (struct hclgevf_query_version_cmd *)desc.data;
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
status = hclgevf_cmd_send(hw, &desc, 1);
if (!status)
*version = le32_to_cpu(resp->firmware);
return status;
}
int hclgevf_cmd_queue_init(struct hclgevf_dev *hdev)
{
int ret;
/* Setup the lock for command queue */
spin_lock_init(&hdev->hw.cmq.csq.lock);
spin_lock_init(&hdev->hw.cmq.crq.lock);
hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
hdev->hw.cmq.csq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
hdev->hw.cmq.crq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CSQ);
if (ret) {
dev_err(&hdev->pdev->dev,
"CSQ ring setup error %d\n", ret);
return ret;
}
ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CRQ);
if (ret) {
dev_err(&hdev->pdev->dev,
"CRQ ring setup error %d\n", ret);
goto err_csq;
}
return 0;
err_csq:
hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
return ret;
}
int hclgevf_cmd_init(struct hclgevf_dev *hdev)
{
u32 version;
int ret;
spin_lock_bh(&hdev->hw.cmq.csq.lock);
spin_lock_bh(&hdev->hw.cmq.crq.lock);
/* initialize the pointers of async rx queue of mailbox */
hdev->arq.hdev = hdev;
hdev->arq.head = 0;
hdev->arq.tail = 0;
hdev->arq.count = 0;
hdev->hw.cmq.csq.next_to_clean = 0;
hdev->hw.cmq.csq.next_to_use = 0;
hdev->hw.cmq.crq.next_to_clean = 0;
hdev->hw.cmq.crq.next_to_use = 0;
hclgevf_cmd_init_regs(&hdev->hw);
spin_unlock_bh(&hdev->hw.cmq.crq.lock);
spin_unlock_bh(&hdev->hw.cmq.csq.lock);
clear_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
/* Check if there is new reset pending, because the higher level
* reset may happen when lower level reset is being processed.
*/
if (hclgevf_is_reset_pending(hdev)) {
set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
return -EBUSY;
}
/* get firmware version */
ret = hclgevf_cmd_query_firmware_version(&hdev->hw, &version);
if (ret) {
dev_err(&hdev->pdev->dev,
"failed(%d) to query firmware version\n", ret);
return ret;
}
hdev->fw_version = version;
dev_info(&hdev->pdev->dev, "The firmware version is %08x\n", version);
return 0;
}
void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
{
hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
}