blob: 3ad10c793308e6ee9c5a49a3bd6bb943c1bcd9b1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Felix Fietkau <nbd@nbd.name> */
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include "mtk_ppe.h"
#include "mtk_ppe_regs.h"
static void ppe_w32(struct mtk_ppe *ppe, u32 reg, u32 val)
{
writel(val, ppe->base + reg);
}
static u32 ppe_r32(struct mtk_ppe *ppe, u32 reg)
{
return readl(ppe->base + reg);
}
static u32 ppe_m32(struct mtk_ppe *ppe, u32 reg, u32 mask, u32 set)
{
u32 val;
val = ppe_r32(ppe, reg);
val &= ~mask;
val |= set;
ppe_w32(ppe, reg, val);
return val;
}
static u32 ppe_set(struct mtk_ppe *ppe, u32 reg, u32 val)
{
return ppe_m32(ppe, reg, 0, val);
}
static u32 ppe_clear(struct mtk_ppe *ppe, u32 reg, u32 val)
{
return ppe_m32(ppe, reg, val, 0);
}
static int mtk_ppe_wait_busy(struct mtk_ppe *ppe)
{
int ret;
u32 val;
ret = readl_poll_timeout(ppe->base + MTK_PPE_GLO_CFG, val,
!(val & MTK_PPE_GLO_CFG_BUSY),
20, MTK_PPE_WAIT_TIMEOUT_US);
if (ret)
dev_err(ppe->dev, "PPE table busy");
return ret;
}
static void mtk_ppe_cache_clear(struct mtk_ppe *ppe)
{
ppe_set(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_CLEAR);
ppe_clear(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_CLEAR);
}
static void mtk_ppe_cache_enable(struct mtk_ppe *ppe, bool enable)
{
mtk_ppe_cache_clear(ppe);
ppe_m32(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_EN,
enable * MTK_PPE_CACHE_CTL_EN);
}
static u32 mtk_ppe_hash_entry(struct mtk_foe_entry *e)
{
u32 hv1, hv2, hv3;
u32 hash;
switch (FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, e->ib1)) {
case MTK_PPE_PKT_TYPE_BRIDGE:
hv1 = e->bridge.src_mac_lo;
hv1 ^= ((e->bridge.src_mac_hi & 0xffff) << 16);
hv2 = e->bridge.src_mac_hi >> 16;
hv2 ^= e->bridge.dest_mac_lo;
hv3 = e->bridge.dest_mac_hi;
break;
case MTK_PPE_PKT_TYPE_IPV4_ROUTE:
case MTK_PPE_PKT_TYPE_IPV4_HNAPT:
hv1 = e->ipv4.orig.ports;
hv2 = e->ipv4.orig.dest_ip;
hv3 = e->ipv4.orig.src_ip;
break;
case MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T:
case MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T:
hv1 = e->ipv6.src_ip[3] ^ e->ipv6.dest_ip[3];
hv1 ^= e->ipv6.ports;
hv2 = e->ipv6.src_ip[2] ^ e->ipv6.dest_ip[2];
hv2 ^= e->ipv6.dest_ip[0];
hv3 = e->ipv6.src_ip[1] ^ e->ipv6.dest_ip[1];
hv3 ^= e->ipv6.src_ip[0];
break;
case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
case MTK_PPE_PKT_TYPE_IPV6_6RD:
default:
WARN_ON_ONCE(1);
return MTK_PPE_HASH_MASK;
}
hash = (hv1 & hv2) | ((~hv1) & hv3);
hash = (hash >> 24) | ((hash & 0xffffff) << 8);
hash ^= hv1 ^ hv2 ^ hv3;
hash ^= hash >> 16;
hash <<= 1;
hash &= MTK_PPE_ENTRIES - 1;
return hash;
}
static inline struct mtk_foe_mac_info *
mtk_foe_entry_l2(struct mtk_foe_entry *entry)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
return &entry->ipv6.l2;
return &entry->ipv4.l2;
}
static inline u32 *
mtk_foe_entry_ib2(struct mtk_foe_entry *entry)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
return &entry->ipv6.ib2;
return &entry->ipv4.ib2;
}
int mtk_foe_entry_prepare(struct mtk_foe_entry *entry, int type, int l4proto,
u8 pse_port, u8 *src_mac, u8 *dest_mac)
{
struct mtk_foe_mac_info *l2;
u32 ports_pad, val;
memset(entry, 0, sizeof(*entry));
val = FIELD_PREP(MTK_FOE_IB1_STATE, MTK_FOE_STATE_BIND) |
FIELD_PREP(MTK_FOE_IB1_PACKET_TYPE, type) |
FIELD_PREP(MTK_FOE_IB1_UDP, l4proto == IPPROTO_UDP) |
MTK_FOE_IB1_BIND_TTL |
MTK_FOE_IB1_BIND_CACHE;
entry->ib1 = val;
val = FIELD_PREP(MTK_FOE_IB2_PORT_MG, 0x3f) |
FIELD_PREP(MTK_FOE_IB2_PORT_AG, 0x1f) |
FIELD_PREP(MTK_FOE_IB2_DEST_PORT, pse_port);
if (is_multicast_ether_addr(dest_mac))
val |= MTK_FOE_IB2_MULTICAST;
ports_pad = 0xa5a5a500 | (l4proto & 0xff);
if (type == MTK_PPE_PKT_TYPE_IPV4_ROUTE)
entry->ipv4.orig.ports = ports_pad;
if (type == MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T)
entry->ipv6.ports = ports_pad;
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE) {
entry->ipv6.ib2 = val;
l2 = &entry->ipv6.l2;
} else {
entry->ipv4.ib2 = val;
l2 = &entry->ipv4.l2;
}
l2->dest_mac_hi = get_unaligned_be32(dest_mac);
l2->dest_mac_lo = get_unaligned_be16(dest_mac + 4);
l2->src_mac_hi = get_unaligned_be32(src_mac);
l2->src_mac_lo = get_unaligned_be16(src_mac + 4);
if (type >= MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T)
l2->etype = ETH_P_IPV6;
else
l2->etype = ETH_P_IP;
return 0;
}
int mtk_foe_entry_set_pse_port(struct mtk_foe_entry *entry, u8 port)
{
u32 *ib2 = mtk_foe_entry_ib2(entry);
u32 val;
val = *ib2;
val &= ~MTK_FOE_IB2_DEST_PORT;
val |= FIELD_PREP(MTK_FOE_IB2_DEST_PORT, port);
*ib2 = val;
return 0;
}
int mtk_foe_entry_set_ipv4_tuple(struct mtk_foe_entry *entry, bool egress,
__be32 src_addr, __be16 src_port,
__be32 dest_addr, __be16 dest_port)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
struct mtk_ipv4_tuple *t;
switch (type) {
case MTK_PPE_PKT_TYPE_IPV4_HNAPT:
if (egress) {
t = &entry->ipv4.new;
break;
}
fallthrough;
case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
case MTK_PPE_PKT_TYPE_IPV4_ROUTE:
t = &entry->ipv4.orig;
break;
case MTK_PPE_PKT_TYPE_IPV6_6RD:
entry->ipv6_6rd.tunnel_src_ip = be32_to_cpu(src_addr);
entry->ipv6_6rd.tunnel_dest_ip = be32_to_cpu(dest_addr);
return 0;
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
t->src_ip = be32_to_cpu(src_addr);
t->dest_ip = be32_to_cpu(dest_addr);
if (type == MTK_PPE_PKT_TYPE_IPV4_ROUTE)
return 0;
t->src_port = be16_to_cpu(src_port);
t->dest_port = be16_to_cpu(dest_port);
return 0;
}
int mtk_foe_entry_set_ipv6_tuple(struct mtk_foe_entry *entry,
__be32 *src_addr, __be16 src_port,
__be32 *dest_addr, __be16 dest_port)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
u32 *src, *dest;
int i;
switch (type) {
case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
src = entry->dslite.tunnel_src_ip;
dest = entry->dslite.tunnel_dest_ip;
break;
case MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T:
case MTK_PPE_PKT_TYPE_IPV6_6RD:
entry->ipv6.src_port = be16_to_cpu(src_port);
entry->ipv6.dest_port = be16_to_cpu(dest_port);
fallthrough;
case MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T:
src = entry->ipv6.src_ip;
dest = entry->ipv6.dest_ip;
break;
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
for (i = 0; i < 4; i++)
src[i] = be32_to_cpu(src_addr[i]);
for (i = 0; i < 4; i++)
dest[i] = be32_to_cpu(dest_addr[i]);
return 0;
}
int mtk_foe_entry_set_dsa(struct mtk_foe_entry *entry, int port)
{
struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);
l2->etype = BIT(port);
if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_LAYER))
entry->ib1 |= FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
else
l2->etype |= BIT(8);
entry->ib1 &= ~MTK_FOE_IB1_BIND_VLAN_TAG;
return 0;
}
int mtk_foe_entry_set_vlan(struct mtk_foe_entry *entry, int vid)
{
struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);
switch (FIELD_GET(MTK_FOE_IB1_BIND_VLAN_LAYER, entry->ib1)) {
case 0:
entry->ib1 |= MTK_FOE_IB1_BIND_VLAN_TAG |
FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
l2->vlan1 = vid;
return 0;
case 1:
if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_TAG)) {
l2->vlan1 = vid;
l2->etype |= BIT(8);
} else {
l2->vlan2 = vid;
entry->ib1 += FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
}
return 0;
default:
return -ENOSPC;
}
}
int mtk_foe_entry_set_pppoe(struct mtk_foe_entry *entry, int sid)
{
struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);
if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_LAYER) ||
(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_TAG))
l2->etype = ETH_P_PPP_SES;
entry->ib1 |= MTK_FOE_IB1_BIND_PPPOE;
l2->pppoe_id = sid;
return 0;
}
static inline bool mtk_foe_entry_usable(struct mtk_foe_entry *entry)
{
return !(entry->ib1 & MTK_FOE_IB1_STATIC) &&
FIELD_GET(MTK_FOE_IB1_STATE, entry->ib1) != MTK_FOE_STATE_BIND;
}
int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
u16 timestamp)
{
struct mtk_foe_entry *hwe;
u32 hash;
timestamp &= MTK_FOE_IB1_BIND_TIMESTAMP;
entry->ib1 &= ~MTK_FOE_IB1_BIND_TIMESTAMP;
entry->ib1 |= FIELD_PREP(MTK_FOE_IB1_BIND_TIMESTAMP, timestamp);
hash = mtk_ppe_hash_entry(entry);
hwe = &ppe->foe_table[hash];
if (!mtk_foe_entry_usable(hwe)) {
hwe++;
hash++;
if (!mtk_foe_entry_usable(hwe))
return -ENOSPC;
}
memcpy(&hwe->data, &entry->data, sizeof(hwe->data));
wmb();
hwe->ib1 = entry->ib1;
dma_wmb();
mtk_ppe_cache_clear(ppe);
return hash;
}
int mtk_ppe_init(struct mtk_ppe *ppe, struct device *dev, void __iomem *base,
int version)
{
struct mtk_foe_entry *foe;
/* need to allocate a separate device, since it PPE DMA access is
* not coherent.
*/
ppe->base = base;
ppe->dev = dev;
ppe->version = version;
foe = dmam_alloc_coherent(ppe->dev, MTK_PPE_ENTRIES * sizeof(*foe),
&ppe->foe_phys, GFP_KERNEL);
if (!foe)
return -ENOMEM;
ppe->foe_table = foe;
mtk_ppe_debugfs_init(ppe);
return 0;
}
static void mtk_ppe_init_foe_table(struct mtk_ppe *ppe)
{
static const u8 skip[] = { 12, 25, 38, 51, 76, 89, 102 };
int i, k;
memset(ppe->foe_table, 0, MTK_PPE_ENTRIES * sizeof(ppe->foe_table));
if (!IS_ENABLED(CONFIG_SOC_MT7621))
return;
/* skip all entries that cross the 1024 byte boundary */
for (i = 0; i < MTK_PPE_ENTRIES; i += 128)
for (k = 0; k < ARRAY_SIZE(skip); k++)
ppe->foe_table[i + skip[k]].ib1 |= MTK_FOE_IB1_STATIC;
}
int mtk_ppe_start(struct mtk_ppe *ppe)
{
u32 val;
mtk_ppe_init_foe_table(ppe);
ppe_w32(ppe, MTK_PPE_TB_BASE, ppe->foe_phys);
val = MTK_PPE_TB_CFG_ENTRY_80B |
MTK_PPE_TB_CFG_AGE_NON_L4 |
MTK_PPE_TB_CFG_AGE_UNBIND |
MTK_PPE_TB_CFG_AGE_TCP |
MTK_PPE_TB_CFG_AGE_UDP |
MTK_PPE_TB_CFG_AGE_TCP_FIN |
FIELD_PREP(MTK_PPE_TB_CFG_SEARCH_MISS,
MTK_PPE_SEARCH_MISS_ACTION_FORWARD_BUILD) |
FIELD_PREP(MTK_PPE_TB_CFG_KEEPALIVE,
MTK_PPE_KEEPALIVE_DISABLE) |
FIELD_PREP(MTK_PPE_TB_CFG_HASH_MODE, 1) |
FIELD_PREP(MTK_PPE_TB_CFG_SCAN_MODE,
MTK_PPE_SCAN_MODE_KEEPALIVE_AGE) |
FIELD_PREP(MTK_PPE_TB_CFG_ENTRY_NUM,
MTK_PPE_ENTRIES_SHIFT);
ppe_w32(ppe, MTK_PPE_TB_CFG, val);
ppe_w32(ppe, MTK_PPE_IP_PROTO_CHK,
MTK_PPE_IP_PROTO_CHK_IPV4 | MTK_PPE_IP_PROTO_CHK_IPV6);
mtk_ppe_cache_enable(ppe, true);
val = MTK_PPE_FLOW_CFG_IP4_TCP_FRAG |
MTK_PPE_FLOW_CFG_IP4_UDP_FRAG |
MTK_PPE_FLOW_CFG_IP6_3T_ROUTE |
MTK_PPE_FLOW_CFG_IP6_5T_ROUTE |
MTK_PPE_FLOW_CFG_IP6_6RD |
MTK_PPE_FLOW_CFG_IP4_NAT |
MTK_PPE_FLOW_CFG_IP4_NAPT |
MTK_PPE_FLOW_CFG_IP4_DSLITE |
MTK_PPE_FLOW_CFG_L2_BRIDGE |
MTK_PPE_FLOW_CFG_IP4_NAT_FRAG;
ppe_w32(ppe, MTK_PPE_FLOW_CFG, val);
val = FIELD_PREP(MTK_PPE_UNBIND_AGE_MIN_PACKETS, 1000) |
FIELD_PREP(MTK_PPE_UNBIND_AGE_DELTA, 3);
ppe_w32(ppe, MTK_PPE_UNBIND_AGE, val);
val = FIELD_PREP(MTK_PPE_BIND_AGE0_DELTA_UDP, 12) |
FIELD_PREP(MTK_PPE_BIND_AGE0_DELTA_NON_L4, 1);
ppe_w32(ppe, MTK_PPE_BIND_AGE0, val);
val = FIELD_PREP(MTK_PPE_BIND_AGE1_DELTA_TCP_FIN, 1) |
FIELD_PREP(MTK_PPE_BIND_AGE1_DELTA_TCP, 7);
ppe_w32(ppe, MTK_PPE_BIND_AGE1, val);
val = MTK_PPE_BIND_LIMIT0_QUARTER | MTK_PPE_BIND_LIMIT0_HALF;
ppe_w32(ppe, MTK_PPE_BIND_LIMIT0, val);
val = MTK_PPE_BIND_LIMIT1_FULL |
FIELD_PREP(MTK_PPE_BIND_LIMIT1_NON_L4, 1);
ppe_w32(ppe, MTK_PPE_BIND_LIMIT1, val);
val = FIELD_PREP(MTK_PPE_BIND_RATE_BIND, 30) |
FIELD_PREP(MTK_PPE_BIND_RATE_PREBIND, 1);
ppe_w32(ppe, MTK_PPE_BIND_RATE, val);
/* enable PPE */
val = MTK_PPE_GLO_CFG_EN |
MTK_PPE_GLO_CFG_IP4_L4_CS_DROP |
MTK_PPE_GLO_CFG_IP4_CS_DROP |
MTK_PPE_GLO_CFG_FLOW_DROP_UPDATE;
ppe_w32(ppe, MTK_PPE_GLO_CFG, val);
ppe_w32(ppe, MTK_PPE_DEFAULT_CPU_PORT, 0);
return 0;
}
int mtk_ppe_stop(struct mtk_ppe *ppe)
{
u32 val;
int i;
for (i = 0; i < MTK_PPE_ENTRIES; i++)
ppe->foe_table[i].ib1 = FIELD_PREP(MTK_FOE_IB1_STATE,
MTK_FOE_STATE_INVALID);
mtk_ppe_cache_enable(ppe, false);
/* disable offload engine */
ppe_clear(ppe, MTK_PPE_GLO_CFG, MTK_PPE_GLO_CFG_EN);
ppe_w32(ppe, MTK_PPE_FLOW_CFG, 0);
/* disable aging */
val = MTK_PPE_TB_CFG_AGE_NON_L4 |
MTK_PPE_TB_CFG_AGE_UNBIND |
MTK_PPE_TB_CFG_AGE_TCP |
MTK_PPE_TB_CFG_AGE_UDP |
MTK_PPE_TB_CFG_AGE_TCP_FIN;
ppe_clear(ppe, MTK_PPE_TB_CFG, val);
return mtk_ppe_wait_busy(ppe);
}