blob: 4e7a838ab7bd9805f5612fd16006156f1c28ac20 [file] [log] [blame]
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <linux/anon_inodes.h>
#include <linux/mman.h>
#include <linux/pfn_t.h>
#include <linux/sizes.h>
#include <drm/drm_cache.h>
#include "gt/intel_gt.h"
#include "gt/intel_gt_requests.h"
#include "i915_drv.h"
#include "i915_gem_evict.h"
#include "i915_gem_gtt.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
#include "i915_gem_mman.h"
#include "i915_mm.h"
#include "i915_trace.h"
#include "i915_user_extensions.h"
#include "i915_gem_ttm.h"
#include "i915_vma.h"
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
unsigned long addr, unsigned long size)
{
if (vma->vm_file != filp)
return false;
return vma->vm_start == addr &&
(vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
}
/**
* i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
* it is mapped to.
* @dev: drm device
* @data: ioctl data blob
* @file: drm file
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*
* IMPORTANT:
*
* DRM driver writers who look a this function as an example for how to do GEM
* mmap support, please don't implement mmap support like here. The modern way
* to implement DRM mmap support is with an mmap offset ioctl (like
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
* That way debug tooling like valgrind will understand what's going on, hiding
* the mmap call in a driver private ioctl will break that. The i915 driver only
* does cpu mmaps this way because we didn't know better.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_mmap *args = data;
struct drm_i915_gem_object *obj;
unsigned long addr;
/*
* mmap ioctl is disallowed for all discrete platforms,
* and for all platforms with GRAPHICS_VER > 12.
*/
if (IS_DGFX(i915) || GRAPHICS_VER_FULL(i915) > IP_VER(12, 0))
return -EOPNOTSUPP;
if (args->flags & ~(I915_MMAP_WC))
return -EINVAL;
if (args->flags & I915_MMAP_WC && !pat_enabled())
return -ENODEV;
obj = i915_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->base.filp) {
addr = -ENXIO;
goto err;
}
if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
addr = -EINVAL;
goto err;
}
addr = vm_mmap(obj->base.filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
if (IS_ERR_VALUE(addr))
goto err;
if (args->flags & I915_MMAP_WC) {
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (mmap_write_lock_killable(mm)) {
addr = -EINTR;
goto err;
}
vma = find_vma(mm, addr);
if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
else
addr = -ENOMEM;
mmap_write_unlock(mm);
if (IS_ERR_VALUE(addr))
goto err;
}
i915_gem_object_put(obj);
args->addr_ptr = (u64)addr;
return 0;
err:
i915_gem_object_put(obj);
return addr;
}
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
{
return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
}
/**
* i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
*
* A history of the GTT mmap interface:
*
* 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
* aligned and suitable for fencing, and still fit into the available
* mappable space left by the pinned display objects. A classic problem
* we called the page-fault-of-doom where we would ping-pong between
* two objects that could not fit inside the GTT and so the memcpy
* would page one object in at the expense of the other between every
* single byte.
*
* 1 - Objects can be any size, and have any compatible fencing (X Y, or none
* as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
* object is too large for the available space (or simply too large
* for the mappable aperture!), a view is created instead and faulted
* into userspace. (This view is aligned and sized appropriately for
* fenced access.)
*
* 2 - Recognise WC as a separate cache domain so that we can flush the
* delayed writes via GTT before performing direct access via WC.
*
* 3 - Remove implicit set-domain(GTT) and synchronisation on initial
* pagefault; swapin remains transparent.
*
* 4 - Support multiple fault handlers per object depending on object's
* backing storage (a.k.a. MMAP_OFFSET).
*
* Restrictions:
*
* * snoopable objects cannot be accessed via the GTT. It can cause machine
* hangs on some architectures, corruption on others. An attempt to service
* a GTT page fault from a snoopable object will generate a SIGBUS.
*
* * the object must be able to fit into RAM (physical memory, though no
* limited to the mappable aperture).
*
*
* Caveats:
*
* * a new GTT page fault will synchronize rendering from the GPU and flush
* all data to system memory. Subsequent access will not be synchronized.
*
* * all mappings are revoked on runtime device suspend.
*
* * there are only 8, 16 or 32 fence registers to share between all users
* (older machines require fence register for display and blitter access
* as well). Contention of the fence registers will cause the previous users
* to be unmapped and any new access will generate new page faults.
*
* * running out of memory while servicing a fault may generate a SIGBUS,
* rather than the expected SIGSEGV.
*/
int i915_gem_mmap_gtt_version(void)
{
return 4;
}
static inline struct i915_gtt_view
compute_partial_view(const struct drm_i915_gem_object *obj,
pgoff_t page_offset,
unsigned int chunk)
{
struct i915_gtt_view view;
if (i915_gem_object_is_tiled(obj))
chunk = roundup(chunk, tile_row_pages(obj) ?: 1);
view.type = I915_GTT_VIEW_PARTIAL;
view.partial.offset = rounddown(page_offset, chunk);
view.partial.size =
min_t(unsigned int, chunk,
(obj->base.size >> PAGE_SHIFT) - view.partial.offset);
/* If the partial covers the entire object, just create a normal VMA. */
if (chunk >= obj->base.size >> PAGE_SHIFT)
view.type = I915_GTT_VIEW_NORMAL;
return view;
}
static vm_fault_t i915_error_to_vmf_fault(int err)
{
switch (err) {
default:
WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
fallthrough;
case -EIO: /* shmemfs failure from swap device */
case -EFAULT: /* purged object */
case -ENODEV: /* bad object, how did you get here! */
case -ENXIO: /* unable to access backing store (on device) */
return VM_FAULT_SIGBUS;
case -ENOMEM: /* our allocation failure */
return VM_FAULT_OOM;
case 0:
case -EAGAIN:
case -ENOSPC: /* transient failure to evict? */
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
return VM_FAULT_NOPAGE;
}
}
static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
{
struct vm_area_struct *area = vmf->vma;
struct i915_mmap_offset *mmo = area->vm_private_data;
struct drm_i915_gem_object *obj = mmo->obj;
resource_size_t iomap;
int err;
/* Sanity check that we allow writing into this object */
if (unlikely(i915_gem_object_is_readonly(obj) &&
area->vm_flags & VM_WRITE))
return VM_FAULT_SIGBUS;
if (i915_gem_object_lock_interruptible(obj, NULL))
return VM_FAULT_NOPAGE;
err = i915_gem_object_pin_pages(obj);
if (err)
goto out;
iomap = -1;
if (!i915_gem_object_has_struct_page(obj)) {
iomap = obj->mm.region->iomap.base;
iomap -= obj->mm.region->region.start;
}
/* PTEs are revoked in obj->ops->put_pages() */
err = remap_io_sg(area,
area->vm_start, area->vm_end - area->vm_start,
obj->mm.pages->sgl, iomap);
if (area->vm_flags & VM_WRITE) {
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
obj->mm.dirty = true;
}
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_unlock(obj);
return i915_error_to_vmf_fault(err);
}
static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
{
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
struct vm_area_struct *area = vmf->vma;
struct i915_mmap_offset *mmo = area->vm_private_data;
struct drm_i915_gem_object *obj = mmo->obj;
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *i915 = to_i915(dev);
struct intel_runtime_pm *rpm = &i915->runtime_pm;
struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
bool write = area->vm_flags & VM_WRITE;
struct i915_gem_ww_ctx ww;
intel_wakeref_t wakeref;
struct i915_vma *vma;
pgoff_t page_offset;
int srcu;
int ret;
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
trace_i915_gem_object_fault(obj, page_offset, true, write);
wakeref = intel_runtime_pm_get(rpm);
i915_gem_ww_ctx_init(&ww, true);
retry:
ret = i915_gem_object_lock(obj, &ww);
if (ret)
goto err_rpm;
/* Sanity check that we allow writing into this object */
if (i915_gem_object_is_readonly(obj) && write) {
ret = -EFAULT;
goto err_rpm;
}
ret = i915_gem_object_pin_pages(obj);
if (ret)
goto err_rpm;
ret = intel_gt_reset_lock_interruptible(ggtt->vm.gt, &srcu);
if (ret)
goto err_pages;
/* Now pin it into the GTT as needed */
vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
PIN_MAPPABLE |
PIN_NONBLOCK /* NOWARN */ |
PIN_NOEVICT);
if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
/* Use a partial view if it is bigger than available space */
struct i915_gtt_view view =
compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
unsigned int flags;
flags = PIN_MAPPABLE | PIN_NOSEARCH;
if (view.type == I915_GTT_VIEW_NORMAL)
flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
/*
* Userspace is now writing through an untracked VMA, abandon
* all hope that the hardware is able to track future writes.
*/
vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK)) {
flags = PIN_MAPPABLE;
view.type = I915_GTT_VIEW_PARTIAL;
vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
}
/*
* The entire mappable GGTT is pinned? Unexpected!
* Try to evict the object we locked too, as normally we skip it
* due to lack of short term pinning inside execbuf.
*/
if (vma == ERR_PTR(-ENOSPC)) {
ret = mutex_lock_interruptible(&ggtt->vm.mutex);
if (!ret) {
ret = i915_gem_evict_vm(&ggtt->vm, &ww, NULL);
mutex_unlock(&ggtt->vm.mutex);
}
if (ret)
goto err_reset;
vma = i915_gem_object_ggtt_pin_ww(obj, &ww, &view, 0, 0, flags);
}
}
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_reset;
}
/* Access to snoopable pages through the GTT is incoherent. */
/*
* For objects created by userspace through GEM_CREATE with pat_index
* set by set_pat extension, coherency is managed by userspace, make
* sure we don't fail handling the vm fault by calling
* i915_gem_object_has_cache_level() which always return true for such
* objects. Otherwise this helper function would fall back to checking
* whether the object is un-cached.
*/
if (!(i915_gem_object_has_cache_level(obj, I915_CACHE_NONE) ||
HAS_LLC(i915))) {
ret = -EFAULT;
goto err_unpin;
}
ret = i915_vma_pin_fence(vma);
if (ret)
goto err_unpin;
/* Finally, remap it using the new GTT offset */
ret = remap_io_mapping(area,
area->vm_start + (vma->gtt_view.partial.offset << PAGE_SHIFT),
(ggtt->gmadr.start + i915_ggtt_offset(vma)) >> PAGE_SHIFT,
min_t(u64, vma->size, area->vm_end - area->vm_start),
&ggtt->iomap);
if (ret)
goto err_fence;
assert_rpm_wakelock_held(rpm);
/* Mark as being mmapped into userspace for later revocation */
mutex_lock(&to_gt(i915)->ggtt->vm.mutex);
if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
list_add(&obj->userfault_link, &to_gt(i915)->ggtt->userfault_list);
mutex_unlock(&to_gt(i915)->ggtt->vm.mutex);
/* Track the mmo associated with the fenced vma */
vma->mmo = mmo;
if (CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
intel_wakeref_auto(&i915->runtime_pm.userfault_wakeref,
msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
if (write) {
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
i915_vma_set_ggtt_write(vma);
obj->mm.dirty = true;
}
err_fence:
i915_vma_unpin_fence(vma);
err_unpin:
__i915_vma_unpin(vma);
err_reset:
intel_gt_reset_unlock(ggtt->vm.gt, srcu);
err_pages:
i915_gem_object_unpin_pages(obj);
err_rpm:
if (ret == -EDEADLK) {
ret = i915_gem_ww_ctx_backoff(&ww);
if (!ret)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
intel_runtime_pm_put(rpm, wakeref);
return i915_error_to_vmf_fault(ret);
}
static int
vm_access(struct vm_area_struct *area, unsigned long addr,
void *buf, int len, int write)
{
struct i915_mmap_offset *mmo = area->vm_private_data;
struct drm_i915_gem_object *obj = mmo->obj;
struct i915_gem_ww_ctx ww;
void *vaddr;
int err = 0;
if (i915_gem_object_is_readonly(obj) && write)
return -EACCES;
addr -= area->vm_start;
if (range_overflows_t(u64, addr, len, obj->base.size))
return -EINVAL;
i915_gem_ww_ctx_init(&ww, true);
retry:
err = i915_gem_object_lock(obj, &ww);
if (err)
goto out;
/* As this is primarily for debugging, let's focus on simplicity */
vaddr = i915_gem_object_pin_map(obj, I915_MAP_FORCE_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out;
}
if (write) {
memcpy(vaddr + addr, buf, len);
__i915_gem_object_flush_map(obj, addr, len);
} else {
memcpy(buf, vaddr + addr, len);
}
i915_gem_object_unpin_map(obj);
out:
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
if (err)
return err;
return len;
}
void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
GEM_BUG_ON(!obj->userfault_count);
for_each_ggtt_vma(vma, obj)
i915_vma_revoke_mmap(vma);
GEM_BUG_ON(obj->userfault_count);
}
/*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by vm_fault_gtt().
*/
void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
intel_wakeref_t wakeref;
/*
* Serialisation between user GTT access and our code depends upon
* revoking the CPU's PTE whilst the mutex is held. The next user
* pagefault then has to wait until we release the mutex.
*
* Note that RPM complicates somewhat by adding an additional
* requirement that operations to the GGTT be made holding the RPM
* wakeref.
*/
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
mutex_lock(&to_gt(i915)->ggtt->vm.mutex);
if (!obj->userfault_count)
goto out;
__i915_gem_object_release_mmap_gtt(obj);
/*
* Ensure that the CPU's PTE are revoked and there are not outstanding
* memory transactions from userspace before we return. The TLB
* flushing implied above by changing the PTE above *should* be
* sufficient, an extra barrier here just provides us with a bit
* of paranoid documentation about our requirement to serialise
* memory writes before touching registers / GSM.
*/
wmb();
out:
mutex_unlock(&to_gt(i915)->ggtt->vm.mutex);
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
}
void i915_gem_object_runtime_pm_release_mmap_offset(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
/*
* We have exclusive access here via runtime suspend. All other callers
* must first grab the rpm wakeref.
*/
GEM_BUG_ON(!obj->userfault_count);
list_del(&obj->userfault_link);
obj->userfault_count = 0;
}
void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
{
struct i915_mmap_offset *mmo, *mn;
if (obj->ops->unmap_virtual)
obj->ops->unmap_virtual(obj);
spin_lock(&obj->mmo.lock);
rbtree_postorder_for_each_entry_safe(mmo, mn,
&obj->mmo.offsets, offset) {
/*
* vma_node_unmap for GTT mmaps handled already in
* __i915_gem_object_release_mmap_gtt
*/
if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
continue;
spin_unlock(&obj->mmo.lock);
drm_vma_node_unmap(&mmo->vma_node,
obj->base.dev->anon_inode->i_mapping);
spin_lock(&obj->mmo.lock);
}
spin_unlock(&obj->mmo.lock);
}
static struct i915_mmap_offset *
lookup_mmo(struct drm_i915_gem_object *obj,
enum i915_mmap_type mmap_type)
{
struct rb_node *rb;
spin_lock(&obj->mmo.lock);
rb = obj->mmo.offsets.rb_node;
while (rb) {
struct i915_mmap_offset *mmo =
rb_entry(rb, typeof(*mmo), offset);
if (mmo->mmap_type == mmap_type) {
spin_unlock(&obj->mmo.lock);
return mmo;
}
if (mmo->mmap_type < mmap_type)
rb = rb->rb_right;
else
rb = rb->rb_left;
}
spin_unlock(&obj->mmo.lock);
return NULL;
}
static struct i915_mmap_offset *
insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
{
struct rb_node *rb, **p;
spin_lock(&obj->mmo.lock);
rb = NULL;
p = &obj->mmo.offsets.rb_node;
while (*p) {
struct i915_mmap_offset *pos;
rb = *p;
pos = rb_entry(rb, typeof(*pos), offset);
if (pos->mmap_type == mmo->mmap_type) {
spin_unlock(&obj->mmo.lock);
drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
&mmo->vma_node);
kfree(mmo);
return pos;
}
if (pos->mmap_type < mmo->mmap_type)
p = &rb->rb_right;
else
p = &rb->rb_left;
}
rb_link_node(&mmo->offset, rb, p);
rb_insert_color(&mmo->offset, &obj->mmo.offsets);
spin_unlock(&obj->mmo.lock);
return mmo;
}
static struct i915_mmap_offset *
mmap_offset_attach(struct drm_i915_gem_object *obj,
enum i915_mmap_type mmap_type,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_mmap_offset *mmo;
int err;
GEM_BUG_ON(obj->ops->mmap_offset || obj->ops->mmap_ops);
mmo = lookup_mmo(obj, mmap_type);
if (mmo)
goto out;
mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
if (!mmo)
return ERR_PTR(-ENOMEM);
mmo->obj = obj;
mmo->mmap_type = mmap_type;
drm_vma_node_reset(&mmo->vma_node);
err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
&mmo->vma_node, obj->base.size / PAGE_SIZE);
if (likely(!err))
goto insert;
/* Attempt to reap some mmap space from dead objects */
err = intel_gt_retire_requests_timeout(to_gt(i915), MAX_SCHEDULE_TIMEOUT,
NULL);
if (err)
goto err;
i915_gem_drain_freed_objects(i915);
err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
&mmo->vma_node, obj->base.size / PAGE_SIZE);
if (err)
goto err;
insert:
mmo = insert_mmo(obj, mmo);
GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
out:
if (file)
drm_vma_node_allow_once(&mmo->vma_node, file);
return mmo;
err:
kfree(mmo);
return ERR_PTR(err);
}
static int
__assign_mmap_offset(struct drm_i915_gem_object *obj,
enum i915_mmap_type mmap_type,
u64 *offset, struct drm_file *file)
{
struct i915_mmap_offset *mmo;
if (i915_gem_object_never_mmap(obj))
return -ENODEV;
if (obj->ops->mmap_offset) {
if (mmap_type != I915_MMAP_TYPE_FIXED)
return -ENODEV;
*offset = obj->ops->mmap_offset(obj);
return 0;
}
if (mmap_type == I915_MMAP_TYPE_FIXED)
return -ENODEV;
if (mmap_type != I915_MMAP_TYPE_GTT &&
!i915_gem_object_has_struct_page(obj) &&
!i915_gem_object_has_iomem(obj))
return -ENODEV;
mmo = mmap_offset_attach(obj, mmap_type, file);
if (IS_ERR(mmo))
return PTR_ERR(mmo);
*offset = drm_vma_node_offset_addr(&mmo->vma_node);
return 0;
}
static int
__assign_mmap_offset_handle(struct drm_file *file,
u32 handle,
enum i915_mmap_type mmap_type,
u64 *offset)
{
struct drm_i915_gem_object *obj;
int err;
obj = i915_gem_object_lookup(file, handle);
if (!obj)
return -ENOENT;
err = i915_gem_object_lock_interruptible(obj, NULL);
if (err)
goto out_put;
err = __assign_mmap_offset(obj, mmap_type, offset, file);
i915_gem_object_unlock(obj);
out_put:
i915_gem_object_put(obj);
return err;
}
int
i915_gem_dumb_mmap_offset(struct drm_file *file,
struct drm_device *dev,
u32 handle,
u64 *offset)
{
struct drm_i915_private *i915 = to_i915(dev);
enum i915_mmap_type mmap_type;
if (HAS_LMEM(to_i915(dev)))
mmap_type = I915_MMAP_TYPE_FIXED;
else if (pat_enabled())
mmap_type = I915_MMAP_TYPE_WC;
else if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt))
return -ENODEV;
else
mmap_type = I915_MMAP_TYPE_GTT;
return __assign_mmap_offset_handle(file, handle, mmap_type, offset);
}
/**
* i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_mmap_offset *args = data;
enum i915_mmap_type type;
int err;
/*
* Historically we failed to check args.pad and args.offset
* and so we cannot use those fields for user input and we cannot
* add -EINVAL for them as the ABI is fixed, i.e. old userspace
* may be feeding in garbage in those fields.
*
* if (args->pad) return -EINVAL; is verbotten!
*/
err = i915_user_extensions(u64_to_user_ptr(args->extensions),
NULL, 0, NULL);
if (err)
return err;
switch (args->flags) {
case I915_MMAP_OFFSET_GTT:
if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt))
return -ENODEV;
type = I915_MMAP_TYPE_GTT;
break;
case I915_MMAP_OFFSET_WC:
if (!pat_enabled())
return -ENODEV;
type = I915_MMAP_TYPE_WC;
break;
case I915_MMAP_OFFSET_WB:
type = I915_MMAP_TYPE_WB;
break;
case I915_MMAP_OFFSET_UC:
if (!pat_enabled())
return -ENODEV;
type = I915_MMAP_TYPE_UC;
break;
case I915_MMAP_OFFSET_FIXED:
type = I915_MMAP_TYPE_FIXED;
break;
default:
return -EINVAL;
}
return __assign_mmap_offset_handle(file, args->handle, type, &args->offset);
}
static void vm_open(struct vm_area_struct *vma)
{
struct i915_mmap_offset *mmo = vma->vm_private_data;
struct drm_i915_gem_object *obj = mmo->obj;
GEM_BUG_ON(!obj);
i915_gem_object_get(obj);
}
static void vm_close(struct vm_area_struct *vma)
{
struct i915_mmap_offset *mmo = vma->vm_private_data;
struct drm_i915_gem_object *obj = mmo->obj;
GEM_BUG_ON(!obj);
i915_gem_object_put(obj);
}
static const struct vm_operations_struct vm_ops_gtt = {
.fault = vm_fault_gtt,
.access = vm_access,
.open = vm_open,
.close = vm_close,
};
static const struct vm_operations_struct vm_ops_cpu = {
.fault = vm_fault_cpu,
.access = vm_access,
.open = vm_open,
.close = vm_close,
};
static int singleton_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = file->private_data;
cmpxchg(&i915->gem.mmap_singleton, file, NULL);
drm_dev_put(&i915->drm);
return 0;
}
static const struct file_operations singleton_fops = {
.owner = THIS_MODULE,
.release = singleton_release,
};
static struct file *mmap_singleton(struct drm_i915_private *i915)
{
struct file *file;
rcu_read_lock();
file = READ_ONCE(i915->gem.mmap_singleton);
if (file && !get_file_rcu(file))
file = NULL;
rcu_read_unlock();
if (file)
return file;
file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
if (IS_ERR(file))
return file;
/* Everyone shares a single global address space */
file->f_mapping = i915->drm.anon_inode->i_mapping;
smp_store_mb(i915->gem.mmap_singleton, file);
drm_dev_get(&i915->drm);
return file;
}
static int
i915_gem_object_mmap(struct drm_i915_gem_object *obj,
struct i915_mmap_offset *mmo,
struct vm_area_struct *vma)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct drm_device *dev = &i915->drm;
struct file *anon;
if (i915_gem_object_is_readonly(obj)) {
if (vma->vm_flags & VM_WRITE) {
i915_gem_object_put(obj);
return -EINVAL;
}
vm_flags_clear(vma, VM_MAYWRITE);
}
anon = mmap_singleton(to_i915(dev));
if (IS_ERR(anon)) {
i915_gem_object_put(obj);
return PTR_ERR(anon);
}
vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP | VM_IO);
/*
* We keep the ref on mmo->obj, not vm_file, but we require
* vma->vm_file->f_mapping, see vma_link(), for later revocation.
* Our userspace is accustomed to having per-file resource cleanup
* (i.e. contexts, objects and requests) on their close(fd), which
* requires avoiding extraneous references to their filp, hence why
* we prefer to use an anonymous file for their mmaps.
*/
vma_set_file(vma, anon);
/* Drop the initial creation reference, the vma is now holding one. */
fput(anon);
if (obj->ops->mmap_ops) {
vma->vm_page_prot = pgprot_decrypted(vm_get_page_prot(vma->vm_flags));
vma->vm_ops = obj->ops->mmap_ops;
vma->vm_private_data = obj->base.vma_node.driver_private;
return 0;
}
vma->vm_private_data = mmo;
switch (mmo->mmap_type) {
case I915_MMAP_TYPE_WC:
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
vma->vm_ops = &vm_ops_cpu;
break;
case I915_MMAP_TYPE_FIXED:
GEM_WARN_ON(1);
fallthrough;
case I915_MMAP_TYPE_WB:
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = &vm_ops_cpu;
break;
case I915_MMAP_TYPE_UC:
vma->vm_page_prot =
pgprot_noncached(vm_get_page_prot(vma->vm_flags));
vma->vm_ops = &vm_ops_cpu;
break;
case I915_MMAP_TYPE_GTT:
vma->vm_page_prot =
pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
vma->vm_ops = &vm_ops_gtt;
break;
}
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
return 0;
}
/*
* This overcomes the limitation in drm_gem_mmap's assignment of a
* drm_gem_object as the vma->vm_private_data. Since we need to
* be able to resolve multiple mmap offsets which could be tied
* to a single gem object.
*/
int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct drm_vma_offset_node *node;
struct drm_file *priv = filp->private_data;
struct drm_device *dev = priv->minor->dev;
struct drm_i915_gem_object *obj = NULL;
struct i915_mmap_offset *mmo = NULL;
if (drm_dev_is_unplugged(dev))
return -ENODEV;
rcu_read_lock();
drm_vma_offset_lock_lookup(dev->vma_offset_manager);
node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
vma->vm_pgoff,
vma_pages(vma));
if (node && drm_vma_node_is_allowed(node, priv)) {
/*
* Skip 0-refcnted objects as it is in the process of being
* destroyed and will be invalid when the vma manager lock
* is released.
*/
if (!node->driver_private) {
mmo = container_of(node, struct i915_mmap_offset, vma_node);
obj = i915_gem_object_get_rcu(mmo->obj);
GEM_BUG_ON(obj && obj->ops->mmap_ops);
} else {
obj = i915_gem_object_get_rcu
(container_of(node, struct drm_i915_gem_object,
base.vma_node));
GEM_BUG_ON(obj && !obj->ops->mmap_ops);
}
}
drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
rcu_read_unlock();
if (!obj)
return node ? -EACCES : -EINVAL;
return i915_gem_object_mmap(obj, mmo, vma);
}
int i915_gem_fb_mmap(struct drm_i915_gem_object *obj, struct vm_area_struct *vma)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct drm_device *dev = &i915->drm;
struct i915_mmap_offset *mmo = NULL;
enum i915_mmap_type mmap_type;
struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
if (drm_dev_is_unplugged(dev))
return -ENODEV;
/* handle ttm object */
if (obj->ops->mmap_ops) {
/*
* ttm fault handler, ttm_bo_vm_fault_reserved() uses fake offset
* to calculate page offset so set that up.
*/
vma->vm_pgoff += drm_vma_node_start(&obj->base.vma_node);
} else {
/* handle stolen and smem objects */
mmap_type = i915_ggtt_has_aperture(ggtt) ? I915_MMAP_TYPE_GTT : I915_MMAP_TYPE_WC;
mmo = mmap_offset_attach(obj, mmap_type, NULL);
if (!mmo)
return -ENODEV;
}
/*
* When we install vm_ops for mmap we are too late for
* the vm_ops->open() which increases the ref_count of
* this obj and then it gets decreased by the vm_ops->close().
* To balance this increase the obj ref_count here.
*/
obj = i915_gem_object_get(obj);
return i915_gem_object_mmap(obj, mmo, vma);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_mman.c"
#endif