| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice_common.h" |
| #include "ice_sched.h" |
| #include "ice_adminq_cmd.h" |
| #include "ice_flow.h" |
| |
| #define ICE_PF_RESET_WAIT_COUNT 300 |
| |
| /** |
| * ice_set_mac_type - Sets MAC type |
| * @hw: pointer to the HW structure |
| * |
| * This function sets the MAC type of the adapter based on the |
| * vendor ID and device ID stored in the HW structure. |
| */ |
| static enum ice_status ice_set_mac_type(struct ice_hw *hw) |
| { |
| if (hw->vendor_id != PCI_VENDOR_ID_INTEL) |
| return ICE_ERR_DEVICE_NOT_SUPPORTED; |
| |
| switch (hw->device_id) { |
| case ICE_DEV_ID_E810C_BACKPLANE: |
| case ICE_DEV_ID_E810C_QSFP: |
| case ICE_DEV_ID_E810C_SFP: |
| case ICE_DEV_ID_E810_XXV_SFP: |
| hw->mac_type = ICE_MAC_E810; |
| break; |
| case ICE_DEV_ID_E823C_10G_BASE_T: |
| case ICE_DEV_ID_E823C_BACKPLANE: |
| case ICE_DEV_ID_E823C_QSFP: |
| case ICE_DEV_ID_E823C_SFP: |
| case ICE_DEV_ID_E823C_SGMII: |
| case ICE_DEV_ID_E822C_10G_BASE_T: |
| case ICE_DEV_ID_E822C_BACKPLANE: |
| case ICE_DEV_ID_E822C_QSFP: |
| case ICE_DEV_ID_E822C_SFP: |
| case ICE_DEV_ID_E822C_SGMII: |
| case ICE_DEV_ID_E822L_10G_BASE_T: |
| case ICE_DEV_ID_E822L_BACKPLANE: |
| case ICE_DEV_ID_E822L_SFP: |
| case ICE_DEV_ID_E822L_SGMII: |
| case ICE_DEV_ID_E823L_10G_BASE_T: |
| case ICE_DEV_ID_E823L_1GBE: |
| case ICE_DEV_ID_E823L_BACKPLANE: |
| case ICE_DEV_ID_E823L_QSFP: |
| case ICE_DEV_ID_E823L_SFP: |
| hw->mac_type = ICE_MAC_GENERIC; |
| break; |
| default: |
| hw->mac_type = ICE_MAC_UNKNOWN; |
| break; |
| } |
| |
| ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type); |
| return 0; |
| } |
| |
| /** |
| * ice_clear_pf_cfg - Clear PF configuration |
| * @hw: pointer to the hardware structure |
| * |
| * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port |
| * configuration, flow director filters, etc.). |
| */ |
| enum ice_status ice_clear_pf_cfg(struct ice_hw *hw) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_aq_manage_mac_read - manage MAC address read command |
| * @hw: pointer to the HW struct |
| * @buf: a virtual buffer to hold the manage MAC read response |
| * @buf_size: Size of the virtual buffer |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function is used to return per PF station MAC address (0x0107). |
| * NOTE: Upon successful completion of this command, MAC address information |
| * is returned in user specified buffer. Please interpret user specified |
| * buffer as "manage_mac_read" response. |
| * Response such as various MAC addresses are stored in HW struct (port.mac) |
| * ice_discover_dev_caps is expected to be called before this function is |
| * called. |
| */ |
| static enum ice_status |
| ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_manage_mac_read_resp *resp; |
| struct ice_aqc_manage_mac_read *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 flags; |
| u8 i; |
| |
| cmd = &desc.params.mac_read; |
| |
| if (buf_size < sizeof(*resp)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (status) |
| return status; |
| |
| resp = (struct ice_aqc_manage_mac_read_resp *)buf; |
| flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; |
| |
| if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { |
| ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| /* A single port can report up to two (LAN and WoL) addresses */ |
| for (i = 0; i < cmd->num_addr; i++) |
| if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { |
| ether_addr_copy(hw->port_info->mac.lan_addr, |
| resp[i].mac_addr); |
| ether_addr_copy(hw->port_info->mac.perm_addr, |
| resp[i].mac_addr); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_aq_get_phy_caps - returns PHY capabilities |
| * @pi: port information structure |
| * @qual_mods: report qualified modules |
| * @report_mode: report mode capabilities |
| * @pcaps: structure for PHY capabilities to be filled |
| * @cd: pointer to command details structure or NULL |
| * |
| * Returns the various PHY capabilities supported on the Port (0x0600) |
| */ |
| enum ice_status |
| ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, |
| struct ice_aqc_get_phy_caps_data *pcaps, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_phy_caps *cmd; |
| u16 pcaps_size = sizeof(*pcaps); |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| struct ice_hw *hw; |
| |
| cmd = &desc.params.get_phy; |
| |
| if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) |
| return ICE_ERR_PARAM; |
| hw = pi->hw; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); |
| |
| if (qual_mods) |
| cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); |
| |
| cmd->param0 |= cpu_to_le16(report_mode); |
| status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd); |
| |
| ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n", |
| report_mode); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", |
| (unsigned long long)le64_to_cpu(pcaps->phy_type_low)); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", |
| (unsigned long long)le64_to_cpu(pcaps->phy_type_high)); |
| ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps); |
| ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", |
| pcaps->low_power_ctrl_an); |
| ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap); |
| ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", |
| pcaps->eeer_value); |
| ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n", |
| pcaps->link_fec_options); |
| ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n", |
| pcaps->module_compliance_enforcement); |
| ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n", |
| pcaps->extended_compliance_code); |
| ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n", |
| pcaps->module_type[0]); |
| ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n", |
| pcaps->module_type[1]); |
| ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n", |
| pcaps->module_type[2]); |
| |
| if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) { |
| pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); |
| pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); |
| memcpy(pi->phy.link_info.module_type, &pcaps->module_type, |
| sizeof(pi->phy.link_info.module_type)); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_get_link_topo_handle - get link topology node return status |
| * @pi: port information structure |
| * @node_type: requested node type |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get link topology node return status for specified node type (0x06E0) |
| * |
| * Node type cage can be used to determine if cage is present. If AQC |
| * returns error (ENOENT), then no cage present. If no cage present, then |
| * connection type is backplane or BASE-T. |
| */ |
| static enum ice_status |
| ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_link_topo *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.get_link_topo; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); |
| |
| cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT << |
| ICE_AQC_LINK_TOPO_NODE_CTX_S); |
| |
| /* set node type */ |
| cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type); |
| |
| return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_is_media_cage_present |
| * @pi: port information structure |
| * |
| * Returns true if media cage is present, else false. If no cage, then |
| * media type is backplane or BASE-T. |
| */ |
| static bool ice_is_media_cage_present(struct ice_port_info *pi) |
| { |
| /* Node type cage can be used to determine if cage is present. If AQC |
| * returns error (ENOENT), then no cage present. If no cage present then |
| * connection type is backplane or BASE-T. |
| */ |
| return !ice_aq_get_link_topo_handle(pi, |
| ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE, |
| NULL); |
| } |
| |
| /** |
| * ice_get_media_type - Gets media type |
| * @pi: port information structure |
| */ |
| static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) |
| { |
| struct ice_link_status *hw_link_info; |
| |
| if (!pi) |
| return ICE_MEDIA_UNKNOWN; |
| |
| hw_link_info = &pi->phy.link_info; |
| if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) |
| /* If more than one media type is selected, report unknown */ |
| return ICE_MEDIA_UNKNOWN; |
| |
| if (hw_link_info->phy_type_low) { |
| /* 1G SGMII is a special case where some DA cable PHYs |
| * may show this as an option when it really shouldn't |
| * be since SGMII is meant to be between a MAC and a PHY |
| * in a backplane. Try to detect this case and handle it |
| */ |
| if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII && |
| (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == |
| ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || |
| hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == |
| ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) |
| return ICE_MEDIA_DA; |
| |
| switch (hw_link_info->phy_type_low) { |
| case ICE_PHY_TYPE_LOW_1000BASE_SX: |
| case ICE_PHY_TYPE_LOW_1000BASE_LX: |
| case ICE_PHY_TYPE_LOW_10GBASE_SR: |
| case ICE_PHY_TYPE_LOW_10GBASE_LR: |
| case ICE_PHY_TYPE_LOW_10G_SFI_C2C: |
| case ICE_PHY_TYPE_LOW_25GBASE_SR: |
| case ICE_PHY_TYPE_LOW_25GBASE_LR: |
| case ICE_PHY_TYPE_LOW_40GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_LR4: |
| case ICE_PHY_TYPE_LOW_50GBASE_SR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_LR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_SR: |
| case ICE_PHY_TYPE_LOW_50GBASE_FR: |
| case ICE_PHY_TYPE_LOW_50GBASE_LR: |
| case ICE_PHY_TYPE_LOW_100GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_LR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_SR2: |
| case ICE_PHY_TYPE_LOW_100GBASE_DR: |
| case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: |
| return ICE_MEDIA_FIBER; |
| case ICE_PHY_TYPE_LOW_100BASE_TX: |
| case ICE_PHY_TYPE_LOW_1000BASE_T: |
| case ICE_PHY_TYPE_LOW_2500BASE_T: |
| case ICE_PHY_TYPE_LOW_5GBASE_T: |
| case ICE_PHY_TYPE_LOW_10GBASE_T: |
| case ICE_PHY_TYPE_LOW_25GBASE_T: |
| return ICE_MEDIA_BASET; |
| case ICE_PHY_TYPE_LOW_10G_SFI_DA: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR1: |
| case ICE_PHY_TYPE_LOW_40GBASE_CR4: |
| case ICE_PHY_TYPE_LOW_50GBASE_CR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_CP: |
| case ICE_PHY_TYPE_LOW_100GBASE_CR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: |
| case ICE_PHY_TYPE_LOW_100GBASE_CP2: |
| return ICE_MEDIA_DA; |
| case ICE_PHY_TYPE_LOW_25G_AUI_C2C: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI: |
| case ICE_PHY_TYPE_LOW_50G_LAUI2: |
| case ICE_PHY_TYPE_LOW_50G_AUI2: |
| case ICE_PHY_TYPE_LOW_50G_AUI1: |
| case ICE_PHY_TYPE_LOW_100G_AUI4: |
| case ICE_PHY_TYPE_LOW_100G_CAUI4: |
| if (ice_is_media_cage_present(pi)) |
| return ICE_MEDIA_DA; |
| fallthrough; |
| case ICE_PHY_TYPE_LOW_1000BASE_KX: |
| case ICE_PHY_TYPE_LOW_2500BASE_KX: |
| case ICE_PHY_TYPE_LOW_2500BASE_X: |
| case ICE_PHY_TYPE_LOW_5GBASE_KR: |
| case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR_S: |
| case ICE_PHY_TYPE_LOW_40GBASE_KR4: |
| case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: |
| case ICE_PHY_TYPE_LOW_50GBASE_KR2: |
| case ICE_PHY_TYPE_LOW_100GBASE_KR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: |
| return ICE_MEDIA_BACKPLANE; |
| } |
| } else { |
| switch (hw_link_info->phy_type_high) { |
| case ICE_PHY_TYPE_HIGH_100G_AUI2: |
| case ICE_PHY_TYPE_HIGH_100G_CAUI2: |
| if (ice_is_media_cage_present(pi)) |
| return ICE_MEDIA_DA; |
| fallthrough; |
| case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: |
| return ICE_MEDIA_BACKPLANE; |
| case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: |
| case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: |
| return ICE_MEDIA_FIBER; |
| } |
| } |
| return ICE_MEDIA_UNKNOWN; |
| } |
| |
| /** |
| * ice_aq_get_link_info |
| * @pi: port information structure |
| * @ena_lse: enable/disable LinkStatusEvent reporting |
| * @link: pointer to link status structure - optional |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get Link Status (0x607). Returns the link status of the adapter. |
| */ |
| enum ice_status |
| ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, |
| struct ice_link_status *link, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_link_status_data link_data = { 0 }; |
| struct ice_aqc_get_link_status *resp; |
| struct ice_link_status *li_old, *li; |
| enum ice_media_type *hw_media_type; |
| struct ice_fc_info *hw_fc_info; |
| bool tx_pause, rx_pause; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| struct ice_hw *hw; |
| u16 cmd_flags; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| hw = pi->hw; |
| li_old = &pi->phy.link_info_old; |
| hw_media_type = &pi->phy.media_type; |
| li = &pi->phy.link_info; |
| hw_fc_info = &pi->fc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); |
| cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; |
| resp = &desc.params.get_link_status; |
| resp->cmd_flags = cpu_to_le16(cmd_flags); |
| resp->lport_num = pi->lport; |
| |
| status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd); |
| |
| if (status) |
| return status; |
| |
| /* save off old link status information */ |
| *li_old = *li; |
| |
| /* update current link status information */ |
| li->link_speed = le16_to_cpu(link_data.link_speed); |
| li->phy_type_low = le64_to_cpu(link_data.phy_type_low); |
| li->phy_type_high = le64_to_cpu(link_data.phy_type_high); |
| *hw_media_type = ice_get_media_type(pi); |
| li->link_info = link_data.link_info; |
| li->an_info = link_data.an_info; |
| li->ext_info = link_data.ext_info; |
| li->max_frame_size = le16_to_cpu(link_data.max_frame_size); |
| li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; |
| li->topo_media_conflict = link_data.topo_media_conflict; |
| li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | |
| ICE_AQ_CFG_PACING_TYPE_M); |
| |
| /* update fc info */ |
| tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); |
| rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); |
| if (tx_pause && rx_pause) |
| hw_fc_info->current_mode = ICE_FC_FULL; |
| else if (tx_pause) |
| hw_fc_info->current_mode = ICE_FC_TX_PAUSE; |
| else if (rx_pause) |
| hw_fc_info->current_mode = ICE_FC_RX_PAUSE; |
| else |
| hw_fc_info->current_mode = ICE_FC_NONE; |
| |
| li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); |
| |
| ice_debug(hw, ICE_DBG_LINK, "get link info\n"); |
| ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", |
| (unsigned long long)li->phy_type_low); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", |
| (unsigned long long)li->phy_type_high); |
| ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type); |
| ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info); |
| ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info); |
| ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info); |
| ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info); |
| ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena); |
| ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n", |
| li->max_frame_size); |
| ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing); |
| |
| /* save link status information */ |
| if (link) |
| *link = *li; |
| |
| /* flag cleared so calling functions don't call AQ again */ |
| pi->phy.get_link_info = false; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_fill_tx_timer_and_fc_thresh |
| * @hw: pointer to the HW struct |
| * @cmd: pointer to MAC cfg structure |
| * |
| * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command |
| * descriptor |
| */ |
| static void |
| ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, |
| struct ice_aqc_set_mac_cfg *cmd) |
| { |
| u16 fc_thres_val, tx_timer_val; |
| u32 val; |
| |
| /* We read back the transmit timer and FC threshold value of |
| * LFC. Thus, we will use index = |
| * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. |
| * |
| * Also, because we are operating on transmit timer and FC |
| * threshold of LFC, we don't turn on any bit in tx_tmr_priority |
| */ |
| #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX |
| |
| /* Retrieve the transmit timer */ |
| val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC)); |
| tx_timer_val = val & |
| PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M; |
| cmd->tx_tmr_value = cpu_to_le16(tx_timer_val); |
| |
| /* Retrieve the FC threshold */ |
| val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC)); |
| fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M; |
| |
| cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val); |
| } |
| |
| /** |
| * ice_aq_set_mac_cfg |
| * @hw: pointer to the HW struct |
| * @max_frame_size: Maximum Frame Size to be supported |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set MAC configuration (0x0603) |
| */ |
| enum ice_status |
| ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_set_mac_cfg *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.set_mac_cfg; |
| |
| if (max_frame_size == 0) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); |
| |
| cmd->max_frame_size = cpu_to_le16(max_frame_size); |
| |
| ice_fill_tx_timer_and_fc_thresh(hw, cmd); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_init_fltr_mgmt_struct - initializes filter management list and locks |
| * @hw: pointer to the HW struct |
| */ |
| static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw; |
| enum ice_status status; |
| |
| hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*hw->switch_info), GFP_KERNEL); |
| sw = hw->switch_info; |
| |
| if (!sw) |
| return ICE_ERR_NO_MEMORY; |
| |
| INIT_LIST_HEAD(&sw->vsi_list_map_head); |
| |
| status = ice_init_def_sw_recp(hw); |
| if (status) { |
| devm_kfree(ice_hw_to_dev(hw), hw->switch_info); |
| return status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks |
| * @hw: pointer to the HW struct |
| */ |
| static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_vsi_list_map_info *v_pos_map; |
| struct ice_vsi_list_map_info *v_tmp_map; |
| struct ice_sw_recipe *recps; |
| u8 i; |
| |
| list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, |
| list_entry) { |
| list_del(&v_pos_map->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), v_pos_map); |
| } |
| recps = hw->switch_info->recp_list; |
| for (i = 0; i < ICE_SW_LKUP_LAST; i++) { |
| struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; |
| |
| recps[i].root_rid = i; |
| mutex_destroy(&recps[i].filt_rule_lock); |
| list_for_each_entry_safe(lst_itr, tmp_entry, |
| &recps[i].filt_rules, list_entry) { |
| list_del(&lst_itr->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), lst_itr); |
| } |
| } |
| ice_rm_all_sw_replay_rule_info(hw); |
| devm_kfree(ice_hw_to_dev(hw), sw->recp_list); |
| devm_kfree(ice_hw_to_dev(hw), sw); |
| } |
| |
| /** |
| * ice_get_fw_log_cfg - get FW logging configuration |
| * @hw: pointer to the HW struct |
| */ |
| static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw) |
| { |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| __le16 *config; |
| u16 size; |
| |
| size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX; |
| config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL); |
| if (!config) |
| return ICE_ERR_NO_MEMORY; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info); |
| |
| status = ice_aq_send_cmd(hw, &desc, config, size, NULL); |
| if (!status) { |
| u16 i; |
| |
| /* Save FW logging information into the HW structure */ |
| for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { |
| u16 v, m, flgs; |
| |
| v = le16_to_cpu(config[i]); |
| m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; |
| flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S; |
| |
| if (m < ICE_AQC_FW_LOG_ID_MAX) |
| hw->fw_log.evnts[m].cur = flgs; |
| } |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), config); |
| |
| return status; |
| } |
| |
| /** |
| * ice_cfg_fw_log - configure FW logging |
| * @hw: pointer to the HW struct |
| * @enable: enable certain FW logging events if true, disable all if false |
| * |
| * This function enables/disables the FW logging via Rx CQ events and a UART |
| * port based on predetermined configurations. FW logging via the Rx CQ can be |
| * enabled/disabled for individual PF's. However, FW logging via the UART can |
| * only be enabled/disabled for all PFs on the same device. |
| * |
| * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in |
| * hw->fw_log need to be set accordingly, e.g. based on user-provided input, |
| * before initializing the device. |
| * |
| * When re/configuring FW logging, callers need to update the "cfg" elements of |
| * the hw->fw_log.evnts array with the desired logging event configurations for |
| * modules of interest. When disabling FW logging completely, the callers can |
| * just pass false in the "enable" parameter. On completion, the function will |
| * update the "cur" element of the hw->fw_log.evnts array with the resulting |
| * logging event configurations of the modules that are being re/configured. FW |
| * logging modules that are not part of a reconfiguration operation retain their |
| * previous states. |
| * |
| * Before resetting the device, it is recommended that the driver disables FW |
| * logging before shutting down the control queue. When disabling FW logging |
| * ("enable" = false), the latest configurations of FW logging events stored in |
| * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after |
| * a device reset. |
| * |
| * When enabling FW logging to emit log messages via the Rx CQ during the |
| * device's initialization phase, a mechanism alternative to interrupt handlers |
| * needs to be used to extract FW log messages from the Rx CQ periodically and |
| * to prevent the Rx CQ from being full and stalling other types of control |
| * messages from FW to SW. Interrupts are typically disabled during the device's |
| * initialization phase. |
| */ |
| static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable) |
| { |
| struct ice_aqc_fw_logging *cmd; |
| enum ice_status status = 0; |
| u16 i, chgs = 0, len = 0; |
| struct ice_aq_desc desc; |
| __le16 *data = NULL; |
| u8 actv_evnts = 0; |
| void *buf = NULL; |
| |
| if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) |
| return 0; |
| |
| /* Disable FW logging only when the control queue is still responsive */ |
| if (!enable && |
| (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) |
| return 0; |
| |
| /* Get current FW log settings */ |
| status = ice_get_fw_log_cfg(hw); |
| if (status) |
| return status; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); |
| cmd = &desc.params.fw_logging; |
| |
| /* Indicate which controls are valid */ |
| if (hw->fw_log.cq_en) |
| cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; |
| |
| if (hw->fw_log.uart_en) |
| cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; |
| |
| if (enable) { |
| /* Fill in an array of entries with FW logging modules and |
| * logging events being reconfigured. |
| */ |
| for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { |
| u16 val; |
| |
| /* Keep track of enabled event types */ |
| actv_evnts |= hw->fw_log.evnts[i].cfg; |
| |
| if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) |
| continue; |
| |
| if (!data) { |
| data = devm_kcalloc(ice_hw_to_dev(hw), |
| sizeof(*data), |
| ICE_AQC_FW_LOG_ID_MAX, |
| GFP_KERNEL); |
| if (!data) |
| return ICE_ERR_NO_MEMORY; |
| } |
| |
| val = i << ICE_AQC_FW_LOG_ID_S; |
| val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; |
| data[chgs++] = cpu_to_le16(val); |
| } |
| |
| /* Only enable FW logging if at least one module is specified. |
| * If FW logging is currently enabled but all modules are not |
| * enabled to emit log messages, disable FW logging altogether. |
| */ |
| if (actv_evnts) { |
| /* Leave if there is effectively no change */ |
| if (!chgs) |
| goto out; |
| |
| if (hw->fw_log.cq_en) |
| cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; |
| |
| if (hw->fw_log.uart_en) |
| cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; |
| |
| buf = data; |
| len = sizeof(*data) * chgs; |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } |
| } |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); |
| if (!status) { |
| /* Update the current configuration to reflect events enabled. |
| * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW |
| * logging mode is enabled for the device. They do not reflect |
| * actual modules being enabled to emit log messages. So, their |
| * values remain unchanged even when all modules are disabled. |
| */ |
| u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; |
| |
| hw->fw_log.actv_evnts = actv_evnts; |
| for (i = 0; i < cnt; i++) { |
| u16 v, m; |
| |
| if (!enable) { |
| /* When disabling all FW logging events as part |
| * of device's de-initialization, the original |
| * configurations are retained, and can be used |
| * to reconfigure FW logging later if the device |
| * is re-initialized. |
| */ |
| hw->fw_log.evnts[i].cur = 0; |
| continue; |
| } |
| |
| v = le16_to_cpu(data[i]); |
| m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; |
| hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; |
| } |
| } |
| |
| out: |
| if (data) |
| devm_kfree(ice_hw_to_dev(hw), data); |
| |
| return status; |
| } |
| |
| /** |
| * ice_output_fw_log |
| * @hw: pointer to the HW struct |
| * @desc: pointer to the AQ message descriptor |
| * @buf: pointer to the buffer accompanying the AQ message |
| * |
| * Formats a FW Log message and outputs it via the standard driver logs. |
| */ |
| void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) |
| { |
| ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n"); |
| ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf, |
| le16_to_cpu(desc->datalen)); |
| ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n"); |
| } |
| |
| /** |
| * ice_get_itr_intrl_gran |
| * @hw: pointer to the HW struct |
| * |
| * Determines the ITR/INTRL granularities based on the maximum aggregate |
| * bandwidth according to the device's configuration during power-on. |
| */ |
| static void ice_get_itr_intrl_gran(struct ice_hw *hw) |
| { |
| u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & |
| GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> |
| GL_PWR_MODE_CTL_CAR_MAX_BW_S; |
| |
| switch (max_agg_bw) { |
| case ICE_MAX_AGG_BW_200G: |
| case ICE_MAX_AGG_BW_100G: |
| case ICE_MAX_AGG_BW_50G: |
| hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; |
| hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; |
| break; |
| case ICE_MAX_AGG_BW_25G: |
| hw->itr_gran = ICE_ITR_GRAN_MAX_25; |
| hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; |
| break; |
| } |
| } |
| |
| /** |
| * ice_init_hw - main hardware initialization routine |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_init_hw(struct ice_hw *hw) |
| { |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| enum ice_status status; |
| u16 mac_buf_len; |
| void *mac_buf; |
| |
| /* Set MAC type based on DeviceID */ |
| status = ice_set_mac_type(hw); |
| if (status) |
| return status; |
| |
| hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & |
| PF_FUNC_RID_FUNC_NUM_M) >> |
| PF_FUNC_RID_FUNC_NUM_S; |
| |
| status = ice_reset(hw, ICE_RESET_PFR); |
| if (status) |
| return status; |
| |
| ice_get_itr_intrl_gran(hw); |
| |
| status = ice_create_all_ctrlq(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| /* Enable FW logging. Not fatal if this fails. */ |
| status = ice_cfg_fw_log(hw, true); |
| if (status) |
| ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); |
| |
| status = ice_clear_pf_cfg(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| /* Set bit to enable Flow Director filters */ |
| wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); |
| INIT_LIST_HEAD(&hw->fdir_list_head); |
| |
| ice_clear_pxe_mode(hw); |
| |
| status = ice_init_nvm(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| status = ice_get_caps(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*hw->port_info), GFP_KERNEL); |
| if (!hw->port_info) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_cqinit; |
| } |
| |
| /* set the back pointer to HW */ |
| hw->port_info->hw = hw; |
| |
| /* Initialize port_info struct with switch configuration data */ |
| status = ice_get_initial_sw_cfg(hw); |
| if (status) |
| goto err_unroll_alloc; |
| |
| hw->evb_veb = true; |
| |
| /* Query the allocated resources for Tx scheduler */ |
| status = ice_sched_query_res_alloc(hw); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); |
| goto err_unroll_alloc; |
| } |
| |
| /* Initialize port_info struct with scheduler data */ |
| status = ice_sched_init_port(hw->port_info); |
| if (status) |
| goto err_unroll_sched; |
| |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_sched; |
| } |
| |
| /* Initialize port_info struct with PHY capabilities */ |
| status = ice_aq_get_phy_caps(hw->port_info, false, |
| ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL); |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| if (status) |
| dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n", |
| status); |
| |
| /* Initialize port_info struct with link information */ |
| status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); |
| if (status) |
| goto err_unroll_sched; |
| |
| /* need a valid SW entry point to build a Tx tree */ |
| if (!hw->sw_entry_point_layer) { |
| ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); |
| status = ICE_ERR_CFG; |
| goto err_unroll_sched; |
| } |
| INIT_LIST_HEAD(&hw->agg_list); |
| /* Initialize max burst size */ |
| if (!hw->max_burst_size) |
| ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); |
| |
| status = ice_init_fltr_mgmt_struct(hw); |
| if (status) |
| goto err_unroll_sched; |
| |
| /* Get MAC information */ |
| /* A single port can report up to two (LAN and WoL) addresses */ |
| mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, |
| sizeof(struct ice_aqc_manage_mac_read_resp), |
| GFP_KERNEL); |
| mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); |
| |
| if (!mac_buf) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_fltr_mgmt_struct; |
| } |
| |
| status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); |
| devm_kfree(ice_hw_to_dev(hw), mac_buf); |
| |
| if (status) |
| goto err_unroll_fltr_mgmt_struct; |
| /* enable jumbo frame support at MAC level */ |
| status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); |
| if (status) |
| goto err_unroll_fltr_mgmt_struct; |
| /* Obtain counter base index which would be used by flow director */ |
| status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); |
| if (status) |
| goto err_unroll_fltr_mgmt_struct; |
| status = ice_init_hw_tbls(hw); |
| if (status) |
| goto err_unroll_fltr_mgmt_struct; |
| mutex_init(&hw->tnl_lock); |
| return 0; |
| |
| err_unroll_fltr_mgmt_struct: |
| ice_cleanup_fltr_mgmt_struct(hw); |
| err_unroll_sched: |
| ice_sched_cleanup_all(hw); |
| err_unroll_alloc: |
| devm_kfree(ice_hw_to_dev(hw), hw->port_info); |
| err_unroll_cqinit: |
| ice_destroy_all_ctrlq(hw); |
| return status; |
| } |
| |
| /** |
| * ice_deinit_hw - unroll initialization operations done by ice_init_hw |
| * @hw: pointer to the hardware structure |
| * |
| * This should be called only during nominal operation, not as a result of |
| * ice_init_hw() failing since ice_init_hw() will take care of unrolling |
| * applicable initializations if it fails for any reason. |
| */ |
| void ice_deinit_hw(struct ice_hw *hw) |
| { |
| ice_free_fd_res_cntr(hw, hw->fd_ctr_base); |
| ice_cleanup_fltr_mgmt_struct(hw); |
| |
| ice_sched_cleanup_all(hw); |
| ice_sched_clear_agg(hw); |
| ice_free_seg(hw); |
| ice_free_hw_tbls(hw); |
| mutex_destroy(&hw->tnl_lock); |
| |
| if (hw->port_info) { |
| devm_kfree(ice_hw_to_dev(hw), hw->port_info); |
| hw->port_info = NULL; |
| } |
| |
| /* Attempt to disable FW logging before shutting down control queues */ |
| ice_cfg_fw_log(hw, false); |
| ice_destroy_all_ctrlq(hw); |
| |
| /* Clear VSI contexts if not already cleared */ |
| ice_clear_all_vsi_ctx(hw); |
| } |
| |
| /** |
| * ice_check_reset - Check to see if a global reset is complete |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_check_reset(struct ice_hw *hw) |
| { |
| u32 cnt, reg = 0, grst_timeout, uld_mask; |
| |
| /* Poll for Device Active state in case a recent CORER, GLOBR, |
| * or EMPR has occurred. The grst delay value is in 100ms units. |
| * Add 1sec for outstanding AQ commands that can take a long time. |
| */ |
| grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> |
| GLGEN_RSTCTL_GRSTDEL_S) + 10; |
| |
| for (cnt = 0; cnt < grst_timeout; cnt++) { |
| mdelay(100); |
| reg = rd32(hw, GLGEN_RSTAT); |
| if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) |
| break; |
| } |
| |
| if (cnt == grst_timeout) { |
| ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ |
| GLNVM_ULD_PCIER_DONE_1_M |\ |
| GLNVM_ULD_CORER_DONE_M |\ |
| GLNVM_ULD_GLOBR_DONE_M |\ |
| GLNVM_ULD_POR_DONE_M |\ |
| GLNVM_ULD_POR_DONE_1_M |\ |
| GLNVM_ULD_PCIER_DONE_2_M) |
| |
| uld_mask = ICE_RESET_DONE_MASK; |
| |
| /* Device is Active; check Global Reset processes are done */ |
| for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { |
| reg = rd32(hw, GLNVM_ULD) & uld_mask; |
| if (reg == uld_mask) { |
| ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); |
| break; |
| } |
| mdelay(10); |
| } |
| |
| if (cnt == ICE_PF_RESET_WAIT_COUNT) { |
| ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", |
| reg); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_pf_reset - Reset the PF |
| * @hw: pointer to the hardware structure |
| * |
| * If a global reset has been triggered, this function checks |
| * for its completion and then issues the PF reset |
| */ |
| static enum ice_status ice_pf_reset(struct ice_hw *hw) |
| { |
| u32 cnt, reg; |
| |
| /* If at function entry a global reset was already in progress, i.e. |
| * state is not 'device active' or any of the reset done bits are not |
| * set in GLNVM_ULD, there is no need for a PF Reset; poll until the |
| * global reset is done. |
| */ |
| if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || |
| (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { |
| /* poll on global reset currently in progress until done */ |
| if (ice_check_reset(hw)) |
| return ICE_ERR_RESET_FAILED; |
| |
| return 0; |
| } |
| |
| /* Reset the PF */ |
| reg = rd32(hw, PFGEN_CTRL); |
| |
| wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); |
| |
| /* Wait for the PFR to complete. The wait time is the global config lock |
| * timeout plus the PFR timeout which will account for a possible reset |
| * that is occurring during a download package operation. |
| */ |
| for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + |
| ICE_PF_RESET_WAIT_COUNT; cnt++) { |
| reg = rd32(hw, PFGEN_CTRL); |
| if (!(reg & PFGEN_CTRL_PFSWR_M)) |
| break; |
| |
| mdelay(1); |
| } |
| |
| if (cnt == ICE_PF_RESET_WAIT_COUNT) { |
| ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_reset - Perform different types of reset |
| * @hw: pointer to the hardware structure |
| * @req: reset request |
| * |
| * This function triggers a reset as specified by the req parameter. |
| * |
| * Note: |
| * If anything other than a PF reset is triggered, PXE mode is restored. |
| * This has to be cleared using ice_clear_pxe_mode again, once the AQ |
| * interface has been restored in the rebuild flow. |
| */ |
| enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req) |
| { |
| u32 val = 0; |
| |
| switch (req) { |
| case ICE_RESET_PFR: |
| return ice_pf_reset(hw); |
| case ICE_RESET_CORER: |
| ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); |
| val = GLGEN_RTRIG_CORER_M; |
| break; |
| case ICE_RESET_GLOBR: |
| ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); |
| val = GLGEN_RTRIG_GLOBR_M; |
| break; |
| default: |
| return ICE_ERR_PARAM; |
| } |
| |
| val |= rd32(hw, GLGEN_RTRIG); |
| wr32(hw, GLGEN_RTRIG, val); |
| ice_flush(hw); |
| |
| /* wait for the FW to be ready */ |
| return ice_check_reset(hw); |
| } |
| |
| /** |
| * ice_copy_rxq_ctx_to_hw |
| * @hw: pointer to the hardware structure |
| * @ice_rxq_ctx: pointer to the rxq context |
| * @rxq_index: the index of the Rx queue |
| * |
| * Copies rxq context from dense structure to HW register space |
| */ |
| static enum ice_status |
| ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) |
| { |
| u8 i; |
| |
| if (!ice_rxq_ctx) |
| return ICE_ERR_BAD_PTR; |
| |
| if (rxq_index > QRX_CTRL_MAX_INDEX) |
| return ICE_ERR_PARAM; |
| |
| /* Copy each dword separately to HW */ |
| for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { |
| wr32(hw, QRX_CONTEXT(i, rxq_index), |
| *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); |
| |
| ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, |
| *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); |
| } |
| |
| return 0; |
| } |
| |
| /* LAN Rx Queue Context */ |
| static const struct ice_ctx_ele ice_rlan_ctx_info[] = { |
| /* Field Width LSB */ |
| ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), |
| ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), |
| ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), |
| ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), |
| ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), |
| ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), |
| ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), |
| ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), |
| ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), |
| ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), |
| ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), |
| ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), |
| ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), |
| ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), |
| ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), |
| ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), |
| ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), |
| ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), |
| ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), |
| ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), |
| { 0 } |
| }; |
| |
| /** |
| * ice_write_rxq_ctx |
| * @hw: pointer to the hardware structure |
| * @rlan_ctx: pointer to the rxq context |
| * @rxq_index: the index of the Rx queue |
| * |
| * Converts rxq context from sparse to dense structure and then writes |
| * it to HW register space and enables the hardware to prefetch descriptors |
| * instead of only fetching them on demand |
| */ |
| enum ice_status |
| ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, |
| u32 rxq_index) |
| { |
| u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; |
| |
| if (!rlan_ctx) |
| return ICE_ERR_BAD_PTR; |
| |
| rlan_ctx->prefena = 1; |
| |
| ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); |
| return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); |
| } |
| |
| /* LAN Tx Queue Context */ |
| const struct ice_ctx_ele ice_tlan_ctx_info[] = { |
| /* Field Width LSB */ |
| ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), |
| ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), |
| ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), |
| ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), |
| ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), |
| ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), |
| ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), |
| ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), |
| ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), |
| ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), |
| ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), |
| ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), |
| ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), |
| ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), |
| ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), |
| ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), |
| ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), |
| ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), |
| ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), |
| ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), |
| ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), |
| ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), |
| ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), |
| ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), |
| ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), |
| ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), |
| ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), |
| ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171), |
| { 0 } |
| }; |
| |
| /* FW Admin Queue command wrappers */ |
| |
| /* Software lock/mutex that is meant to be held while the Global Config Lock |
| * in firmware is acquired by the software to prevent most (but not all) types |
| * of AQ commands from being sent to FW |
| */ |
| DEFINE_MUTEX(ice_global_cfg_lock_sw); |
| |
| /** |
| * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue |
| * @hw: pointer to the HW struct |
| * @desc: descriptor describing the command |
| * @buf: buffer to use for indirect commands (NULL for direct commands) |
| * @buf_size: size of buffer for indirect commands (0 for direct commands) |
| * @cd: pointer to command details structure |
| * |
| * Helper function to send FW Admin Queue commands to the FW Admin Queue. |
| */ |
| enum ice_status |
| ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, |
| u16 buf_size, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_req_res *cmd = &desc->params.res_owner; |
| bool lock_acquired = false; |
| enum ice_status status; |
| |
| /* When a package download is in process (i.e. when the firmware's |
| * Global Configuration Lock resource is held), only the Download |
| * Package, Get Version, Get Package Info List and Release Resource |
| * (with resource ID set to Global Config Lock) AdminQ commands are |
| * allowed; all others must block until the package download completes |
| * and the Global Config Lock is released. See also |
| * ice_acquire_global_cfg_lock(). |
| */ |
| switch (le16_to_cpu(desc->opcode)) { |
| case ice_aqc_opc_download_pkg: |
| case ice_aqc_opc_get_pkg_info_list: |
| case ice_aqc_opc_get_ver: |
| break; |
| case ice_aqc_opc_release_res: |
| if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) |
| break; |
| fallthrough; |
| default: |
| mutex_lock(&ice_global_cfg_lock_sw); |
| lock_acquired = true; |
| break; |
| } |
| |
| status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd); |
| if (lock_acquired) |
| mutex_unlock(&ice_global_cfg_lock_sw); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_get_fw_ver |
| * @hw: pointer to the HW struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get the firmware version (0x0001) from the admin queue commands |
| */ |
| enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_ver *resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| resp = &desc.params.get_ver; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| |
| if (!status) { |
| hw->fw_branch = resp->fw_branch; |
| hw->fw_maj_ver = resp->fw_major; |
| hw->fw_min_ver = resp->fw_minor; |
| hw->fw_patch = resp->fw_patch; |
| hw->fw_build = le32_to_cpu(resp->fw_build); |
| hw->api_branch = resp->api_branch; |
| hw->api_maj_ver = resp->api_major; |
| hw->api_min_ver = resp->api_minor; |
| hw->api_patch = resp->api_patch; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_send_driver_ver |
| * @hw: pointer to the HW struct |
| * @dv: driver's major, minor version |
| * @cd: pointer to command details structure or NULL |
| * |
| * Send the driver version (0x0002) to the firmware |
| */ |
| enum ice_status |
| ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_driver_ver *cmd; |
| struct ice_aq_desc desc; |
| u16 len; |
| |
| cmd = &desc.params.driver_ver; |
| |
| if (!dv) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| cmd->major_ver = dv->major_ver; |
| cmd->minor_ver = dv->minor_ver; |
| cmd->build_ver = dv->build_ver; |
| cmd->subbuild_ver = dv->subbuild_ver; |
| |
| len = 0; |
| while (len < sizeof(dv->driver_string) && |
| isascii(dv->driver_string[len]) && dv->driver_string[len]) |
| len++; |
| |
| return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); |
| } |
| |
| /** |
| * ice_aq_q_shutdown |
| * @hw: pointer to the HW struct |
| * @unloading: is the driver unloading itself |
| * |
| * Tell the Firmware that we're shutting down the AdminQ and whether |
| * or not the driver is unloading as well (0x0003). |
| */ |
| enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) |
| { |
| struct ice_aqc_q_shutdown *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.q_shutdown; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); |
| |
| if (unloading) |
| cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_aq_req_res |
| * @hw: pointer to the HW struct |
| * @res: resource ID |
| * @access: access type |
| * @sdp_number: resource number |
| * @timeout: the maximum time in ms that the driver may hold the resource |
| * @cd: pointer to command details structure or NULL |
| * |
| * Requests common resource using the admin queue commands (0x0008). |
| * When attempting to acquire the Global Config Lock, the driver can |
| * learn of three states: |
| * 1) ICE_SUCCESS - acquired lock, and can perform download package |
| * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load |
| * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has |
| * successfully downloaded the package; the driver does |
| * not have to download the package and can continue |
| * loading |
| * |
| * Note that if the caller is in an acquire lock, perform action, release lock |
| * phase of operation, it is possible that the FW may detect a timeout and issue |
| * a CORER. In this case, the driver will receive a CORER interrupt and will |
| * have to determine its cause. The calling thread that is handling this flow |
| * will likely get an error propagated back to it indicating the Download |
| * Package, Update Package or the Release Resource AQ commands timed out. |
| */ |
| static enum ice_status |
| ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, |
| enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_req_res *cmd_resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd_resp = &desc.params.res_owner; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); |
| |
| cmd_resp->res_id = cpu_to_le16(res); |
| cmd_resp->access_type = cpu_to_le16(access); |
| cmd_resp->res_number = cpu_to_le32(sdp_number); |
| cmd_resp->timeout = cpu_to_le32(*timeout); |
| *timeout = 0; |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| |
| /* The completion specifies the maximum time in ms that the driver |
| * may hold the resource in the Timeout field. |
| */ |
| |
| /* Global config lock response utilizes an additional status field. |
| * |
| * If the Global config lock resource is held by some other driver, the |
| * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field |
| * and the timeout field indicates the maximum time the current owner |
| * of the resource has to free it. |
| */ |
| if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { |
| if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| return 0; |
| } else if (le16_to_cpu(cmd_resp->status) == |
| ICE_AQ_RES_GLBL_IN_PROG) { |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| return ICE_ERR_AQ_ERROR; |
| } else if (le16_to_cpu(cmd_resp->status) == |
| ICE_AQ_RES_GLBL_DONE) { |
| return ICE_ERR_AQ_NO_WORK; |
| } |
| |
| /* invalid FW response, force a timeout immediately */ |
| *timeout = 0; |
| return ICE_ERR_AQ_ERROR; |
| } |
| |
| /* If the resource is held by some other driver, the command completes |
| * with a busy return value and the timeout field indicates the maximum |
| * time the current owner of the resource has to free it. |
| */ |
| if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_release_res |
| * @hw: pointer to the HW struct |
| * @res: resource ID |
| * @sdp_number: resource number |
| * @cd: pointer to command details structure or NULL |
| * |
| * release common resource using the admin queue commands (0x0009) |
| */ |
| static enum ice_status |
| ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_req_res *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.res_owner; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); |
| |
| cmd->res_id = cpu_to_le16(res); |
| cmd->res_number = cpu_to_le32(sdp_number); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_acquire_res |
| * @hw: pointer to the HW structure |
| * @res: resource ID |
| * @access: access type (read or write) |
| * @timeout: timeout in milliseconds |
| * |
| * This function will attempt to acquire the ownership of a resource. |
| */ |
| enum ice_status |
| ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, |
| enum ice_aq_res_access_type access, u32 timeout) |
| { |
| #define ICE_RES_POLLING_DELAY_MS 10 |
| u32 delay = ICE_RES_POLLING_DELAY_MS; |
| u32 time_left = timeout; |
| enum ice_status status; |
| |
| status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); |
| |
| /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has |
| * previously acquired the resource and performed any necessary updates; |
| * in this case the caller does not obtain the resource and has no |
| * further work to do. |
| */ |
| if (status == ICE_ERR_AQ_NO_WORK) |
| goto ice_acquire_res_exit; |
| |
| if (status) |
| ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); |
| |
| /* If necessary, poll until the current lock owner timeouts */ |
| timeout = time_left; |
| while (status && timeout && time_left) { |
| mdelay(delay); |
| timeout = (timeout > delay) ? timeout - delay : 0; |
| status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); |
| |
| if (status == ICE_ERR_AQ_NO_WORK) |
| /* lock free, but no work to do */ |
| break; |
| |
| if (!status) |
| /* lock acquired */ |
| break; |
| } |
| if (status && status != ICE_ERR_AQ_NO_WORK) |
| ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); |
| |
| ice_acquire_res_exit: |
| if (status == ICE_ERR_AQ_NO_WORK) { |
| if (access == ICE_RES_WRITE) |
| ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); |
| else |
| ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n"); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_release_res |
| * @hw: pointer to the HW structure |
| * @res: resource ID |
| * |
| * This function will release a resource using the proper Admin Command. |
| */ |
| void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) |
| { |
| enum ice_status status; |
| u32 total_delay = 0; |
| |
| status = ice_aq_release_res(hw, res, 0, NULL); |
| |
| /* there are some rare cases when trying to release the resource |
| * results in an admin queue timeout, so handle them correctly |
| */ |
| while ((status == ICE_ERR_AQ_TIMEOUT) && |
| (total_delay < hw->adminq.sq_cmd_timeout)) { |
| mdelay(1); |
| status = ice_aq_release_res(hw, res, 0, NULL); |
| total_delay++; |
| } |
| } |
| |
| /** |
| * ice_aq_alloc_free_res - command to allocate/free resources |
| * @hw: pointer to the HW struct |
| * @num_entries: number of resource entries in buffer |
| * @buf: Indirect buffer to hold data parameters and response |
| * @buf_size: size of buffer for indirect commands |
| * @opc: pass in the command opcode |
| * @cd: pointer to command details structure or NULL |
| * |
| * Helper function to allocate/free resources using the admin queue commands |
| */ |
| enum ice_status |
| ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, |
| struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, |
| enum ice_adminq_opc opc, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_alloc_free_res_cmd *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.sw_res_ctrl; |
| |
| if (!buf) |
| return ICE_ERR_PARAM; |
| |
| if (buf_size < (num_entries * sizeof(buf->elem[0]))) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, opc); |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| cmd->num_entries = cpu_to_le16(num_entries); |
| |
| return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| } |
| |
| /** |
| * ice_alloc_hw_res - allocate resource |
| * @hw: pointer to the HW struct |
| * @type: type of resource |
| * @num: number of resources to allocate |
| * @btm: allocate from bottom |
| * @res: pointer to array that will receive the resources |
| */ |
| enum ice_status |
| ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) |
| { |
| struct ice_aqc_alloc_free_res_elem *buf; |
| enum ice_status status; |
| u16 buf_len; |
| |
| buf_len = struct_size(buf, elem, num); |
| buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Prepare buffer to allocate resource. */ |
| buf->num_elems = cpu_to_le16(num); |
| buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | |
| ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); |
| if (btm) |
| buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); |
| |
| status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, |
| ice_aqc_opc_alloc_res, NULL); |
| if (status) |
| goto ice_alloc_res_exit; |
| |
| memcpy(res, buf->elem, sizeof(*buf->elem) * num); |
| |
| ice_alloc_res_exit: |
| kfree(buf); |
| return status; |
| } |
| |
| /** |
| * ice_free_hw_res - free allocated HW resource |
| * @hw: pointer to the HW struct |
| * @type: type of resource to free |
| * @num: number of resources |
| * @res: pointer to array that contains the resources to free |
| */ |
| enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) |
| { |
| struct ice_aqc_alloc_free_res_elem *buf; |
| enum ice_status status; |
| u16 buf_len; |
| |
| buf_len = struct_size(buf, elem, num); |
| buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!buf) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Prepare buffer to free resource. */ |
| buf->num_elems = cpu_to_le16(num); |
| buf->res_type = cpu_to_le16(type); |
| memcpy(buf->elem, res, sizeof(*buf->elem) * num); |
| |
| status = ice_aq_alloc_free_res(hw, num, buf, buf_len, |
| ice_aqc_opc_free_res, NULL); |
| if (status) |
| ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); |
| |
| kfree(buf); |
| return status; |
| } |
| |
| /** |
| * ice_get_num_per_func - determine number of resources per PF |
| * @hw: pointer to the HW structure |
| * @max: value to be evenly split between each PF |
| * |
| * Determine the number of valid functions by going through the bitmap returned |
| * from parsing capabilities and use this to calculate the number of resources |
| * per PF based on the max value passed in. |
| */ |
| static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) |
| { |
| u8 funcs; |
| |
| #define ICE_CAPS_VALID_FUNCS_M 0xFF |
| funcs = hweight8(hw->dev_caps.common_cap.valid_functions & |
| ICE_CAPS_VALID_FUNCS_M); |
| |
| if (!funcs) |
| return 0; |
| |
| return max / funcs; |
| } |
| |
| /** |
| * ice_parse_common_caps - parse common device/function capabilities |
| * @hw: pointer to the HW struct |
| * @caps: pointer to common capabilities structure |
| * @elem: the capability element to parse |
| * @prefix: message prefix for tracing capabilities |
| * |
| * Given a capability element, extract relevant details into the common |
| * capability structure. |
| * |
| * Returns: true if the capability matches one of the common capability ids, |
| * false otherwise. |
| */ |
| static bool |
| ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps, |
| struct ice_aqc_list_caps_elem *elem, const char *prefix) |
| { |
| u32 logical_id = le32_to_cpu(elem->logical_id); |
| u32 phys_id = le32_to_cpu(elem->phys_id); |
| u32 number = le32_to_cpu(elem->number); |
| u16 cap = le16_to_cpu(elem->cap); |
| bool found = true; |
| |
| switch (cap) { |
| case ICE_AQC_CAPS_VALID_FUNCTIONS: |
| caps->valid_functions = number; |
| ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix, |
| caps->valid_functions); |
| break; |
| case ICE_AQC_CAPS_SRIOV: |
| caps->sr_iov_1_1 = (number == 1); |
| ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix, |
| caps->sr_iov_1_1); |
| break; |
| case ICE_AQC_CAPS_DCB: |
| caps->dcb = (number == 1); |
| caps->active_tc_bitmap = logical_id; |
| caps->maxtc = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb); |
| ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix, |
| caps->active_tc_bitmap); |
| ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc); |
| break; |
| case ICE_AQC_CAPS_RSS: |
| caps->rss_table_size = number; |
| caps->rss_table_entry_width = logical_id; |
| ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix, |
| caps->rss_table_size); |
| ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix, |
| caps->rss_table_entry_width); |
| break; |
| case ICE_AQC_CAPS_RXQS: |
| caps->num_rxq = number; |
| caps->rxq_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix, |
| caps->num_rxq); |
| ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix, |
| caps->rxq_first_id); |
| break; |
| case ICE_AQC_CAPS_TXQS: |
| caps->num_txq = number; |
| caps->txq_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix, |
| caps->num_txq); |
| ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix, |
| caps->txq_first_id); |
| break; |
| case ICE_AQC_CAPS_MSIX: |
| caps->num_msix_vectors = number; |
| caps->msix_vector_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix, |
| caps->num_msix_vectors); |
| ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix, |
| caps->msix_vector_first_id); |
| break; |
| case ICE_AQC_CAPS_PENDING_NVM_VER: |
| caps->nvm_update_pending_nvm = true; |
| ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix); |
| break; |
| case ICE_AQC_CAPS_PENDING_OROM_VER: |
| caps->nvm_update_pending_orom = true; |
| ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix); |
| break; |
| case ICE_AQC_CAPS_PENDING_NET_VER: |
| caps->nvm_update_pending_netlist = true; |
| ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix); |
| break; |
| case ICE_AQC_CAPS_NVM_MGMT: |
| caps->nvm_unified_update = |
| (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? |
| true : false; |
| ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix, |
| caps->nvm_unified_update); |
| break; |
| case ICE_AQC_CAPS_MAX_MTU: |
| caps->max_mtu = number; |
| ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", |
| prefix, caps->max_mtu); |
| break; |
| default: |
| /* Not one of the recognized common capabilities */ |
| found = false; |
| } |
| |
| return found; |
| } |
| |
| /** |
| * ice_recalc_port_limited_caps - Recalculate port limited capabilities |
| * @hw: pointer to the HW structure |
| * @caps: pointer to capabilities structure to fix |
| * |
| * Re-calculate the capabilities that are dependent on the number of physical |
| * ports; i.e. some features are not supported or function differently on |
| * devices with more than 4 ports. |
| */ |
| static void |
| ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps) |
| { |
| /* This assumes device capabilities are always scanned before function |
| * capabilities during the initialization flow. |
| */ |
| if (hw->dev_caps.num_funcs > 4) { |
| /* Max 4 TCs per port */ |
| caps->maxtc = 4; |
| ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n", |
| caps->maxtc); |
| } |
| } |
| |
| /** |
| * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps |
| * @hw: pointer to the HW struct |
| * @func_p: pointer to function capabilities structure |
| * @cap: pointer to the capability element to parse |
| * |
| * Extract function capabilities for ICE_AQC_CAPS_VF. |
| */ |
| static void |
| ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| u32 logical_id = le32_to_cpu(cap->logical_id); |
| u32 number = le32_to_cpu(cap->number); |
| |
| func_p->num_allocd_vfs = number; |
| func_p->vf_base_id = logical_id; |
| ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n", |
| func_p->num_allocd_vfs); |
| ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n", |
| func_p->vf_base_id); |
| } |
| |
| /** |
| * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps |
| * @hw: pointer to the HW struct |
| * @func_p: pointer to function capabilities structure |
| * @cap: pointer to the capability element to parse |
| * |
| * Extract function capabilities for ICE_AQC_CAPS_VSI. |
| */ |
| static void |
| ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); |
| ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n", |
| le32_to_cpu(cap->number)); |
| ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n", |
| func_p->guar_num_vsi); |
| } |
| |
| /** |
| * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps |
| * @hw: pointer to the HW struct |
| * @func_p: pointer to function capabilities structure |
| * |
| * Extract function capabilities for ICE_AQC_CAPS_FD. |
| */ |
| static void |
| ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p) |
| { |
| u32 reg_val, val; |
| |
| reg_val = rd32(hw, GLQF_FD_SIZE); |
| val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >> |
| GLQF_FD_SIZE_FD_GSIZE_S; |
| func_p->fd_fltr_guar = |
| ice_get_num_per_func(hw, val); |
| val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >> |
| GLQF_FD_SIZE_FD_BSIZE_S; |
| func_p->fd_fltr_best_effort = val; |
| |
| ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n", |
| func_p->fd_fltr_guar); |
| ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n", |
| func_p->fd_fltr_best_effort); |
| } |
| |
| /** |
| * ice_parse_func_caps - Parse function capabilities |
| * @hw: pointer to the HW struct |
| * @func_p: pointer to function capabilities structure |
| * @buf: buffer containing the function capability records |
| * @cap_count: the number of capabilities |
| * |
| * Helper function to parse function (0x000A) capabilities list. For |
| * capabilities shared between device and function, this relies on |
| * ice_parse_common_caps. |
| * |
| * Loop through the list of provided capabilities and extract the relevant |
| * data into the function capabilities structured. |
| */ |
| static void |
| ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, |
| void *buf, u32 cap_count) |
| { |
| struct ice_aqc_list_caps_elem *cap_resp; |
| u32 i; |
| |
| cap_resp = (struct ice_aqc_list_caps_elem *)buf; |
| |
| memset(func_p, 0, sizeof(*func_p)); |
| |
| for (i = 0; i < cap_count; i++) { |
| u16 cap = le16_to_cpu(cap_resp[i].cap); |
| bool found; |
| |
| found = ice_parse_common_caps(hw, &func_p->common_cap, |
| &cap_resp[i], "func caps"); |
| |
| switch (cap) { |
| case ICE_AQC_CAPS_VF: |
| ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]); |
| break; |
| case ICE_AQC_CAPS_VSI: |
| ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); |
| break; |
| case ICE_AQC_CAPS_FD: |
| ice_parse_fdir_func_caps(hw, func_p); |
| break; |
| default: |
| /* Don't list common capabilities as unknown */ |
| if (!found) |
| ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n", |
| i, cap); |
| break; |
| } |
| } |
| |
| ice_recalc_port_limited_caps(hw, &func_p->common_cap); |
| } |
| |
| /** |
| * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps |
| * @hw: pointer to the HW struct |
| * @dev_p: pointer to device capabilities structure |
| * @cap: capability element to parse |
| * |
| * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities. |
| */ |
| static void |
| ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| u32 number = le32_to_cpu(cap->number); |
| |
| dev_p->num_funcs = hweight32(number); |
| ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n", |
| dev_p->num_funcs); |
| } |
| |
| /** |
| * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps |
| * @hw: pointer to the HW struct |
| * @dev_p: pointer to device capabilities structure |
| * @cap: capability element to parse |
| * |
| * Parse ICE_AQC_CAPS_VF for device capabilities. |
| */ |
| static void |
| ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| u32 number = le32_to_cpu(cap->number); |
| |
| dev_p->num_vfs_exposed = number; |
| ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n", |
| dev_p->num_vfs_exposed); |
| } |
| |
| /** |
| * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps |
| * @hw: pointer to the HW struct |
| * @dev_p: pointer to device capabilities structure |
| * @cap: capability element to parse |
| * |
| * Parse ICE_AQC_CAPS_VSI for device capabilities. |
| */ |
| static void |
| ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| u32 number = le32_to_cpu(cap->number); |
| |
| dev_p->num_vsi_allocd_to_host = number; |
| ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n", |
| dev_p->num_vsi_allocd_to_host); |
| } |
| |
| /** |
| * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps |
| * @hw: pointer to the HW struct |
| * @dev_p: pointer to device capabilities structure |
| * @cap: capability element to parse |
| * |
| * Parse ICE_AQC_CAPS_FD for device capabilities. |
| */ |
| static void |
| ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, |
| struct ice_aqc_list_caps_elem *cap) |
| { |
| u32 number = le32_to_cpu(cap->number); |
| |
| dev_p->num_flow_director_fltr = number; |
| ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n", |
| dev_p->num_flow_director_fltr); |
| } |
| |
| /** |
| * ice_parse_dev_caps - Parse device capabilities |
| * @hw: pointer to the HW struct |
| * @dev_p: pointer to device capabilities structure |
| * @buf: buffer containing the device capability records |
| * @cap_count: the number of capabilities |
| * |
| * Helper device to parse device (0x000B) capabilities list. For |
| * capabilities shared between device and function, this relies on |
| * ice_parse_common_caps. |
| * |
| * Loop through the list of provided capabilities and extract the relevant |
| * data into the device capabilities structured. |
| */ |
| static void |
| ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, |
| void *buf, u32 cap_count) |
| { |
| struct ice_aqc_list_caps_elem *cap_resp; |
| u32 i; |
| |
| cap_resp = (struct ice_aqc_list_caps_elem *)buf; |
| |
| memset(dev_p, 0, sizeof(*dev_p)); |
| |
| for (i = 0; i < cap_count; i++) { |
| u16 cap = le16_to_cpu(cap_resp[i].cap); |
| bool found; |
| |
| found = ice_parse_common_caps(hw, &dev_p->common_cap, |
| &cap_resp[i], "dev caps"); |
| |
| switch (cap) { |
| case ICE_AQC_CAPS_VALID_FUNCTIONS: |
| ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]); |
| break; |
| case ICE_AQC_CAPS_VF: |
| ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); |
| break; |
| case ICE_AQC_CAPS_VSI: |
| ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); |
| break; |
| case ICE_AQC_CAPS_FD: |
| ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); |
| break; |
| default: |
| /* Don't list common capabilities as unknown */ |
| if (!found) |
| ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n", |
| i, cap); |
| break; |
| } |
| } |
| |
| ice_recalc_port_limited_caps(hw, &dev_p->common_cap); |
| } |
| |
| /** |
| * ice_aq_list_caps - query function/device capabilities |
| * @hw: pointer to the HW struct |
| * @buf: a buffer to hold the capabilities |
| * @buf_size: size of the buffer |
| * @cap_count: if not NULL, set to the number of capabilities reported |
| * @opc: capabilities type to discover, device or function |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get the function (0x000A) or device (0x000B) capabilities description from |
| * firmware and store it in the buffer. |
| * |
| * If the cap_count pointer is not NULL, then it is set to the number of |
| * capabilities firmware will report. Note that if the buffer size is too |
| * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The |
| * cap_count will still be updated in this case. It is recommended that the |
| * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that |
| * firmware could return) to avoid this. |
| */ |
| enum ice_status |
| ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, |
| enum ice_adminq_opc opc, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_list_caps *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.get_cap; |
| |
| if (opc != ice_aqc_opc_list_func_caps && |
| opc != ice_aqc_opc_list_dev_caps) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, opc); |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| |
| if (cap_count) |
| *cap_count = le32_to_cpu(cmd->count); |
| |
| return status; |
| } |
| |
| /** |
| * ice_discover_dev_caps - Read and extract device capabilities |
| * @hw: pointer to the hardware structure |
| * @dev_caps: pointer to device capabilities structure |
| * |
| * Read the device capabilities and extract them into the dev_caps structure |
| * for later use. |
| */ |
| enum ice_status |
| ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps) |
| { |
| enum ice_status status; |
| u32 cap_count = 0; |
| void *cbuf; |
| |
| cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); |
| if (!cbuf) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Although the driver doesn't know the number of capabilities the |
| * device will return, we can simply send a 4KB buffer, the maximum |
| * possible size that firmware can return. |
| */ |
| cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); |
| |
| status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, |
| ice_aqc_opc_list_dev_caps, NULL); |
| if (!status) |
| ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count); |
| kfree(cbuf); |
| |
| return status; |
| } |
| |
| /** |
| * ice_discover_func_caps - Read and extract function capabilities |
| * @hw: pointer to the hardware structure |
| * @func_caps: pointer to function capabilities structure |
| * |
| * Read the function capabilities and extract them into the func_caps structure |
| * for later use. |
| */ |
| static enum ice_status |
| ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps) |
| { |
| enum ice_status status; |
| u32 cap_count = 0; |
| void *cbuf; |
| |
| cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); |
| if (!cbuf) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Although the driver doesn't know the number of capabilities the |
| * device will return, we can simply send a 4KB buffer, the maximum |
| * possible size that firmware can return. |
| */ |
| cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); |
| |
| status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, |
| ice_aqc_opc_list_func_caps, NULL); |
| if (!status) |
| ice_parse_func_caps(hw, func_caps, cbuf, cap_count); |
| kfree(cbuf); |
| |
| return status; |
| } |
| |
| /** |
| * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode |
| * @hw: pointer to the hardware structure |
| */ |
| void ice_set_safe_mode_caps(struct ice_hw *hw) |
| { |
| struct ice_hw_func_caps *func_caps = &hw->func_caps; |
| struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; |
| struct ice_hw_common_caps cached_caps; |
| u32 num_funcs; |
| |
| /* cache some func_caps values that should be restored after memset */ |
| cached_caps = func_caps->common_cap; |
| |
| /* unset func capabilities */ |
| memset(func_caps, 0, sizeof(*func_caps)); |
| |
| #define ICE_RESTORE_FUNC_CAP(name) \ |
| func_caps->common_cap.name = cached_caps.name |
| |
| /* restore cached values */ |
| ICE_RESTORE_FUNC_CAP(valid_functions); |
| ICE_RESTORE_FUNC_CAP(txq_first_id); |
| ICE_RESTORE_FUNC_CAP(rxq_first_id); |
| ICE_RESTORE_FUNC_CAP(msix_vector_first_id); |
| ICE_RESTORE_FUNC_CAP(max_mtu); |
| ICE_RESTORE_FUNC_CAP(nvm_unified_update); |
| ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm); |
| ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom); |
| ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist); |
| |
| /* one Tx and one Rx queue in safe mode */ |
| func_caps->common_cap.num_rxq = 1; |
| func_caps->common_cap.num_txq = 1; |
| |
| /* two MSIX vectors, one for traffic and one for misc causes */ |
| func_caps->common_cap.num_msix_vectors = 2; |
| func_caps->guar_num_vsi = 1; |
| |
| /* cache some dev_caps values that should be restored after memset */ |
| cached_caps = dev_caps->common_cap; |
| num_funcs = dev_caps->num_funcs; |
| |
| /* unset dev capabilities */ |
| memset(dev_caps, 0, sizeof(*dev_caps)); |
| |
| #define ICE_RESTORE_DEV_CAP(name) \ |
| dev_caps->common_cap.name = cached_caps.name |
| |
| /* restore cached values */ |
| ICE_RESTORE_DEV_CAP(valid_functions); |
| ICE_RESTORE_DEV_CAP(txq_first_id); |
| ICE_RESTORE_DEV_CAP(rxq_first_id); |
| ICE_RESTORE_DEV_CAP(msix_vector_first_id); |
| ICE_RESTORE_DEV_CAP(max_mtu); |
| ICE_RESTORE_DEV_CAP(nvm_unified_update); |
| ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm); |
| ICE_RESTORE_DEV_CAP(nvm_update_pending_orom); |
| ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist); |
| dev_caps->num_funcs = num_funcs; |
| |
| /* one Tx and one Rx queue per function in safe mode */ |
| dev_caps->common_cap.num_rxq = num_funcs; |
| dev_caps->common_cap.num_txq = num_funcs; |
| |
| /* two MSIX vectors per function */ |
| dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; |
| } |
| |
| /** |
| * ice_get_caps - get info about the HW |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_get_caps(struct ice_hw *hw) |
| { |
| enum ice_status status; |
| |
| status = ice_discover_dev_caps(hw, &hw->dev_caps); |
| if (status) |
| return status; |
| |
| return ice_discover_func_caps(hw, &hw->func_caps); |
| } |
| |
| /** |
| * ice_aq_manage_mac_write - manage MAC address write command |
| * @hw: pointer to the HW struct |
| * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address |
| * @flags: flags to control write behavior |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function is used to write MAC address to the NVM (0x0108). |
| */ |
| enum ice_status |
| ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_manage_mac_write *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.mac_write; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); |
| |
| cmd->flags = flags; |
| ether_addr_copy(cmd->mac_addr, mac_addr); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_clear_pxe_mode |
| * @hw: pointer to the HW struct |
| * |
| * Tell the firmware that the driver is taking over from PXE (0x0110). |
| */ |
| static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); |
| desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_clear_pxe_mode - clear pxe operations mode |
| * @hw: pointer to the HW struct |
| * |
| * Make sure all PXE mode settings are cleared, including things |
| * like descriptor fetch/write-back mode. |
| */ |
| void ice_clear_pxe_mode(struct ice_hw *hw) |
| { |
| if (ice_check_sq_alive(hw, &hw->adminq)) |
| ice_aq_clear_pxe_mode(hw); |
| } |
| |
| /** |
| * ice_get_link_speed_based_on_phy_type - returns link speed |
| * @phy_type_low: lower part of phy_type |
| * @phy_type_high: higher part of phy_type |
| * |
| * This helper function will convert an entry in PHY type structure |
| * [phy_type_low, phy_type_high] to its corresponding link speed. |
| * Note: In the structure of [phy_type_low, phy_type_high], there should |
| * be one bit set, as this function will convert one PHY type to its |
| * speed. |
| * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned |
| * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned |
| */ |
| static u16 |
| ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) |
| { |
| u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; |
| u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; |
| |
| switch (phy_type_low) { |
| case ICE_PHY_TYPE_LOW_100BASE_TX: |
| case ICE_PHY_TYPE_LOW_100M_SGMII: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; |
| break; |
| case ICE_PHY_TYPE_LOW_1000BASE_T: |
| case ICE_PHY_TYPE_LOW_1000BASE_SX: |
| case ICE_PHY_TYPE_LOW_1000BASE_LX: |
| case ICE_PHY_TYPE_LOW_1000BASE_KX: |
| case ICE_PHY_TYPE_LOW_1G_SGMII: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; |
| break; |
| case ICE_PHY_TYPE_LOW_2500BASE_T: |
| case ICE_PHY_TYPE_LOW_2500BASE_X: |
| case ICE_PHY_TYPE_LOW_2500BASE_KX: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; |
| break; |
| case ICE_PHY_TYPE_LOW_5GBASE_T: |
| case ICE_PHY_TYPE_LOW_5GBASE_KR: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; |
| break; |
| case ICE_PHY_TYPE_LOW_10GBASE_T: |
| case ICE_PHY_TYPE_LOW_10G_SFI_DA: |
| case ICE_PHY_TYPE_LOW_10GBASE_SR: |
| case ICE_PHY_TYPE_LOW_10GBASE_LR: |
| case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: |
| case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_10G_SFI_C2C: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; |
| break; |
| case ICE_PHY_TYPE_LOW_25GBASE_T: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_SR: |
| case ICE_PHY_TYPE_LOW_25GBASE_LR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR1: |
| case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_25G_AUI_C2C: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; |
| break; |
| case ICE_PHY_TYPE_LOW_40GBASE_CR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_LR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_KR4: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; |
| break; |
| case ICE_PHY_TYPE_LOW_50GBASE_CR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_SR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_LR2: |
| case ICE_PHY_TYPE_LOW_50GBASE_KR2: |
| case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_LAUI2: |
| case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_AUI2: |
| case ICE_PHY_TYPE_LOW_50GBASE_CP: |
| case ICE_PHY_TYPE_LOW_50GBASE_SR: |
| case ICE_PHY_TYPE_LOW_50GBASE_FR: |
| case ICE_PHY_TYPE_LOW_50GBASE_LR: |
| case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: |
| case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_50G_AUI1: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; |
| break; |
| case ICE_PHY_TYPE_LOW_100GBASE_CR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_LR4: |
| case ICE_PHY_TYPE_LOW_100GBASE_KR4: |
| case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_100G_CAUI4: |
| case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_100G_AUI4: |
| case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: |
| case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: |
| case ICE_PHY_TYPE_LOW_100GBASE_CP2: |
| case ICE_PHY_TYPE_LOW_100GBASE_SR2: |
| case ICE_PHY_TYPE_LOW_100GBASE_DR: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; |
| break; |
| default: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; |
| break; |
| } |
| |
| switch (phy_type_high) { |
| case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: |
| case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: |
| case ICE_PHY_TYPE_HIGH_100G_CAUI2: |
| case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: |
| case ICE_PHY_TYPE_HIGH_100G_AUI2: |
| speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; |
| break; |
| default: |
| speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; |
| break; |
| } |
| |
| if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && |
| speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) |
| return ICE_AQ_LINK_SPEED_UNKNOWN; |
| else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && |
| speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) |
| return ICE_AQ_LINK_SPEED_UNKNOWN; |
| else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && |
| speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) |
| return speed_phy_type_low; |
| else |
| return speed_phy_type_high; |
| } |
| |
| /** |
| * ice_update_phy_type |
| * @phy_type_low: pointer to the lower part of phy_type |
| * @phy_type_high: pointer to the higher part of phy_type |
| * @link_speeds_bitmap: targeted link speeds bitmap |
| * |
| * Note: For the link_speeds_bitmap structure, you can check it at |
| * [ice_aqc_get_link_status->link_speed]. Caller can pass in |
| * link_speeds_bitmap include multiple speeds. |
| * |
| * Each entry in this [phy_type_low, phy_type_high] structure will |
| * present a certain link speed. This helper function will turn on bits |
| * in [phy_type_low, phy_type_high] structure based on the value of |
| * link_speeds_bitmap input parameter. |
| */ |
| void |
| ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, |
| u16 link_speeds_bitmap) |
| { |
| u64 pt_high; |
| u64 pt_low; |
| int index; |
| u16 speed; |
| |
| /* We first check with low part of phy_type */ |
| for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { |
| pt_low = BIT_ULL(index); |
| speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); |
| |
| if (link_speeds_bitmap & speed) |
| *phy_type_low |= BIT_ULL(index); |
| } |
| |
| /* We then check with high part of phy_type */ |
| for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { |
| pt_high = BIT_ULL(index); |
| speed = ice_get_link_speed_based_on_phy_type(0, pt_high); |
| |
| if (link_speeds_bitmap & speed) |
| *phy_type_high |= BIT_ULL(index); |
| } |
| } |
| |
| /** |
| * ice_aq_set_phy_cfg |
| * @hw: pointer to the HW struct |
| * @pi: port info structure of the interested logical port |
| * @cfg: structure with PHY configuration data to be set |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set the various PHY configuration parameters supported on the Port. |
| * One or more of the Set PHY config parameters may be ignored in an MFP |
| * mode as the PF may not have the privilege to set some of the PHY Config |
| * parameters. This status will be indicated by the command response (0x0601). |
| */ |
| enum ice_status |
| ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi, |
| struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| if (!cfg) |
| return ICE_ERR_PARAM; |
| |
| /* Ensure that only valid bits of cfg->caps can be turned on. */ |
| if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { |
| ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", |
| cfg->caps); |
| |
| cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; |
| } |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); |
| desc.params.set_phy.lport_num = pi->lport; |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n"); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", |
| (unsigned long long)le64_to_cpu(cfg->phy_type_low)); |
| ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", |
| (unsigned long long)le64_to_cpu(cfg->phy_type_high)); |
| ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps); |
| ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", |
| cfg->low_power_ctrl_an); |
| ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap); |
| ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value); |
| ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n", |
| cfg->link_fec_opt); |
| |
| status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); |
| if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) |
| status = 0; |
| |
| if (!status) |
| pi->phy.curr_user_phy_cfg = *cfg; |
| |
| return status; |
| } |
| |
| /** |
| * ice_update_link_info - update status of the HW network link |
| * @pi: port info structure of the interested logical port |
| */ |
| enum ice_status ice_update_link_info(struct ice_port_info *pi) |
| { |
| struct ice_link_status *li; |
| enum ice_status status; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| |
| li = &pi->phy.link_info; |
| |
| status = ice_aq_get_link_info(pi, true, NULL, NULL); |
| if (status) |
| return status; |
| |
| if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| struct ice_hw *hw; |
| |
| hw = pi->hw; |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), |
| GFP_KERNEL); |
| if (!pcaps) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, |
| pcaps, NULL); |
| |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_cache_phy_user_req |
| * @pi: port information structure |
| * @cache_data: PHY logging data |
| * @cache_mode: PHY logging mode |
| * |
| * Log the user request on (FC, FEC, SPEED) for later use. |
| */ |
| static void |
| ice_cache_phy_user_req(struct ice_port_info *pi, |
| struct ice_phy_cache_mode_data cache_data, |
| enum ice_phy_cache_mode cache_mode) |
| { |
| if (!pi) |
| return; |
| |
| switch (cache_mode) { |
| case ICE_FC_MODE: |
| pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req; |
| break; |
| case ICE_SPEED_MODE: |
| pi->phy.curr_user_speed_req = |
| cache_data.data.curr_user_speed_req; |
| break; |
| case ICE_FEC_MODE: |
| pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * ice_caps_to_fc_mode |
| * @caps: PHY capabilities |
| * |
| * Convert PHY FC capabilities to ice FC mode |
| */ |
| enum ice_fc_mode ice_caps_to_fc_mode(u8 caps) |
| { |
| if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE && |
| caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) |
| return ICE_FC_FULL; |
| |
| if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) |
| return ICE_FC_TX_PAUSE; |
| |
| if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) |
| return ICE_FC_RX_PAUSE; |
| |
| return ICE_FC_NONE; |
| } |
| |
| /** |
| * ice_caps_to_fec_mode |
| * @caps: PHY capabilities |
| * @fec_options: Link FEC options |
| * |
| * Convert PHY FEC capabilities to ice FEC mode |
| */ |
| enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options) |
| { |
| if (caps & ICE_AQC_PHY_EN_AUTO_FEC) |
| return ICE_FEC_AUTO; |
| |
| if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | |
| ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | |
| ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN | |
| ICE_AQC_PHY_FEC_25G_KR_REQ)) |
| return ICE_FEC_BASER; |
| |
| if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ | |
| ICE_AQC_PHY_FEC_25G_RS_544_REQ | |
| ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)) |
| return ICE_FEC_RS; |
| |
| return ICE_FEC_NONE; |
| } |
| |
| /** |
| * ice_cfg_phy_fc - Configure PHY FC data based on FC mode |
| * @pi: port information structure |
| * @cfg: PHY configuration data to set FC mode |
| * @req_mode: FC mode to configure |
| */ |
| enum ice_status |
| ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, |
| enum ice_fc_mode req_mode) |
| { |
| struct ice_phy_cache_mode_data cache_data; |
| u8 pause_mask = 0x0; |
| |
| if (!pi || !cfg) |
| return ICE_ERR_BAD_PTR; |
| |
| switch (req_mode) { |
| case ICE_FC_FULL: |
| pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; |
| pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; |
| break; |
| case ICE_FC_RX_PAUSE: |
| pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; |
| break; |
| case ICE_FC_TX_PAUSE: |
| pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; |
| break; |
| default: |
| break; |
| } |
| |
| /* clear the old pause settings */ |
| cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | |
| ICE_AQC_PHY_EN_RX_LINK_PAUSE); |
| |
| /* set the new capabilities */ |
| cfg->caps |= pause_mask; |
| |
| /* Cache user FC request */ |
| cache_data.data.curr_user_fc_req = req_mode; |
| ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_fc |
| * @pi: port information structure |
| * @aq_failures: pointer to status code, specific to ice_set_fc routine |
| * @ena_auto_link_update: enable automatic link update |
| * |
| * Set the requested flow control mode. |
| */ |
| enum ice_status |
| ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) |
| { |
| struct ice_aqc_set_phy_cfg_data cfg = { 0 }; |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| enum ice_status status; |
| struct ice_hw *hw; |
| |
| if (!pi || !aq_failures) |
| return ICE_ERR_BAD_PTR; |
| |
| *aq_failures = 0; |
| hw = pi->hw; |
| |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Get the current PHY config */ |
| status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, |
| NULL); |
| if (status) { |
| *aq_failures = ICE_SET_FC_AQ_FAIL_GET; |
| goto out; |
| } |
| |
| ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg); |
| |
| /* Configure the set PHY data */ |
| status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode); |
| if (status) |
| goto out; |
| |
| /* If the capabilities have changed, then set the new config */ |
| if (cfg.caps != pcaps->caps) { |
| int retry_count, retry_max = 10; |
| |
| /* Auto restart link so settings take effect */ |
| if (ena_auto_link_update) |
| cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; |
| |
| status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); |
| if (status) { |
| *aq_failures = ICE_SET_FC_AQ_FAIL_SET; |
| goto out; |
| } |
| |
| /* Update the link info |
| * It sometimes takes a really long time for link to |
| * come back from the atomic reset. Thus, we wait a |
| * little bit. |
| */ |
| for (retry_count = 0; retry_count < retry_max; retry_count++) { |
| status = ice_update_link_info(pi); |
| |
| if (!status) |
| break; |
| |
| mdelay(100); |
| } |
| |
| if (status) |
| *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; |
| } |
| |
| out: |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| return status; |
| } |
| |
| /** |
| * ice_phy_caps_equals_cfg |
| * @phy_caps: PHY capabilities |
| * @phy_cfg: PHY configuration |
| * |
| * Helper function to determine if PHY capabilities matches PHY |
| * configuration |
| */ |
| bool |
| ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps, |
| struct ice_aqc_set_phy_cfg_data *phy_cfg) |
| { |
| u8 caps_mask, cfg_mask; |
| |
| if (!phy_caps || !phy_cfg) |
| return false; |
| |
| /* These bits are not common between capabilities and configuration. |
| * Do not use them to determine equality. |
| */ |
| caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE | |
| ICE_AQC_GET_PHY_EN_MOD_QUAL); |
| cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; |
| |
| if (phy_caps->phy_type_low != phy_cfg->phy_type_low || |
| phy_caps->phy_type_high != phy_cfg->phy_type_high || |
| ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) || |
| phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an || |
| phy_caps->eee_cap != phy_cfg->eee_cap || |
| phy_caps->eeer_value != phy_cfg->eeer_value || |
| phy_caps->link_fec_options != phy_cfg->link_fec_opt) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data |
| * @pi: port information structure |
| * @caps: PHY ability structure to copy date from |
| * @cfg: PHY configuration structure to copy data to |
| * |
| * Helper function to copy AQC PHY get ability data to PHY set configuration |
| * data structure |
| */ |
| void |
| ice_copy_phy_caps_to_cfg(struct ice_port_info *pi, |
| struct ice_aqc_get_phy_caps_data *caps, |
| struct ice_aqc_set_phy_cfg_data *cfg) |
| { |
| if (!pi || !caps || !cfg) |
| return; |
| |
| memset(cfg, 0, sizeof(*cfg)); |
| cfg->phy_type_low = caps->phy_type_low; |
| cfg->phy_type_high = caps->phy_type_high; |
| cfg->caps = caps->caps; |
| cfg->low_power_ctrl_an = caps->low_power_ctrl_an; |
| cfg->eee_cap = caps->eee_cap; |
| cfg->eeer_value = caps->eeer_value; |
| cfg->link_fec_opt = caps->link_fec_options; |
| cfg->module_compliance_enforcement = |
| caps->module_compliance_enforcement; |
| |
| if (ice_fw_supports_link_override(pi->hw)) { |
| struct ice_link_default_override_tlv tlv; |
| |
| if (ice_get_link_default_override(&tlv, pi)) |
| return; |
| |
| if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) |
| cfg->module_compliance_enforcement |= |
| ICE_LINK_OVERRIDE_STRICT_MODE; |
| } |
| } |
| |
| /** |
| * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode |
| * @pi: port information structure |
| * @cfg: PHY configuration data to set FEC mode |
| * @fec: FEC mode to configure |
| */ |
| enum ice_status |
| ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, |
| enum ice_fec_mode fec) |
| { |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| enum ice_status status; |
| |
| if (!pi || !cfg) |
| return ICE_ERR_BAD_PTR; |
| |
| pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, |
| NULL); |
| if (status) |
| goto out; |
| |
| cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; |
| cfg->link_fec_opt = pcaps->link_fec_options; |
| |
| switch (fec) { |
| case ICE_FEC_BASER: |
| /* Clear RS bits, and AND BASE-R ability |
| * bits and OR request bits. |
| */ |
| cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | |
| ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; |
| cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | |
| ICE_AQC_PHY_FEC_25G_KR_REQ; |
| break; |
| case ICE_FEC_RS: |
| /* Clear BASE-R bits, and AND RS ability |
| * bits and OR request bits. |
| */ |
| cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; |
| cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | |
| ICE_AQC_PHY_FEC_25G_RS_544_REQ; |
| break; |
| case ICE_FEC_NONE: |
| /* Clear all FEC option bits. */ |
| cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; |
| break; |
| case ICE_FEC_AUTO: |
| /* AND auto FEC bit, and all caps bits. */ |
| cfg->caps &= ICE_AQC_PHY_CAPS_MASK; |
| cfg->link_fec_opt |= pcaps->link_fec_options; |
| break; |
| default: |
| status = ICE_ERR_PARAM; |
| break; |
| } |
| |
| if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) { |
| struct ice_link_default_override_tlv tlv; |
| |
| if (ice_get_link_default_override(&tlv, pi)) |
| goto out; |
| |
| if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) && |
| (tlv.options & ICE_LINK_OVERRIDE_EN)) |
| cfg->link_fec_opt = tlv.fec_options; |
| } |
| |
| out: |
| kfree(pcaps); |
| |
| return status; |
| } |
| |
| /** |
| * ice_get_link_status - get status of the HW network link |
| * @pi: port information structure |
| * @link_up: pointer to bool (true/false = linkup/linkdown) |
| * |
| * Variable link_up is true if link is up, false if link is down. |
| * The variable link_up is invalid if status is non zero. As a |
| * result of this call, link status reporting becomes enabled |
| */ |
| enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up) |
| { |
| struct ice_phy_info *phy_info; |
| enum ice_status status = 0; |
| |
| if (!pi || !link_up) |
| return ICE_ERR_PARAM; |
| |
| phy_info = &pi->phy; |
| |
| if (phy_info->get_link_info) { |
| status = ice_update_link_info(pi); |
| |
| if (status) |
| ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", |
| status); |
| } |
| |
| *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_set_link_restart_an |
| * @pi: pointer to the port information structure |
| * @ena_link: if true: enable link, if false: disable link |
| * @cd: pointer to command details structure or NULL |
| * |
| * Sets up the link and restarts the Auto-Negotiation over the link. |
| */ |
| enum ice_status |
| ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_restart_an *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.restart_an; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); |
| |
| cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; |
| cmd->lport_num = pi->lport; |
| if (ena_link) |
| cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; |
| else |
| cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; |
| |
| return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_set_event_mask |
| * @hw: pointer to the HW struct |
| * @port_num: port number of the physical function |
| * @mask: event mask to be set |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set event mask (0x0613) |
| */ |
| enum ice_status |
| ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_set_event_mask *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.set_event_mask; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); |
| |
| cmd->lport_num = port_num; |
| |
| cmd->event_mask = cpu_to_le16(mask); |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_set_mac_loopback |
| * @hw: pointer to the HW struct |
| * @ena_lpbk: Enable or Disable loopback |
| * @cd: pointer to command details structure or NULL |
| * |
| * Enable/disable loopback on a given port |
| */ |
| enum ice_status |
| ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_set_mac_lb *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.set_mac_lb; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); |
| if (ena_lpbk) |
| cmd->lb_mode = ICE_AQ_MAC_LB_EN; |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_set_port_id_led |
| * @pi: pointer to the port information |
| * @is_orig_mode: is this LED set to original mode (by the net-list) |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set LED value for the given port (0x06e9) |
| */ |
| enum ice_status |
| ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_set_port_id_led *cmd; |
| struct ice_hw *hw = pi->hw; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.set_port_id_led; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); |
| |
| if (is_orig_mode) |
| cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; |
| else |
| cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_sff_eeprom |
| * @hw: pointer to the HW struct |
| * @lport: bits [7:0] = logical port, bit [8] = logical port valid |
| * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) |
| * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. |
| * @page: QSFP page |
| * @set_page: set or ignore the page |
| * @data: pointer to data buffer to be read/written to the I2C device. |
| * @length: 1-16 for read, 1 for write. |
| * @write: 0 read, 1 for write. |
| * @cd: pointer to command details structure or NULL |
| * |
| * Read/Write SFF EEPROM (0x06EE) |
| */ |
| enum ice_status |
| ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, |
| u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, |
| bool write, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_sff_eeprom *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| if (!data || (mem_addr & 0xff00)) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); |
| cmd = &desc.params.read_write_sff_param; |
| desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF); |
| cmd->lport_num = (u8)(lport & 0xff); |
| cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); |
| cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) & |
| ICE_AQC_SFF_I2CBUS_7BIT_M) | |
| ((set_page << |
| ICE_AQC_SFF_SET_EEPROM_PAGE_S) & |
| ICE_AQC_SFF_SET_EEPROM_PAGE_M)); |
| cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); |
| cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S); |
| if (write) |
| cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE); |
| |
| status = ice_aq_send_cmd(hw, &desc, data, length, cd); |
| return status; |
| } |
| |
| /** |
| * __ice_aq_get_set_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_id: VSI FW index |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * @glob_lut_idx: global LUT index |
| * @set: set true to set the table, false to get the table |
| * |
| * Internal function to get (0x0B05) or set (0x0B03) RSS look up table |
| */ |
| static enum ice_status |
| __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, |
| u16 lut_size, u8 glob_lut_idx, bool set) |
| { |
| struct ice_aqc_get_set_rss_lut *cmd_resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 flags = 0; |
| |
| cmd_resp = &desc.params.get_set_rss_lut; |
| |
| if (set) { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } else { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); |
| } |
| |
| cmd_resp->vsi_id = cpu_to_le16(((vsi_id << |
| ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & |
| ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | |
| ICE_AQC_GSET_RSS_LUT_VSI_VALID); |
| |
| switch (lut_type) { |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: |
| flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); |
| break; |
| default: |
| status = ICE_ERR_PARAM; |
| goto ice_aq_get_set_rss_lut_exit; |
| } |
| |
| if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { |
| flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & |
| ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); |
| |
| if (!set) |
| goto ice_aq_get_set_rss_lut_send; |
| } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { |
| if (!set) |
| goto ice_aq_get_set_rss_lut_send; |
| } else { |
| goto ice_aq_get_set_rss_lut_send; |
| } |
| |
| /* LUT size is only valid for Global and PF table types */ |
| switch (lut_size) { |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128: |
| break; |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512: |
| flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; |
| break; |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K: |
| if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { |
| flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; |
| break; |
| } |
| fallthrough; |
| default: |
| status = ICE_ERR_PARAM; |
| goto ice_aq_get_set_rss_lut_exit; |
| } |
| |
| ice_aq_get_set_rss_lut_send: |
| cmd_resp->flags = cpu_to_le16(flags); |
| status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); |
| |
| ice_aq_get_set_rss_lut_exit: |
| return status; |
| } |
| |
| /** |
| * ice_aq_get_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: software VSI handle |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * |
| * get the RSS lookup table, PF or VSI type |
| */ |
| enum ice_status |
| ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, |
| u8 *lut, u16 lut_size) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| lut_type, lut, lut_size, 0, false); |
| } |
| |
| /** |
| * ice_aq_set_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: software VSI handle |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * |
| * set the RSS lookup table, PF or VSI type |
| */ |
| enum ice_status |
| ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, |
| u8 *lut, u16 lut_size) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| lut_type, lut, lut_size, 0, true); |
| } |
| |
| /** |
| * __ice_aq_get_set_rss_key |
| * @hw: pointer to the HW struct |
| * @vsi_id: VSI FW index |
| * @key: pointer to key info struct |
| * @set: set true to set the key, false to get the key |
| * |
| * get (0x0B04) or set (0x0B02) the RSS key per VSI |
| */ |
| static enum |
| ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, |
| struct ice_aqc_get_set_rss_keys *key, |
| bool set) |
| { |
| struct ice_aqc_get_set_rss_key *cmd_resp; |
| u16 key_size = sizeof(*key); |
| struct ice_aq_desc desc; |
| |
| cmd_resp = &desc.params.get_set_rss_key; |
| |
| if (set) { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } else { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); |
| } |
| |
| cmd_resp->vsi_id = cpu_to_le16(((vsi_id << |
| ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & |
| ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | |
| ICE_AQC_GSET_RSS_KEY_VSI_VALID); |
| |
| return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); |
| } |
| |
| /** |
| * ice_aq_get_rss_key |
| * @hw: pointer to the HW struct |
| * @vsi_handle: software VSI handle |
| * @key: pointer to key info struct |
| * |
| * get the RSS key per VSI |
| */ |
| enum ice_status |
| ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_aqc_get_set_rss_keys *key) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !key) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| key, false); |
| } |
| |
| /** |
| * ice_aq_set_rss_key |
| * @hw: pointer to the HW struct |
| * @vsi_handle: software VSI handle |
| * @keys: pointer to key info struct |
| * |
| * set the RSS key per VSI |
| */ |
| enum ice_status |
| ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_aqc_get_set_rss_keys *keys) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| keys, true); |
| } |
| |
| /** |
| * ice_aq_add_lan_txq |
| * @hw: pointer to the hardware structure |
| * @num_qgrps: Number of added queue groups |
| * @qg_list: list of queue groups to be added |
| * @buf_size: size of buffer for indirect command |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add Tx LAN queue (0x0C30) |
| * |
| * NOTE: |
| * Prior to calling add Tx LAN queue: |
| * Initialize the following as part of the Tx queue context: |
| * Completion queue ID if the queue uses Completion queue, Quanta profile, |
| * Cache profile and Packet shaper profile. |
| * |
| * After add Tx LAN queue AQ command is completed: |
| * Interrupts should be associated with specific queues, |
| * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue |
| * flow. |
| */ |
| static enum ice_status |
| ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, |
| struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_tx_qgrp *list; |
| struct ice_aqc_add_txqs *cmd; |
| struct ice_aq_desc desc; |
| u16 i, sum_size = 0; |
| |
| cmd = &desc.params.add_txqs; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); |
| |
| if (!qg_list) |
| return ICE_ERR_PARAM; |
| |
| if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) |
| return ICE_ERR_PARAM; |
| |
| for (i = 0, list = qg_list; i < num_qgrps; i++) { |
| sum_size += struct_size(list, txqs, list->num_txqs); |
| list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + |
| list->num_txqs); |
| } |
| |
| if (buf_size != sum_size) |
| return ICE_ERR_PARAM; |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| cmd->num_qgrps = num_qgrps; |
| |
| return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); |
| } |
| |
| /** |
| * ice_aq_dis_lan_txq |
| * @hw: pointer to the hardware structure |
| * @num_qgrps: number of groups in the list |
| * @qg_list: the list of groups to disable |
| * @buf_size: the total size of the qg_list buffer in bytes |
| * @rst_src: if called due to reset, specifies the reset source |
| * @vmvf_num: the relative VM or VF number that is undergoing the reset |
| * @cd: pointer to command details structure or NULL |
| * |
| * Disable LAN Tx queue (0x0C31) |
| */ |
| static enum ice_status |
| ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, |
| struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, |
| enum ice_disq_rst_src rst_src, u16 vmvf_num, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_dis_txq_item *item; |
| struct ice_aqc_dis_txqs *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 i, sz = 0; |
| |
| cmd = &desc.params.dis_txqs; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); |
| |
| /* qg_list can be NULL only in VM/VF reset flow */ |
| if (!qg_list && !rst_src) |
| return ICE_ERR_PARAM; |
| |
| if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) |
| return ICE_ERR_PARAM; |
| |
| cmd->num_entries = num_qgrps; |
| |
| cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & |
| ICE_AQC_Q_DIS_TIMEOUT_M); |
| |
| switch (rst_src) { |
| case ICE_VM_RESET: |
| cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; |
| cmd->vmvf_and_timeout |= |
| cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); |
| break; |
| case ICE_VF_RESET: |
| cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; |
| /* In this case, FW expects vmvf_num to be absolute VF ID */ |
| cmd->vmvf_and_timeout |= |
| cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & |
| ICE_AQC_Q_DIS_VMVF_NUM_M); |
| break; |
| case ICE_NO_RESET: |
| default: |
| break; |
| } |
| |
| /* flush pipe on time out */ |
| cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; |
| /* If no queue group info, we are in a reset flow. Issue the AQ */ |
| if (!qg_list) |
| goto do_aq; |
| |
| /* set RD bit to indicate that command buffer is provided by the driver |
| * and it needs to be read by the firmware |
| */ |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| for (i = 0, item = qg_list; i < num_qgrps; i++) { |
| u16 item_size = struct_size(item, q_id, item->num_qs); |
| |
| /* If the num of queues is even, add 2 bytes of padding */ |
| if ((item->num_qs % 2) == 0) |
| item_size += 2; |
| |
| sz += item_size; |
| |
| item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); |
| } |
| |
| if (buf_size != sz) |
| return ICE_ERR_PARAM; |
| |
| do_aq: |
| status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); |
| if (status) { |
| if (!qg_list) |
| ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", |
| vmvf_num, hw->adminq.sq_last_status); |
| else |
| ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", |
| le16_to_cpu(qg_list[0].q_id[0]), |
| hw->adminq.sq_last_status); |
| } |
| return status; |
| } |
| |
| /* End of FW Admin Queue command wrappers */ |
| |
| /** |
| * ice_write_byte - write a byte to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void |
| ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) |
| { |
| u8 src_byte, dest_byte, mask; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| mask = (u8)(BIT(ce_info->width) - 1); |
| |
| src_byte = *from; |
| src_byte &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_byte <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_byte, dest, sizeof(dest_byte)); |
| |
| dest_byte &= ~mask; /* get the bits not changing */ |
| dest_byte |= src_byte; /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_byte, sizeof(dest_byte)); |
| } |
| |
| /** |
| * ice_write_word - write a word to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void |
| ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) |
| { |
| u16 src_word, mask; |
| __le16 dest_word; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| mask = BIT(ce_info->width) - 1; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_word = *(u16 *)from; |
| src_word &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_word <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_word, dest, sizeof(dest_word)); |
| |
| dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ |
| dest_word |= cpu_to_le16(src_word); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_word, sizeof(dest_word)); |
| } |
| |
| /** |
| * ice_write_dword - write a dword to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void |
| ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) |
| { |
| u32 src_dword, mask; |
| __le32 dest_dword; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| |
| /* if the field width is exactly 32 on an x86 machine, then the shift |
| * operation will not work because the SHL instructions count is masked |
| * to 5 bits so the shift will do nothing |
| */ |
| if (ce_info->width < 32) |
| mask = BIT(ce_info->width) - 1; |
| else |
| mask = (u32)~0; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_dword = *(u32 *)from; |
| src_dword &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_dword <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_dword, dest, sizeof(dest_dword)); |
| |
| dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ |
| dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_dword, sizeof(dest_dword)); |
| } |
| |
| /** |
| * ice_write_qword - write a qword to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void |
| ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) |
| { |
| u64 src_qword, mask; |
| __le64 dest_qword; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| |
| /* if the field width is exactly 64 on an x86 machine, then the shift |
| * operation will not work because the SHL instructions count is masked |
| * to 6 bits so the shift will do nothing |
| */ |
| if (ce_info->width < 64) |
| mask = BIT_ULL(ce_info->width) - 1; |
| else |
| mask = (u64)~0; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_qword = *(u64 *)from; |
| src_qword &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_qword <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_qword, dest, sizeof(dest_qword)); |
| |
| dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ |
| dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_qword, sizeof(dest_qword)); |
| } |
| |
| /** |
| * ice_set_ctx - set context bits in packed structure |
| * @hw: pointer to the hardware structure |
| * @src_ctx: pointer to a generic non-packed context structure |
| * @dest_ctx: pointer to memory for the packed structure |
| * @ce_info: a description of the structure to be transformed |
| */ |
| enum ice_status |
| ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx, |
| const struct ice_ctx_ele *ce_info) |
| { |
| int f; |
| |
| for (f = 0; ce_info[f].width; f++) { |
| /* We have to deal with each element of the FW response |
| * using the correct size so that we are correct regardless |
| * of the endianness of the machine. |
| */ |
| if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) { |
| ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n", |
| f, ce_info[f].width, ce_info[f].size_of); |
| continue; |
| } |
| switch (ce_info[f].size_of) { |
| case sizeof(u8): |
| ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u16): |
| ice_write_word(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u32): |
| ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u64): |
| ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| default: |
| return ICE_ERR_INVAL_SIZE; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC |
| * @hw: pointer to the HW struct |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * @q_handle: software queue handle |
| */ |
| struct ice_q_ctx * |
| ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) |
| { |
| struct ice_vsi_ctx *vsi; |
| struct ice_q_ctx *q_ctx; |
| |
| vsi = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi) |
| return NULL; |
| if (q_handle >= vsi->num_lan_q_entries[tc]) |
| return NULL; |
| if (!vsi->lan_q_ctx[tc]) |
| return NULL; |
| q_ctx = vsi->lan_q_ctx[tc]; |
| return &q_ctx[q_handle]; |
| } |
| |
| /** |
| * ice_ena_vsi_txq |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * @q_handle: software queue handle |
| * @num_qgrps: Number of added queue groups |
| * @buf: list of queue groups to be added |
| * @buf_size: size of buffer for indirect command |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function adds one LAN queue |
| */ |
| enum ice_status |
| ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, |
| u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_txsched_elem_data node = { 0 }; |
| struct ice_sched_node *parent; |
| struct ice_q_ctx *q_ctx; |
| enum ice_status status; |
| struct ice_hw *hw; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| if (num_qgrps > 1 || buf->num_txqs > 1) |
| return ICE_ERR_MAX_LIMIT; |
| |
| hw = pi->hw; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| mutex_lock(&pi->sched_lock); |
| |
| q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); |
| if (!q_ctx) { |
| ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", |
| q_handle); |
| status = ICE_ERR_PARAM; |
| goto ena_txq_exit; |
| } |
| |
| /* find a parent node */ |
| parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, |
| ICE_SCHED_NODE_OWNER_LAN); |
| if (!parent) { |
| status = ICE_ERR_PARAM; |
| goto ena_txq_exit; |
| } |
| |
| buf->parent_teid = parent->info.node_teid; |
| node.parent_teid = parent->info.node_teid; |
| /* Mark that the values in the "generic" section as valid. The default |
| * value in the "generic" section is zero. This means that : |
| * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. |
| * - 0 priority among siblings, indicated by Bit 1-3. |
| * - WFQ, indicated by Bit 4. |
| * - 0 Adjustment value is used in PSM credit update flow, indicated by |
| * Bit 5-6. |
| * - Bit 7 is reserved. |
| * Without setting the generic section as valid in valid_sections, the |
| * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. |
| */ |
| buf->txqs[0].info.valid_sections = |
| ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | |
| ICE_AQC_ELEM_VALID_EIR; |
| buf->txqs[0].info.generic = 0; |
| buf->txqs[0].info.cir_bw.bw_profile_idx = |
| cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); |
| buf->txqs[0].info.cir_bw.bw_alloc = |
| cpu_to_le16(ICE_SCHED_DFLT_BW_WT); |
| buf->txqs[0].info.eir_bw.bw_profile_idx = |
| cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); |
| buf->txqs[0].info.eir_bw.bw_alloc = |
| cpu_to_le16(ICE_SCHED_DFLT_BW_WT); |
| |
| /* add the LAN queue */ |
| status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", |
| le16_to_cpu(buf->txqs[0].txq_id), |
| hw->adminq.sq_last_status); |
| goto ena_txq_exit; |
| } |
| |
| node.node_teid = buf->txqs[0].q_teid; |
| node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; |
| q_ctx->q_handle = q_handle; |
| q_ctx->q_teid = le32_to_cpu(node.node_teid); |
| |
| /* add a leaf node into scheduler tree queue layer */ |
| status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); |
| if (!status) |
| status = ice_sched_replay_q_bw(pi, q_ctx); |
| |
| ena_txq_exit: |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_dis_vsi_txq |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: TC number |
| * @num_queues: number of queues |
| * @q_handles: pointer to software queue handle array |
| * @q_ids: pointer to the q_id array |
| * @q_teids: pointer to queue node teids |
| * @rst_src: if called due to reset, specifies the reset source |
| * @vmvf_num: the relative VM or VF number that is undergoing the reset |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function removes queues and their corresponding nodes in SW DB |
| */ |
| enum ice_status |
| ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, |
| u16 *q_handles, u16 *q_ids, u32 *q_teids, |
| enum ice_disq_rst_src rst_src, u16 vmvf_num, |
| struct ice_sq_cd *cd) |
| { |
| enum ice_status status = ICE_ERR_DOES_NOT_EXIST; |
| struct ice_aqc_dis_txq_item *qg_list; |
| struct ice_q_ctx *q_ctx; |
| struct ice_hw *hw; |
| u16 i, buf_size; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| hw = pi->hw; |
| |
| if (!num_queues) { |
| /* if queue is disabled already yet the disable queue command |
| * has to be sent to complete the VF reset, then call |
| * ice_aq_dis_lan_txq without any queue information |
| */ |
| if (rst_src) |
| return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, |
| vmvf_num, NULL); |
| return ICE_ERR_CFG; |
| } |
| |
| buf_size = struct_size(qg_list, q_id, 1); |
| qg_list = kzalloc(buf_size, GFP_KERNEL); |
| if (!qg_list) |
| return ICE_ERR_NO_MEMORY; |
| |
| mutex_lock(&pi->sched_lock); |
| |
| for (i = 0; i < num_queues; i++) { |
| struct ice_sched_node *node; |
| |
| node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); |
| if (!node) |
| continue; |
| q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); |
| if (!q_ctx) { |
| ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", |
| q_handles[i]); |
| continue; |
| } |
| if (q_ctx->q_handle != q_handles[i]) { |
| ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", |
| q_ctx->q_handle, q_handles[i]); |
| continue; |
| } |
| qg_list->parent_teid = node->info.parent_teid; |
| qg_list->num_qs = 1; |
| qg_list->q_id[0] = cpu_to_le16(q_ids[i]); |
| status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, |
| vmvf_num, cd); |
| |
| if (status) |
| break; |
| ice_free_sched_node(pi, node); |
| q_ctx->q_handle = ICE_INVAL_Q_HANDLE; |
| } |
| mutex_unlock(&pi->sched_lock); |
| kfree(qg_list); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_qs - configure the new/existing VSI queues |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap |
| * @maxqs: max queues array per TC |
| * @owner: LAN or RDMA |
| * |
| * This function adds/updates the VSI queues per TC. |
| */ |
| static enum ice_status |
| ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, |
| u16 *maxqs, u8 owner) |
| { |
| enum ice_status status = 0; |
| u8 i; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| mutex_lock(&pi->sched_lock); |
| |
| ice_for_each_traffic_class(i) { |
| /* configuration is possible only if TC node is present */ |
| if (!ice_sched_get_tc_node(pi, i)) |
| continue; |
| |
| status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, |
| ice_is_tc_ena(tc_bitmap, i)); |
| if (status) |
| break; |
| } |
| |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_lan - configure VSI LAN queues |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap |
| * @max_lanqs: max LAN queues array per TC |
| * |
| * This function adds/updates the VSI LAN queues per TC. |
| */ |
| enum ice_status |
| ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, |
| u16 *max_lanqs) |
| { |
| return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, |
| ICE_SCHED_NODE_OWNER_LAN); |
| } |
| |
| /** |
| * ice_replay_pre_init - replay pre initialization |
| * @hw: pointer to the HW struct |
| * |
| * Initializes required config data for VSI, FD, ACL, and RSS before replay. |
| */ |
| static enum ice_status ice_replay_pre_init(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| u8 i; |
| |
| /* Delete old entries from replay filter list head if there is any */ |
| ice_rm_all_sw_replay_rule_info(hw); |
| /* In start of replay, move entries into replay_rules list, it |
| * will allow adding rules entries back to filt_rules list, |
| * which is operational list. |
| */ |
| for (i = 0; i < ICE_SW_LKUP_LAST; i++) |
| list_replace_init(&sw->recp_list[i].filt_rules, |
| &sw->recp_list[i].filt_replay_rules); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_replay_vsi - replay VSI configuration |
| * @hw: pointer to the HW struct |
| * @vsi_handle: driver VSI handle |
| * |
| * Restore all VSI configuration after reset. It is required to call this |
| * function with main VSI first. |
| */ |
| enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) |
| { |
| enum ice_status status; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| /* Replay pre-initialization if there is any */ |
| if (vsi_handle == ICE_MAIN_VSI_HANDLE) { |
| status = ice_replay_pre_init(hw); |
| if (status) |
| return status; |
| } |
| /* Replay per VSI all RSS configurations */ |
| status = ice_replay_rss_cfg(hw, vsi_handle); |
| if (status) |
| return status; |
| /* Replay per VSI all filters */ |
| status = ice_replay_vsi_all_fltr(hw, vsi_handle); |
| return status; |
| } |
| |
| /** |
| * ice_replay_post - post replay configuration cleanup |
| * @hw: pointer to the HW struct |
| * |
| * Post replay cleanup. |
| */ |
| void ice_replay_post(struct ice_hw *hw) |
| { |
| /* Delete old entries from replay filter list head */ |
| ice_rm_all_sw_replay_rule_info(hw); |
| } |
| |
| /** |
| * ice_stat_update40 - read 40 bit stat from the chip and update stat values |
| * @hw: ptr to the hardware info |
| * @reg: offset of 64 bit HW register to read from |
| * @prev_stat_loaded: bool to specify if previous stats are loaded |
| * @prev_stat: ptr to previous loaded stat value |
| * @cur_stat: ptr to current stat value |
| */ |
| void |
| ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, |
| u64 *prev_stat, u64 *cur_stat) |
| { |
| u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); |
| |
| /* device stats are not reset at PFR, they likely will not be zeroed |
| * when the driver starts. Thus, save the value from the first read |
| * without adding to the statistic value so that we report stats which |
| * count up from zero. |
| */ |
| if (!prev_stat_loaded) { |
| *prev_stat = new_data; |
| return; |
| } |
| |
| /* Calculate the difference between the new and old values, and then |
| * add it to the software stat value. |
| */ |
| if (new_data >= *prev_stat) |
| *cur_stat += new_data - *prev_stat; |
| else |
| /* to manage the potential roll-over */ |
| *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; |
| |
| /* Update the previously stored value to prepare for next read */ |
| *prev_stat = new_data; |
| } |
| |
| /** |
| * ice_stat_update32 - read 32 bit stat from the chip and update stat values |
| * @hw: ptr to the hardware info |
| * @reg: offset of HW register to read from |
| * @prev_stat_loaded: bool to specify if previous stats are loaded |
| * @prev_stat: ptr to previous loaded stat value |
| * @cur_stat: ptr to current stat value |
| */ |
| void |
| ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, |
| u64 *prev_stat, u64 *cur_stat) |
| { |
| u32 new_data; |
| |
| new_data = rd32(hw, reg); |
| |
| /* device stats are not reset at PFR, they likely will not be zeroed |
| * when the driver starts. Thus, save the value from the first read |
| * without adding to the statistic value so that we report stats which |
| * count up from zero. |
| */ |
| if (!prev_stat_loaded) { |
| *prev_stat = new_data; |
| return; |
| } |
| |
| /* Calculate the difference between the new and old values, and then |
| * add it to the software stat value. |
| */ |
| if (new_data >= *prev_stat) |
| *cur_stat += new_data - *prev_stat; |
| else |
| /* to manage the potential roll-over */ |
| *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; |
| |
| /* Update the previously stored value to prepare for next read */ |
| *prev_stat = new_data; |
| } |
| |
| /** |
| * ice_sched_query_elem - query element information from HW |
| * @hw: pointer to the HW struct |
| * @node_teid: node TEID to be queried |
| * @buf: buffer to element information |
| * |
| * This function queries HW element information |
| */ |
| enum ice_status |
| ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, |
| struct ice_aqc_txsched_elem_data *buf) |
| { |
| u16 buf_size, num_elem_ret = 0; |
| enum ice_status status; |
| |
| buf_size = sizeof(*buf); |
| memset(buf, 0, buf_size); |
| buf->node_teid = cpu_to_le32(node_teid); |
| status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, |
| NULL); |
| if (status || num_elem_ret != 1) |
| ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); |
| return status; |
| } |
| |
| /** |
| * ice_fw_supports_link_override |
| * @hw: pointer to the hardware structure |
| * |
| * Checks if the firmware supports link override |
| */ |
| bool ice_fw_supports_link_override(struct ice_hw *hw) |
| { |
| if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) { |
| if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN) |
| return true; |
| if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN && |
| hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH) |
| return true; |
| } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_get_link_default_override |
| * @ldo: pointer to the link default override struct |
| * @pi: pointer to the port info struct |
| * |
| * Gets the link default override for a port |
| */ |
| enum ice_status |
| ice_get_link_default_override(struct ice_link_default_override_tlv *ldo, |
| struct ice_port_info *pi) |
| { |
| u16 i, tlv, tlv_len, tlv_start, buf, offset; |
| struct ice_hw *hw = pi->hw; |
| enum ice_status status; |
| |
| status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len, |
| ICE_SR_LINK_DEFAULT_OVERRIDE_PTR); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n"); |
| return status; |
| } |
| |
| /* Each port has its own config; calculate for our port */ |
| tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS + |
| ICE_SR_PFA_LINK_OVERRIDE_OFFSET; |
| |
| /* link options first */ |
| status = ice_read_sr_word(hw, tlv_start, &buf); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); |
| return status; |
| } |
| ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M; |
| ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >> |
| ICE_LINK_OVERRIDE_PHY_CFG_S; |
| |
| /* link PHY config */ |
| offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET; |
| status = ice_read_sr_word(hw, offset, &buf); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n"); |
| return status; |
| } |
| ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M; |
| |
| /* PHY types low */ |
| offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET; |
| for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { |
| status = ice_read_sr_word(hw, (offset + i), &buf); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); |
| return status; |
| } |
| /* shift 16 bits at a time to fill 64 bits */ |
| ldo->phy_type_low |= ((u64)buf << (i * 16)); |
| } |
| |
| /* PHY types high */ |
| offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET + |
| ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; |
| for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { |
| status = ice_read_sr_word(hw, (offset + i), &buf); |
| if (status) { |
| ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); |
| return status; |
| } |
| /* shift 16 bits at a time to fill 64 bits */ |
| ldo->phy_type_high |= ((u64)buf << (i * 16)); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled |
| * @caps: get PHY capability data |
| */ |
| bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps) |
| { |
| if (caps->caps & ICE_AQC_PHY_AN_MODE || |
| caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 | |
| ICE_AQC_PHY_AN_EN_CLAUSE73 | |
| ICE_AQC_PHY_AN_EN_CLAUSE37)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * ice_aq_set_lldp_mib - Set the LLDP MIB |
| * @hw: pointer to the HW struct |
| * @mib_type: Local, Remote or both Local and Remote MIBs |
| * @buf: pointer to the caller-supplied buffer to store the MIB block |
| * @buf_size: size of the buffer (in bytes) |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set the LLDP MIB. (0x0A08) |
| */ |
| enum ice_status |
| ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_lldp_set_local_mib *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.lldp_set_mib; |
| |
| if (buf_size == 0 || !buf) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib); |
| |
| desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD); |
| desc.datalen = cpu_to_le16(buf_size); |
| |
| cmd->type = mib_type; |
| cmd->length = cpu_to_le16(buf_size); |
| |
| return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| } |