blob: ff1a1cbd078e7520daf989e86d9aedd6ccb21e1b [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018, Intel Corporation. */
#ifndef _ICE_TXRX_H_
#define _ICE_TXRX_H_
#include "ice_type.h"
#define ICE_DFLT_IRQ_WORK 256
#define ICE_RXBUF_3072 3072
#define ICE_RXBUF_2048 2048
#define ICE_RXBUF_1536 1536
#define ICE_MAX_CHAINED_RX_BUFS 5
#define ICE_MAX_BUF_TXD 8
#define ICE_MIN_TX_LEN 17
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define ICE_MAX_READ_REQ_SIZE 4096
#define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1)
#define ICE_MAX_DATA_PER_TXD_ALIGNED \
(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
#define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */
#define ICE_MAX_TXQ_PER_TXQG 128
/* Attempt to maximize the headroom available for incoming frames. We use a 2K
* buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
* This leaves us with 512 bytes of room. From that we need to deduct the
* space needed for the shared info and the padding needed to IP align the
* frame.
*
* Note: For cache line sizes 256 or larger this value is going to end
* up negative. In these cases we should fall back to the legacy
* receive path.
*/
#if (PAGE_SIZE < 8192)
#define ICE_2K_TOO_SMALL_WITH_PADDING \
((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
/**
* ice_compute_pad - compute the padding
* @rx_buf_len: buffer length
*
* Figure out the size of half page based on given buffer length and
* then subtract the skb_shared_info followed by subtraction of the
* actual buffer length; this in turn results in the actual space that
* is left for padding usage
*/
static inline int ice_compute_pad(int rx_buf_len)
{
int half_page_size;
half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
}
/**
* ice_skb_pad - determine the padding that we can supply
*
* Figure out the right Rx buffer size and based on that calculate the
* padding
*/
static inline int ice_skb_pad(void)
{
int rx_buf_len;
/* If a 2K buffer cannot handle a standard Ethernet frame then
* optimize padding for a 3K buffer instead of a 1.5K buffer.
*
* For a 3K buffer we need to add enough padding to allow for
* tailroom due to NET_IP_ALIGN possibly shifting us out of
* cache-line alignment.
*/
if (ICE_2K_TOO_SMALL_WITH_PADDING)
rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
else
rx_buf_len = ICE_RXBUF_1536;
/* if needed make room for NET_IP_ALIGN */
rx_buf_len -= NET_IP_ALIGN;
return ice_compute_pad(rx_buf_len);
}
#define ICE_SKB_PAD ice_skb_pad()
#else
#define ICE_2K_TOO_SMALL_WITH_PADDING false
#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
#endif
/* We are assuming that the cache line is always 64 Bytes here for ice.
* In order to make sure that is a correct assumption there is a check in probe
* to print a warning if the read from GLPCI_CNF2 tells us that the cache line
* size is 128 bytes. We do it this way because we do not want to read the
* GLPCI_CNF2 register or a variable containing the value on every pass through
* the Tx path.
*/
#define ICE_CACHE_LINE_BYTES 64
#define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \
sizeof(struct ice_tx_desc))
#define ICE_DESCS_FOR_CTX_DESC 1
#define ICE_DESCS_FOR_SKB_DATA_PTR 1
/* Tx descriptors needed, worst case */
#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
#define ICE_DESC_UNUSED(R) \
(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
(R)->next_to_clean - (R)->next_to_use - 1)
#define ICE_TX_FLAGS_TSO BIT(0)
#define ICE_TX_FLAGS_HW_VLAN BIT(1)
#define ICE_TX_FLAGS_SW_VLAN BIT(2)
/* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be
* freed instead of returned like skb packets.
*/
#define ICE_TX_FLAGS_DUMMY_PKT BIT(3)
#define ICE_TX_FLAGS_IPV4 BIT(5)
#define ICE_TX_FLAGS_IPV6 BIT(6)
#define ICE_TX_FLAGS_TUNNEL BIT(7)
#define ICE_TX_FLAGS_VLAN_M 0xffff0000
#define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000
#define ICE_TX_FLAGS_VLAN_PR_S 29
#define ICE_TX_FLAGS_VLAN_S 16
#define ICE_XDP_PASS 0
#define ICE_XDP_CONSUMED BIT(0)
#define ICE_XDP_TX BIT(1)
#define ICE_XDP_REDIR BIT(2)
#define ICE_RX_DMA_ATTR \
(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
#define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
struct ice_tx_buf {
struct ice_tx_desc *next_to_watch;
union {
struct sk_buff *skb;
void *raw_buf; /* used for XDP */
};
unsigned int bytecount;
unsigned short gso_segs;
u32 tx_flags;
DEFINE_DMA_UNMAP_LEN(len);
DEFINE_DMA_UNMAP_ADDR(dma);
};
struct ice_tx_offload_params {
u64 cd_qw1;
struct ice_ring *tx_ring;
u32 td_cmd;
u32 td_offset;
u32 td_l2tag1;
u32 cd_tunnel_params;
u16 cd_l2tag2;
u8 header_len;
};
struct ice_rx_buf {
union {
struct {
struct sk_buff *skb;
dma_addr_t dma;
struct page *page;
unsigned int page_offset;
u16 pagecnt_bias;
};
struct {
struct xdp_buff *xdp;
};
};
};
struct ice_q_stats {
u64 pkts;
u64 bytes;
};
struct ice_txq_stats {
u64 restart_q;
u64 tx_busy;
u64 tx_linearize;
int prev_pkt; /* negative if no pending Tx descriptors */
};
struct ice_rxq_stats {
u64 non_eop_descs;
u64 alloc_page_failed;
u64 alloc_buf_failed;
u64 gro_dropped; /* GRO returned dropped */
};
/* this enum matches hardware bits and is meant to be used by DYN_CTLN
* registers and QINT registers or more generally anywhere in the manual
* mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
* register but instead is a special value meaning "don't update" ITR0/1/2.
*/
enum ice_dyn_idx_t {
ICE_IDX_ITR0 = 0,
ICE_IDX_ITR1 = 1,
ICE_IDX_ITR2 = 2,
ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
};
/* Header split modes defined by DTYPE field of Rx RLAN context */
enum ice_rx_dtype {
ICE_RX_DTYPE_NO_SPLIT = 0,
ICE_RX_DTYPE_HEADER_SPLIT = 1,
ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
};
/* indices into GLINT_ITR registers */
#define ICE_RX_ITR ICE_IDX_ITR0
#define ICE_TX_ITR ICE_IDX_ITR1
#define ICE_ITR_8K 124
#define ICE_ITR_20K 50
#define ICE_ITR_MAX 8160
#define ICE_DFLT_TX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC)
#define ICE_DFLT_RX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC)
#define ICE_ITR_DYNAMIC 0x8000 /* used as flag for itr_setting */
#define ITR_IS_DYNAMIC(setting) (!!((setting) & ICE_ITR_DYNAMIC))
#define ITR_TO_REG(setting) ((setting) & ~ICE_ITR_DYNAMIC)
#define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */
#define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S)
#define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */
#define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK)
#define ICE_ITR_ADAPTIVE_MIN_INC 0x0002
#define ICE_ITR_ADAPTIVE_MIN_USECS 0x0002
#define ICE_ITR_ADAPTIVE_MAX_USECS 0x00FA
#define ICE_ITR_ADAPTIVE_LATENCY 0x8000
#define ICE_ITR_ADAPTIVE_BULK 0x0000
#define ICE_DFLT_INTRL 0
#define ICE_MAX_INTRL 236
#define ICE_WB_ON_ITR_USECS 2
#define ICE_IN_WB_ON_ITR_MODE 255
/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
* setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
* set the write-back latency to the usecs passed in.
*/
#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \
((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
GLINT_DYN_CTL_INTERVAL_M) | \
(((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
GLINT_DYN_CTL_WB_ON_ITR_M)
/* Legacy or Advanced Mode Queue */
#define ICE_TX_ADVANCED 0
#define ICE_TX_LEGACY 1
/* descriptor ring, associated with a VSI */
struct ice_ring {
/* CL1 - 1st cacheline starts here */
struct ice_ring *next; /* pointer to next ring in q_vector */
void *desc; /* Descriptor ring memory */
struct device *dev; /* Used for DMA mapping */
struct net_device *netdev; /* netdev ring maps to */
struct ice_vsi *vsi; /* Backreference to associated VSI */
struct ice_q_vector *q_vector; /* Backreference to associated vector */
u8 __iomem *tail;
union {
struct ice_tx_buf *tx_buf;
struct ice_rx_buf *rx_buf;
};
/* CL2 - 2nd cacheline starts here */
u16 q_index; /* Queue number of ring */
u16 q_handle; /* Queue handle per TC */
u8 ring_active:1; /* is ring online or not */
u16 count; /* Number of descriptors */
u16 reg_idx; /* HW register index of the ring */
/* used in interrupt processing */
u16 next_to_use;
u16 next_to_clean;
u16 next_to_alloc;
/* stats structs */
struct ice_q_stats stats;
struct u64_stats_sync syncp;
union {
struct ice_txq_stats tx_stats;
struct ice_rxq_stats rx_stats;
};
struct rcu_head rcu; /* to avoid race on free */
struct bpf_prog *xdp_prog;
struct xsk_buff_pool *xsk_pool;
/* CL3 - 3rd cacheline starts here */
struct xdp_rxq_info xdp_rxq;
/* CLX - the below items are only accessed infrequently and should be
* in their own cache line if possible
*/
#define ICE_TX_FLAGS_RING_XDP BIT(0)
#define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1)
u8 flags;
dma_addr_t dma; /* physical address of ring */
unsigned int size; /* length of descriptor ring in bytes */
u32 txq_teid; /* Added Tx queue TEID */
u16 rx_buf_len;
u8 dcb_tc; /* Traffic class of ring */
} ____cacheline_internodealigned_in_smp;
static inline bool ice_ring_uses_build_skb(struct ice_ring *ring)
{
return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
}
static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring)
{
ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
}
static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring)
{
ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
}
static inline bool ice_ring_is_xdp(struct ice_ring *ring)
{
return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
}
struct ice_ring_container {
/* head of linked-list of rings */
struct ice_ring *ring;
unsigned long next_update; /* jiffies value of next queue update */
unsigned int total_bytes; /* total bytes processed this int */
unsigned int total_pkts; /* total packets processed this int */
u16 itr_idx; /* index in the interrupt vector */
u16 target_itr; /* value in usecs divided by the hw->itr_gran */
u16 current_itr; /* value in usecs divided by the hw->itr_gran */
/* high bit set means dynamic ITR, rest is used to store user
* readable ITR value in usecs and must be converted before programming
* to a register.
*/
u16 itr_setting;
};
struct ice_coalesce_stored {
u16 itr_tx;
u16 itr_rx;
u8 intrl;
};
/* iterator for handling rings in ring container */
#define ice_for_each_ring(pos, head) \
for (pos = (head).ring; pos; pos = pos->next)
static inline unsigned int ice_rx_pg_order(struct ice_ring *ring)
{
#if (PAGE_SIZE < 8192)
if (ring->rx_buf_len > (PAGE_SIZE / 2))
return 1;
#endif
return 0;
}
#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
union ice_32b_rx_flex_desc;
bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
void ice_clean_tx_ring(struct ice_ring *tx_ring);
void ice_clean_rx_ring(struct ice_ring *rx_ring);
int ice_setup_tx_ring(struct ice_ring *tx_ring);
int ice_setup_rx_ring(struct ice_ring *rx_ring);
void ice_free_tx_ring(struct ice_ring *tx_ring);
void ice_free_rx_ring(struct ice_ring *rx_ring);
int ice_napi_poll(struct napi_struct *napi, int budget);
int
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
u8 *raw_packet);
int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget);
void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring);
#endif /* _ICE_TXRX_H_ */