| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Code for manipulating bucket marks for garbage collection. |
| * |
| * Copyright 2014 Datera, Inc. |
| * |
| * Bucket states: |
| * - free bucket: mark == 0 |
| * The bucket contains no data and will not be read |
| * |
| * - allocator bucket: owned_by_allocator == 1 |
| * The bucket is on a free list, or it is an open bucket |
| * |
| * - cached bucket: owned_by_allocator == 0 && |
| * dirty_sectors == 0 && |
| * cached_sectors > 0 |
| * The bucket contains data but may be safely discarded as there are |
| * enough replicas of the data on other cache devices, or it has been |
| * written back to the backing device |
| * |
| * - dirty bucket: owned_by_allocator == 0 && |
| * dirty_sectors > 0 |
| * The bucket contains data that we must not discard (either only copy, |
| * or one of the 'main copies' for data requiring multiple replicas) |
| * |
| * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 |
| * This is a btree node, journal or gen/prio bucket |
| * |
| * Lifecycle: |
| * |
| * bucket invalidated => bucket on freelist => open bucket => |
| * [dirty bucket =>] cached bucket => bucket invalidated => ... |
| * |
| * Note that cache promotion can skip the dirty bucket step, as data |
| * is copied from a deeper tier to a shallower tier, onto a cached |
| * bucket. |
| * Note also that a cached bucket can spontaneously become dirty -- |
| * see below. |
| * |
| * Only a traversal of the key space can determine whether a bucket is |
| * truly dirty or cached. |
| * |
| * Transitions: |
| * |
| * - free => allocator: bucket was invalidated |
| * - cached => allocator: bucket was invalidated |
| * |
| * - allocator => dirty: open bucket was filled up |
| * - allocator => cached: open bucket was filled up |
| * - allocator => metadata: metadata was allocated |
| * |
| * - dirty => cached: dirty sectors were copied to a deeper tier |
| * - dirty => free: dirty sectors were overwritten or moved (copy gc) |
| * - cached => free: cached sectors were overwritten |
| * |
| * - metadata => free: metadata was freed |
| * |
| * Oddities: |
| * - cached => dirty: a device was removed so formerly replicated data |
| * is no longer sufficiently replicated |
| * - free => cached: cannot happen |
| * - free => dirty: cannot happen |
| * - free => metadata: cannot happen |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_background.h" |
| #include "bset.h" |
| #include "btree_gc.h" |
| #include "btree_update.h" |
| #include "buckets.h" |
| #include "ec.h" |
| #include "error.h" |
| #include "movinggc.h" |
| #include "trace.h" |
| |
| #include <linux/preempt.h> |
| |
| static inline u64 __bch2_fs_sectors_used(struct bch_fs *, struct bch_fs_usage); |
| |
| #ifdef DEBUG_BUCKETS |
| |
| #define lg_local_lock lg_global_lock |
| #define lg_local_unlock lg_global_unlock |
| |
| static void bch2_fs_stats_verify(struct bch_fs *c) |
| { |
| struct bch_fs_usage stats =_bch2_fs_usage_read(c); |
| unsigned i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) { |
| for (j = 0; j < ARRAY_SIZE(stats.replicas[i].data); j++) |
| if ((s64) stats.replicas[i].data[j] < 0) |
| panic("replicas %u %s sectors underflow: %lli\n", |
| i + 1, bch_data_types[j], |
| stats.replicas[i].data[j]); |
| |
| if ((s64) stats.replicas[i].persistent_reserved < 0) |
| panic("replicas %u reserved underflow: %lli\n", |
| i + 1, stats.replicas[i].persistent_reserved); |
| } |
| |
| for (j = 0; j < ARRAY_SIZE(stats.buckets); j++) |
| if ((s64) stats.replicas[i].data_buckets[j] < 0) |
| panic("%s buckets underflow: %lli\n", |
| bch_data_types[j], |
| stats.buckets[j]); |
| |
| if ((s64) stats.online_reserved < 0) |
| panic("sectors_online_reserved underflow: %lli\n", |
| stats.online_reserved); |
| } |
| |
| static void bch2_dev_stats_verify(struct bch_dev *ca) |
| { |
| struct bch_dev_usage stats = |
| __bch2_dev_usage_read(ca); |
| u64 n = ca->mi.nbuckets - ca->mi.first_bucket; |
| unsigned i; |
| |
| for (i = 0; i < ARRAY_SIZE(stats.buckets); i++) |
| BUG_ON(stats.buckets[i] > n); |
| BUG_ON(stats.buckets_alloc > n); |
| BUG_ON(stats.buckets_unavailable > n); |
| } |
| |
| static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) |
| { |
| if (!(flags & BCH_DISK_RESERVATION_NOFAIL)) { |
| u64 used = __bch2_fs_sectors_used(c); |
| u64 cached = 0; |
| u64 avail = atomic64_read(&c->sectors_available); |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| cached += per_cpu_ptr(c->usage_percpu, cpu)->available_cache; |
| |
| if (used + avail + cached > c->capacity) |
| panic("used %llu avail %llu cached %llu capacity %llu\n", |
| used, avail, cached, c->capacity); |
| } |
| } |
| |
| #else |
| |
| static void bch2_fs_stats_verify(struct bch_fs *c) {} |
| static void bch2_dev_stats_verify(struct bch_dev *ca) {} |
| static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) {} |
| |
| #endif |
| |
| /* |
| * Clear journal_seq_valid for buckets for which it's not needed, to prevent |
| * wraparound: |
| */ |
| void bch2_bucket_seq_cleanup(struct bch_fs *c) |
| { |
| u64 journal_seq = atomic64_read(&c->journal.seq); |
| u16 last_seq_ondisk = c->journal.last_seq_ondisk; |
| struct bch_dev *ca; |
| struct bucket_array *buckets; |
| struct bucket *g; |
| struct bucket_mark m; |
| unsigned i; |
| |
| if (journal_seq - c->last_bucket_seq_cleanup < |
| (1U << (BUCKET_JOURNAL_SEQ_BITS - 2))) |
| return; |
| |
| c->last_bucket_seq_cleanup = journal_seq; |
| |
| for_each_member_device(ca, c, i) { |
| down_read(&ca->bucket_lock); |
| buckets = bucket_array(ca); |
| |
| for_each_bucket(g, buckets) { |
| bucket_cmpxchg(g, m, ({ |
| if (!m.journal_seq_valid || |
| bucket_needs_journal_commit(m, last_seq_ondisk)) |
| break; |
| |
| m.journal_seq_valid = 0; |
| })); |
| } |
| up_read(&ca->bucket_lock); |
| } |
| } |
| |
| #define bch2_usage_add(_acc, _stats) \ |
| do { \ |
| typeof(_acc) _a = (_acc), _s = (_stats); \ |
| unsigned i; \ |
| \ |
| for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \ |
| ((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \ |
| } while (0) |
| |
| #define bch2_usage_read_raw(_stats) \ |
| ({ \ |
| typeof(*this_cpu_ptr(_stats)) _acc; \ |
| int cpu; \ |
| \ |
| memset(&_acc, 0, sizeof(_acc)); \ |
| \ |
| for_each_possible_cpu(cpu) \ |
| bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \ |
| \ |
| _acc; \ |
| }) |
| |
| struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca, bool gc) |
| { |
| return bch2_usage_read_raw(ca->usage[gc]); |
| } |
| |
| struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca) |
| { |
| return bch2_usage_read_raw(ca->usage[0]); |
| } |
| |
| struct bch_fs_usage __bch2_fs_usage_read(struct bch_fs *c, bool gc) |
| { |
| return bch2_usage_read_raw(c->usage[gc]); |
| } |
| |
| struct bch_fs_usage bch2_fs_usage_read(struct bch_fs *c) |
| { |
| return bch2_usage_read_raw(c->usage[0]); |
| } |
| |
| struct fs_usage_sum { |
| u64 hidden; |
| u64 data; |
| u64 cached; |
| u64 reserved; |
| }; |
| |
| static inline struct fs_usage_sum __fs_usage_sum(struct bch_fs_usage stats) |
| { |
| struct fs_usage_sum sum = { 0 }; |
| unsigned i; |
| |
| /* |
| * For superblock and journal we count bucket usage, not sector usage, |
| * because any internal fragmentation should _not_ be counted as |
| * free space: |
| */ |
| sum.hidden += stats.buckets[BCH_DATA_SB]; |
| sum.hidden += stats.buckets[BCH_DATA_JOURNAL]; |
| |
| for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) { |
| sum.data += stats.replicas[i].data[BCH_DATA_BTREE]; |
| sum.data += stats.replicas[i].data[BCH_DATA_USER]; |
| sum.data += stats.replicas[i].ec_data; |
| sum.cached += stats.replicas[i].data[BCH_DATA_CACHED]; |
| sum.reserved += stats.replicas[i].persistent_reserved; |
| } |
| |
| sum.reserved += stats.online_reserved; |
| return sum; |
| } |
| |
| #define RESERVE_FACTOR 6 |
| |
| static u64 reserve_factor(u64 r) |
| { |
| return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); |
| } |
| |
| static u64 avail_factor(u64 r) |
| { |
| return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1); |
| } |
| |
| static inline u64 __bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage fs_usage) |
| { |
| struct fs_usage_sum sum = __fs_usage_sum(fs_usage); |
| |
| return sum.hidden + sum.data + reserve_factor(sum.reserved); |
| } |
| |
| u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage fs_usage) |
| { |
| return min(c->capacity, __bch2_fs_sectors_used(c, fs_usage)); |
| } |
| |
| struct bch_fs_usage_short |
| bch2_fs_usage_read_short(struct bch_fs *c) |
| { |
| struct bch_fs_usage usage = bch2_fs_usage_read(c); |
| struct fs_usage_sum sum = __fs_usage_sum(usage); |
| struct bch_fs_usage_short ret; |
| |
| ret.capacity = READ_ONCE(c->capacity) - sum.hidden; |
| ret.used = min(ret.capacity, sum.data + |
| reserve_factor(sum.reserved)); |
| ret.nr_inodes = usage.nr_inodes; |
| |
| return ret; |
| } |
| |
| static inline int is_unavailable_bucket(struct bucket_mark m) |
| { |
| return !is_available_bucket(m); |
| } |
| |
| static inline int is_fragmented_bucket(struct bucket_mark m, |
| struct bch_dev *ca) |
| { |
| if (!m.owned_by_allocator && |
| m.data_type == BCH_DATA_USER && |
| bucket_sectors_used(m)) |
| return max_t(int, 0, (int) ca->mi.bucket_size - |
| bucket_sectors_used(m)); |
| return 0; |
| } |
| |
| static inline enum bch_data_type bucket_type(struct bucket_mark m) |
| { |
| return m.cached_sectors && !m.dirty_sectors |
| ? BCH_DATA_CACHED |
| : m.data_type; |
| } |
| |
| static bool bucket_became_unavailable(struct bucket_mark old, |
| struct bucket_mark new) |
| { |
| return is_available_bucket(old) && |
| !is_available_bucket(new); |
| } |
| |
| void bch2_fs_usage_apply(struct bch_fs *c, |
| struct bch_fs_usage *fs_usage, |
| struct disk_reservation *disk_res, |
| struct gc_pos gc_pos) |
| { |
| struct fs_usage_sum sum = __fs_usage_sum(*fs_usage); |
| s64 added = sum.data + sum.reserved; |
| s64 should_not_have_added; |
| |
| percpu_rwsem_assert_held(&c->mark_lock); |
| |
| /* |
| * Not allowed to reduce sectors_available except by getting a |
| * reservation: |
| */ |
| should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0); |
| if (WARN_ONCE(should_not_have_added > 0, |
| "disk usage increased without a reservation")) { |
| atomic64_sub(should_not_have_added, &c->sectors_available); |
| added -= should_not_have_added; |
| } |
| |
| if (added > 0) { |
| disk_res->sectors -= added; |
| fs_usage->online_reserved -= added; |
| } |
| |
| preempt_disable(); |
| bch2_usage_add(this_cpu_ptr(c->usage[0]), fs_usage); |
| |
| if (gc_visited(c, gc_pos)) |
| bch2_usage_add(this_cpu_ptr(c->usage[1]), fs_usage); |
| |
| bch2_fs_stats_verify(c); |
| preempt_enable(); |
| |
| memset(fs_usage, 0, sizeof(*fs_usage)); |
| } |
| |
| static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, |
| struct bch_fs_usage *fs_usage, |
| struct bucket_mark old, struct bucket_mark new, |
| bool gc) |
| { |
| struct bch_dev_usage *dev_usage; |
| |
| percpu_rwsem_assert_held(&c->mark_lock); |
| |
| bch2_fs_inconsistent_on(old.data_type && new.data_type && |
| old.data_type != new.data_type, c, |
| "different types of data in same bucket: %s, %s", |
| bch2_data_types[old.data_type], |
| bch2_data_types[new.data_type]); |
| |
| preempt_disable(); |
| dev_usage = this_cpu_ptr(ca->usage[gc]); |
| |
| if (bucket_type(old)) { |
| fs_usage->buckets[bucket_type(old)] -= ca->mi.bucket_size; |
| dev_usage->buckets[bucket_type(old)]--; |
| } |
| |
| if (bucket_type(new)) { |
| fs_usage->buckets[bucket_type(new)] += ca->mi.bucket_size; |
| dev_usage->buckets[bucket_type(new)]++; |
| } |
| |
| dev_usage->buckets_alloc += |
| (int) new.owned_by_allocator - (int) old.owned_by_allocator; |
| dev_usage->buckets_ec += |
| (int) new.stripe - (int) old.stripe; |
| dev_usage->buckets_unavailable += |
| is_unavailable_bucket(new) - is_unavailable_bucket(old); |
| |
| dev_usage->sectors[old.data_type] -= old.dirty_sectors; |
| dev_usage->sectors[new.data_type] += new.dirty_sectors; |
| dev_usage->sectors[BCH_DATA_CACHED] += |
| (int) new.cached_sectors - (int) old.cached_sectors; |
| dev_usage->sectors_fragmented += |
| is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca); |
| preempt_enable(); |
| |
| if (!is_available_bucket(old) && is_available_bucket(new)) |
| bch2_wake_allocator(ca); |
| |
| bch2_dev_stats_verify(ca); |
| } |
| |
| void bch2_dev_usage_from_buckets(struct bch_fs *c, struct bch_dev *ca) |
| { |
| struct bucket_mark old = { .v.counter = 0 }; |
| struct bch_fs_usage *fs_usage; |
| struct bucket_array *buckets; |
| struct bucket *g; |
| |
| percpu_down_read(&c->mark_lock); |
| fs_usage = this_cpu_ptr(c->usage[0]); |
| buckets = bucket_array(ca); |
| |
| for_each_bucket(g, buckets) |
| if (g->mark.data_type) |
| bch2_dev_usage_update(c, ca, fs_usage, old, g->mark, false); |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| #define bucket_data_cmpxchg(c, ca, fs_usage, g, new, expr) \ |
| ({ \ |
| struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \ |
| \ |
| bch2_dev_usage_update(c, ca, fs_usage, _old, new, gc); \ |
| _old; \ |
| }) |
| |
| static void __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, struct bucket_mark *old, |
| bool gc) |
| { |
| struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]); |
| struct bucket *g = __bucket(ca, b, gc); |
| struct bucket_mark new; |
| |
| *old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ |
| BUG_ON(!is_available_bucket(new)); |
| |
| new.owned_by_allocator = 1; |
| new.data_type = 0; |
| new.cached_sectors = 0; |
| new.dirty_sectors = 0; |
| new.gen++; |
| })); |
| |
| fs_usage->replicas[0].data[BCH_DATA_CACHED] -= old->cached_sectors; |
| } |
| |
| void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, struct bucket_mark *old) |
| { |
| percpu_rwsem_assert_held(&c->mark_lock); |
| |
| __bch2_invalidate_bucket(c, ca, b, old, false); |
| |
| if (!old->owned_by_allocator && old->cached_sectors) |
| trace_invalidate(ca, bucket_to_sector(ca, b), |
| old->cached_sectors); |
| } |
| |
| static void __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, bool owned_by_allocator, |
| bool gc) |
| { |
| struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]); |
| struct bucket *g = __bucket(ca, b, gc); |
| struct bucket_mark old, new; |
| |
| old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ |
| new.owned_by_allocator = owned_by_allocator; |
| })); |
| |
| BUG_ON(!gc && |
| !owned_by_allocator && !old.owned_by_allocator); |
| } |
| |
| void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, bool owned_by_allocator, |
| struct gc_pos pos, unsigned flags) |
| { |
| percpu_rwsem_assert_held(&c->mark_lock); |
| |
| if (!(flags & BCH_BUCKET_MARK_GC)) |
| __bch2_mark_alloc_bucket(c, ca, b, owned_by_allocator, false); |
| |
| if ((flags & BCH_BUCKET_MARK_GC) || |
| gc_visited(c, pos)) |
| __bch2_mark_alloc_bucket(c, ca, b, owned_by_allocator, true); |
| } |
| |
| #define checked_add(a, b) \ |
| do { \ |
| unsigned _res = (unsigned) (a) + (b); \ |
| (a) = _res; \ |
| BUG_ON((a) != _res); \ |
| } while (0) |
| |
| static void __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, enum bch_data_type type, |
| unsigned sectors, bool gc) |
| { |
| struct bch_fs_usage *fs_usage = this_cpu_ptr(c->usage[gc]); |
| struct bucket *g = __bucket(ca, b, gc); |
| struct bucket_mark new; |
| |
| BUG_ON(type != BCH_DATA_SB && |
| type != BCH_DATA_JOURNAL); |
| |
| bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ |
| new.data_type = type; |
| checked_add(new.dirty_sectors, sectors); |
| })); |
| |
| fs_usage->replicas[0].data[type] += sectors; |
| } |
| |
| void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, |
| size_t b, enum bch_data_type type, |
| unsigned sectors, struct gc_pos pos, |
| unsigned flags) |
| { |
| BUG_ON(type != BCH_DATA_SB && |
| type != BCH_DATA_JOURNAL); |
| |
| preempt_disable(); |
| |
| if (likely(c)) { |
| percpu_rwsem_assert_held(&c->mark_lock); |
| |
| if (!(flags & BCH_BUCKET_MARK_GC)) |
| __bch2_mark_metadata_bucket(c, ca, b, type, sectors, |
| false); |
| if ((flags & BCH_BUCKET_MARK_GC) || |
| gc_visited(c, pos)) |
| __bch2_mark_metadata_bucket(c, ca, b, type, sectors, |
| true); |
| } else { |
| struct bucket *g; |
| struct bucket_mark old, new; |
| |
| rcu_read_lock(); |
| |
| g = bucket(ca, b); |
| old = bucket_cmpxchg(g, new, ({ |
| new.data_type = type; |
| checked_add(new.dirty_sectors, sectors); |
| })); |
| |
| rcu_read_unlock(); |
| } |
| |
| preempt_enable(); |
| } |
| |
| static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p, |
| s64 delta) |
| { |
| if (delta > 0) { |
| /* |
| * marking a new extent, which _will have size_ @delta |
| * |
| * in the bch2_mark_update -> BCH_EXTENT_OVERLAP_MIDDLE |
| * case, we haven't actually created the key we'll be inserting |
| * yet (for the split) - so we don't want to be using |
| * k->size/crc.live_size here: |
| */ |
| return __ptr_disk_sectors(p, delta); |
| } else { |
| BUG_ON(-delta > p.crc.live_size); |
| |
| return (s64) __ptr_disk_sectors(p, p.crc.live_size + delta) - |
| (s64) ptr_disk_sectors(p); |
| } |
| } |
| |
| /* |
| * Checking against gc's position has to be done here, inside the cmpxchg() |
| * loop, to avoid racing with the start of gc clearing all the marks - GC does |
| * that with the gc pos seqlock held. |
| */ |
| static void bch2_mark_pointer(struct bch_fs *c, |
| struct extent_ptr_decoded p, |
| s64 sectors, enum bch_data_type data_type, |
| struct bch_fs_usage *fs_usage, |
| unsigned journal_seq, unsigned flags, |
| bool gc) |
| { |
| struct bucket_mark old, new; |
| struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); |
| size_t b = PTR_BUCKET_NR(ca, &p.ptr); |
| struct bucket *g = __bucket(ca, b, gc); |
| u64 v; |
| |
| v = atomic64_read(&g->_mark.v); |
| do { |
| new.v.counter = old.v.counter = v; |
| |
| /* |
| * Check this after reading bucket mark to guard against |
| * the allocator invalidating a bucket after we've already |
| * checked the gen |
| */ |
| if (gen_after(new.gen, p.ptr.gen)) { |
| BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags)); |
| EBUG_ON(!p.ptr.cached && |
| test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)); |
| return; |
| } |
| |
| if (!p.ptr.cached) |
| checked_add(new.dirty_sectors, sectors); |
| else |
| checked_add(new.cached_sectors, sectors); |
| |
| if (!new.dirty_sectors && |
| !new.cached_sectors) { |
| new.data_type = 0; |
| |
| if (journal_seq) { |
| new.journal_seq_valid = 1; |
| new.journal_seq = journal_seq; |
| } |
| } else { |
| new.data_type = data_type; |
| } |
| |
| if (flags & BCH_BUCKET_MARK_NOATOMIC) { |
| g->_mark = new; |
| break; |
| } |
| } while ((v = atomic64_cmpxchg(&g->_mark.v, |
| old.v.counter, |
| new.v.counter)) != old.v.counter); |
| |
| bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); |
| |
| BUG_ON(!gc && bucket_became_unavailable(old, new)); |
| } |
| |
| static int bch2_mark_stripe_ptr(struct bch_fs *c, |
| struct bch_extent_stripe_ptr p, |
| s64 sectors, unsigned flags, |
| s64 *adjusted_disk_sectors, |
| unsigned *redundancy, |
| bool gc) |
| { |
| struct stripe *m; |
| unsigned old, new, nr_data; |
| int blocks_nonempty_delta; |
| s64 parity_sectors; |
| |
| m = genradix_ptr(&c->stripes[gc], p.idx); |
| |
| if (!m || !m->alive) { |
| bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", |
| (u64) p.idx); |
| return -1; |
| } |
| |
| nr_data = m->nr_blocks - m->nr_redundant; |
| |
| parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data); |
| |
| if (sectors < 0) |
| parity_sectors = -parity_sectors; |
| |
| *adjusted_disk_sectors += parity_sectors; |
| |
| *redundancy = max_t(unsigned, *redundancy, m->nr_redundant + 1); |
| |
| new = atomic_add_return(sectors, &m->block_sectors[p.block]); |
| old = new - sectors; |
| |
| blocks_nonempty_delta = (int) !!new - (int) !!old; |
| if (!blocks_nonempty_delta) |
| return 0; |
| |
| atomic_add(blocks_nonempty_delta, &m->blocks_nonempty); |
| |
| BUG_ON(atomic_read(&m->blocks_nonempty) < 0); |
| |
| if (!gc) |
| bch2_stripes_heap_update(c, m, p.idx); |
| |
| return 0; |
| } |
| |
| static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k, |
| s64 sectors, enum bch_data_type data_type, |
| struct bch_fs_usage *fs_usage, |
| unsigned journal_seq, unsigned flags, |
| bool gc) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| s64 cached_sectors = 0; |
| s64 dirty_sectors = 0; |
| s64 ec_sectors = 0; |
| unsigned replicas = 0; |
| unsigned ec_redundancy = 0; |
| unsigned i; |
| int ret; |
| |
| BUG_ON(!sectors); |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| s64 disk_sectors = data_type == BCH_DATA_BTREE |
| ? sectors |
| : ptr_disk_sectors_delta(p, sectors); |
| s64 adjusted_disk_sectors = disk_sectors; |
| |
| bch2_mark_pointer(c, p, disk_sectors, data_type, |
| fs_usage, journal_seq, flags, gc); |
| |
| if (!p.ptr.cached) |
| for (i = 0; i < p.ec_nr; i++) { |
| ret = bch2_mark_stripe_ptr(c, p.ec[i], |
| disk_sectors, flags, |
| &adjusted_disk_sectors, |
| &ec_redundancy, gc); |
| if (ret) |
| return ret; |
| } |
| if (!p.ptr.cached) |
| replicas++; |
| |
| if (p.ptr.cached) |
| cached_sectors += adjusted_disk_sectors; |
| else if (!p.ec_nr) |
| dirty_sectors += adjusted_disk_sectors; |
| else |
| ec_sectors += adjusted_disk_sectors; |
| } |
| |
| replicas = clamp_t(unsigned, replicas, |
| 1, ARRAY_SIZE(fs_usage->replicas)); |
| ec_redundancy = clamp_t(unsigned, ec_redundancy, |
| 1, ARRAY_SIZE(fs_usage->replicas)); |
| |
| fs_usage->replicas[0].data[BCH_DATA_CACHED] += cached_sectors; |
| fs_usage->replicas[replicas - 1].data[data_type] += dirty_sectors; |
| fs_usage->replicas[ec_redundancy - 1].ec_data += ec_sectors; |
| |
| return 0; |
| } |
| |
| static void bucket_set_stripe(struct bch_fs *c, |
| const struct bch_stripe *v, |
| bool enabled, |
| struct bch_fs_usage *fs_usage, |
| u64 journal_seq, |
| bool gc) |
| { |
| unsigned i; |
| |
| for (i = 0; i < v->nr_blocks; i++) { |
| const struct bch_extent_ptr *ptr = v->ptrs + i; |
| struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); |
| size_t b = PTR_BUCKET_NR(ca, ptr); |
| struct bucket *g = __bucket(ca, b, gc); |
| struct bucket_mark new, old; |
| |
| BUG_ON(ptr_stale(ca, ptr)); |
| |
| old = bucket_data_cmpxchg(c, ca, fs_usage, g, new, ({ |
| new.stripe = enabled; |
| if (journal_seq) { |
| new.journal_seq_valid = 1; |
| new.journal_seq = journal_seq; |
| } |
| })); |
| |
| BUG_ON(old.stripe == enabled); |
| } |
| } |
| |
| static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k, |
| bool inserting, |
| struct bch_fs_usage *fs_usage, |
| u64 journal_seq, unsigned flags, |
| bool gc) |
| { |
| struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); |
| size_t idx = s.k->p.offset; |
| struct stripe *m = genradix_ptr(&c->stripes[gc], idx); |
| unsigned i; |
| |
| if (!m || (!inserting && !m->alive)) { |
| bch_err_ratelimited(c, "error marking nonexistent stripe %zu", |
| idx); |
| return -1; |
| } |
| |
| if (inserting && m->alive) { |
| bch_err_ratelimited(c, "error marking stripe %zu: already exists", |
| idx); |
| return -1; |
| } |
| |
| BUG_ON(atomic_read(&m->blocks_nonempty)); |
| |
| for (i = 0; i < EC_STRIPE_MAX; i++) |
| BUG_ON(atomic_read(&m->block_sectors[i])); |
| |
| if (inserting) { |
| m->sectors = le16_to_cpu(s.v->sectors); |
| m->algorithm = s.v->algorithm; |
| m->nr_blocks = s.v->nr_blocks; |
| m->nr_redundant = s.v->nr_redundant; |
| } |
| |
| if (!gc) { |
| if (inserting) |
| bch2_stripes_heap_insert(c, m, idx); |
| else |
| bch2_stripes_heap_del(c, m, idx); |
| } else { |
| m->alive = inserting; |
| } |
| |
| bucket_set_stripe(c, s.v, inserting, fs_usage, 0, gc); |
| return 0; |
| } |
| |
| static int __bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, |
| bool inserting, s64 sectors, |
| struct bch_fs_usage *fs_usage, |
| unsigned journal_seq, unsigned flags, |
| bool gc) |
| { |
| int ret = 0; |
| |
| switch (k.k->type) { |
| case KEY_TYPE_btree_ptr: |
| ret = bch2_mark_extent(c, k, inserting |
| ? c->opts.btree_node_size |
| : -c->opts.btree_node_size, |
| BCH_DATA_BTREE, |
| fs_usage, journal_seq, flags, gc); |
| break; |
| case KEY_TYPE_extent: |
| ret = bch2_mark_extent(c, k, sectors, BCH_DATA_USER, |
| fs_usage, journal_seq, flags, gc); |
| break; |
| case KEY_TYPE_stripe: |
| ret = bch2_mark_stripe(c, k, inserting, |
| fs_usage, journal_seq, flags, gc); |
| break; |
| case KEY_TYPE_alloc: |
| if (inserting) |
| fs_usage->nr_inodes++; |
| else |
| fs_usage->nr_inodes--; |
| break; |
| case KEY_TYPE_reservation: { |
| unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; |
| |
| sectors *= replicas; |
| replicas = clamp_t(unsigned, replicas, |
| 1, ARRAY_SIZE(fs_usage->replicas)); |
| |
| fs_usage->replicas[replicas - 1].persistent_reserved += sectors; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| int bch2_mark_key_locked(struct bch_fs *c, |
| struct bkey_s_c k, |
| bool inserting, s64 sectors, |
| struct gc_pos pos, |
| struct bch_fs_usage *fs_usage, |
| u64 journal_seq, unsigned flags) |
| { |
| int ret; |
| |
| if (!(flags & BCH_BUCKET_MARK_GC)) { |
| ret = __bch2_mark_key(c, k, inserting, sectors, |
| fs_usage ?: this_cpu_ptr(c->usage[0]), |
| journal_seq, flags, false); |
| if (ret) |
| return ret; |
| } |
| |
| if ((flags & BCH_BUCKET_MARK_GC) || |
| gc_visited(c, pos)) { |
| ret = __bch2_mark_key(c, k, inserting, sectors, |
| this_cpu_ptr(c->usage[1]), |
| journal_seq, flags, true); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, |
| bool inserting, s64 sectors, |
| struct gc_pos pos, |
| struct bch_fs_usage *fs_usage, |
| u64 journal_seq, unsigned flags) |
| { |
| int ret; |
| |
| percpu_down_read(&c->mark_lock); |
| ret = bch2_mark_key_locked(c, k, inserting, sectors, |
| pos, fs_usage, journal_seq, flags); |
| percpu_up_read(&c->mark_lock); |
| |
| return ret; |
| } |
| |
| void bch2_mark_update(struct btree_insert *trans, |
| struct btree_insert_entry *insert) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_iter *iter = insert->iter; |
| struct btree *b = iter->l[0].b; |
| struct btree_node_iter node_iter = iter->l[0].iter; |
| struct bch_fs_usage fs_usage = { 0 }; |
| struct gc_pos pos = gc_pos_btree_node(b); |
| struct bkey_packed *_k; |
| |
| if (!btree_node_type_needs_gc(iter->btree_id)) |
| return; |
| |
| percpu_down_read(&c->mark_lock); |
| |
| if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) |
| bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k), true, |
| bpos_min(insert->k->k.p, b->key.k.p).offset - |
| bkey_start_offset(&insert->k->k), |
| pos, &fs_usage, trans->journal_res.seq, 0); |
| |
| while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, |
| KEY_TYPE_discard))) { |
| struct bkey unpacked; |
| struct bkey_s_c k; |
| s64 sectors = 0; |
| |
| k = bkey_disassemble(b, _k, &unpacked); |
| |
| if (btree_node_is_extents(b) |
| ? bkey_cmp(insert->k->k.p, bkey_start_pos(k.k)) <= 0 |
| : bkey_cmp(insert->k->k.p, k.k->p)) |
| break; |
| |
| if (btree_node_is_extents(b)) { |
| switch (bch2_extent_overlap(&insert->k->k, k.k)) { |
| case BCH_EXTENT_OVERLAP_ALL: |
| sectors = -((s64) k.k->size); |
| break; |
| case BCH_EXTENT_OVERLAP_BACK: |
| sectors = bkey_start_offset(&insert->k->k) - |
| k.k->p.offset; |
| break; |
| case BCH_EXTENT_OVERLAP_FRONT: |
| sectors = bkey_start_offset(k.k) - |
| insert->k->k.p.offset; |
| break; |
| case BCH_EXTENT_OVERLAP_MIDDLE: |
| sectors = k.k->p.offset - insert->k->k.p.offset; |
| BUG_ON(sectors <= 0); |
| |
| bch2_mark_key_locked(c, k, true, sectors, |
| pos, &fs_usage, trans->journal_res.seq, 0); |
| |
| sectors = bkey_start_offset(&insert->k->k) - |
| k.k->p.offset; |
| break; |
| } |
| |
| BUG_ON(sectors >= 0); |
| } |
| |
| bch2_mark_key_locked(c, k, false, sectors, |
| pos, &fs_usage, trans->journal_res.seq, 0); |
| |
| bch2_btree_node_iter_advance(&node_iter, b); |
| } |
| |
| bch2_fs_usage_apply(c, &fs_usage, trans->disk_res, pos); |
| |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| /* Disk reservations: */ |
| |
| static u64 bch2_recalc_sectors_available(struct bch_fs *c) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| per_cpu_ptr(c->pcpu, cpu)->sectors_available = 0; |
| |
| return avail_factor(bch2_fs_sectors_free(c)); |
| } |
| |
| void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) |
| { |
| percpu_down_read(&c->mark_lock); |
| this_cpu_sub(c->usage[0]->online_reserved, |
| res->sectors); |
| |
| bch2_fs_stats_verify(c); |
| percpu_up_read(&c->mark_lock); |
| |
| res->sectors = 0; |
| } |
| |
| #define SECTORS_CACHE 1024 |
| |
| int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, |
| unsigned sectors, int flags) |
| { |
| struct bch_fs_pcpu *pcpu; |
| u64 old, v, get; |
| s64 sectors_available; |
| int ret; |
| |
| percpu_down_read(&c->mark_lock); |
| preempt_disable(); |
| pcpu = this_cpu_ptr(c->pcpu); |
| |
| if (sectors <= pcpu->sectors_available) |
| goto out; |
| |
| v = atomic64_read(&c->sectors_available); |
| do { |
| old = v; |
| get = min((u64) sectors + SECTORS_CACHE, old); |
| |
| if (get < sectors) { |
| preempt_enable(); |
| percpu_up_read(&c->mark_lock); |
| goto recalculate; |
| } |
| } while ((v = atomic64_cmpxchg(&c->sectors_available, |
| old, old - get)) != old); |
| |
| pcpu->sectors_available += get; |
| |
| out: |
| pcpu->sectors_available -= sectors; |
| this_cpu_add(c->usage[0]->online_reserved, sectors); |
| res->sectors += sectors; |
| |
| bch2_disk_reservations_verify(c, flags); |
| bch2_fs_stats_verify(c); |
| preempt_enable(); |
| percpu_up_read(&c->mark_lock); |
| return 0; |
| |
| recalculate: |
| /* |
| * GC recalculates sectors_available when it starts, so that hopefully |
| * we don't normally end up blocking here: |
| */ |
| |
| /* |
| * Piss fuck, we can be called from extent_insert_fixup() with btree |
| * locks held: |
| */ |
| |
| if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) { |
| if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD)) |
| down_read(&c->gc_lock); |
| else if (!down_read_trylock(&c->gc_lock)) |
| return -EINTR; |
| } |
| |
| percpu_down_write(&c->mark_lock); |
| sectors_available = bch2_recalc_sectors_available(c); |
| |
| if (sectors <= sectors_available || |
| (flags & BCH_DISK_RESERVATION_NOFAIL)) { |
| atomic64_set(&c->sectors_available, |
| max_t(s64, 0, sectors_available - sectors)); |
| this_cpu_add(c->usage[0]->online_reserved, sectors); |
| res->sectors += sectors; |
| ret = 0; |
| |
| bch2_disk_reservations_verify(c, flags); |
| } else { |
| atomic64_set(&c->sectors_available, sectors_available); |
| ret = -ENOSPC; |
| } |
| |
| bch2_fs_stats_verify(c); |
| percpu_up_write(&c->mark_lock); |
| |
| if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) |
| up_read(&c->gc_lock); |
| |
| return ret; |
| } |
| |
| /* Startup/shutdown: */ |
| |
| static void buckets_free_rcu(struct rcu_head *rcu) |
| { |
| struct bucket_array *buckets = |
| container_of(rcu, struct bucket_array, rcu); |
| |
| kvpfree(buckets, |
| sizeof(struct bucket_array) + |
| buckets->nbuckets * sizeof(struct bucket)); |
| } |
| |
| int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) |
| { |
| struct bucket_array *buckets = NULL, *old_buckets = NULL; |
| unsigned long *buckets_nouse = NULL; |
| unsigned long *buckets_written = NULL; |
| u8 *oldest_gens = NULL; |
| alloc_fifo free[RESERVE_NR]; |
| alloc_fifo free_inc; |
| alloc_heap alloc_heap; |
| copygc_heap copygc_heap; |
| |
| size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, |
| ca->mi.bucket_size / c->opts.btree_node_size); |
| /* XXX: these should be tunable */ |
| size_t reserve_none = max_t(size_t, 1, nbuckets >> 9); |
| size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7); |
| size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12), |
| btree_reserve); |
| bool resize = ca->buckets[0] != NULL, |
| start_copygc = ca->copygc_thread != NULL; |
| int ret = -ENOMEM; |
| unsigned i; |
| |
| memset(&free, 0, sizeof(free)); |
| memset(&free_inc, 0, sizeof(free_inc)); |
| memset(&alloc_heap, 0, sizeof(alloc_heap)); |
| memset(©gc_heap, 0, sizeof(copygc_heap)); |
| |
| if (!(buckets = kvpmalloc(sizeof(struct bucket_array) + |
| nbuckets * sizeof(struct bucket), |
| GFP_KERNEL|__GFP_ZERO)) || |
| !(oldest_gens = kvpmalloc(nbuckets * sizeof(u8), |
| GFP_KERNEL|__GFP_ZERO)) || |
| !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * |
| sizeof(unsigned long), |
| GFP_KERNEL|__GFP_ZERO)) || |
| !(buckets_written = kvpmalloc(BITS_TO_LONGS(nbuckets) * |
| sizeof(unsigned long), |
| GFP_KERNEL|__GFP_ZERO)) || |
| !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) || |
| !init_fifo(&free[RESERVE_MOVINGGC], |
| copygc_reserve, GFP_KERNEL) || |
| !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) || |
| !init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) || |
| !init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) || |
| !init_heap(©gc_heap, copygc_reserve, GFP_KERNEL)) |
| goto err; |
| |
| buckets->first_bucket = ca->mi.first_bucket; |
| buckets->nbuckets = nbuckets; |
| |
| bch2_copygc_stop(ca); |
| |
| if (resize) { |
| down_write(&c->gc_lock); |
| down_write(&ca->bucket_lock); |
| percpu_down_write(&c->mark_lock); |
| } |
| |
| old_buckets = bucket_array(ca); |
| |
| if (resize) { |
| size_t n = min(buckets->nbuckets, old_buckets->nbuckets); |
| |
| memcpy(buckets->b, |
| old_buckets->b, |
| n * sizeof(struct bucket)); |
| memcpy(oldest_gens, |
| ca->oldest_gens, |
| n * sizeof(u8)); |
| memcpy(buckets_nouse, |
| ca->buckets_nouse, |
| BITS_TO_LONGS(n) * sizeof(unsigned long)); |
| memcpy(buckets_written, |
| ca->buckets_written, |
| BITS_TO_LONGS(n) * sizeof(unsigned long)); |
| } |
| |
| rcu_assign_pointer(ca->buckets[0], buckets); |
| buckets = old_buckets; |
| |
| swap(ca->oldest_gens, oldest_gens); |
| swap(ca->buckets_nouse, buckets_nouse); |
| swap(ca->buckets_written, buckets_written); |
| |
| if (resize) |
| percpu_up_write(&c->mark_lock); |
| |
| spin_lock(&c->freelist_lock); |
| for (i = 0; i < RESERVE_NR; i++) { |
| fifo_move(&free[i], &ca->free[i]); |
| swap(ca->free[i], free[i]); |
| } |
| fifo_move(&free_inc, &ca->free_inc); |
| swap(ca->free_inc, free_inc); |
| spin_unlock(&c->freelist_lock); |
| |
| /* with gc lock held, alloc_heap can't be in use: */ |
| swap(ca->alloc_heap, alloc_heap); |
| |
| /* and we shut down copygc: */ |
| swap(ca->copygc_heap, copygc_heap); |
| |
| nbuckets = ca->mi.nbuckets; |
| |
| if (resize) { |
| up_write(&ca->bucket_lock); |
| up_write(&c->gc_lock); |
| } |
| |
| if (start_copygc && |
| bch2_copygc_start(c, ca)) |
| bch_err(ca, "error restarting copygc thread"); |
| |
| ret = 0; |
| err: |
| free_heap(©gc_heap); |
| free_heap(&alloc_heap); |
| free_fifo(&free_inc); |
| for (i = 0; i < RESERVE_NR; i++) |
| free_fifo(&free[i]); |
| kvpfree(buckets_nouse, |
| BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); |
| kvpfree(buckets_written, |
| BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); |
| kvpfree(oldest_gens, |
| nbuckets * sizeof(u8)); |
| if (buckets) |
| call_rcu(&old_buckets->rcu, buckets_free_rcu); |
| |
| return ret; |
| } |
| |
| void bch2_dev_buckets_free(struct bch_dev *ca) |
| { |
| unsigned i; |
| |
| free_heap(&ca->copygc_heap); |
| free_heap(&ca->alloc_heap); |
| free_fifo(&ca->free_inc); |
| for (i = 0; i < RESERVE_NR; i++) |
| free_fifo(&ca->free[i]); |
| kvpfree(ca->buckets_written, |
| BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); |
| kvpfree(ca->buckets_nouse, |
| BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); |
| kvpfree(ca->oldest_gens, ca->mi.nbuckets * sizeof(u8)); |
| kvpfree(rcu_dereference_protected(ca->buckets[0], 1), |
| sizeof(struct bucket_array) + |
| ca->mi.nbuckets * sizeof(struct bucket)); |
| |
| free_percpu(ca->usage[0]); |
| } |
| |
| int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) |
| { |
| if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage))) |
| return -ENOMEM; |
| |
| return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; |
| } |