| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. |
| * |
| * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. |
| * |
| * Thanks to Essential Communication for providing us with hardware |
| * and very comprehensive documentation without which I would not have |
| * been able to write this driver. A special thank you to John Gibbon |
| * for sorting out the legal issues, with the NDA, allowing the code to |
| * be released under the GPL. |
| * |
| * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the |
| * stupid bugs in my code. |
| * |
| * Softnet support and various other patches from Val Henson of |
| * ODS/Essential. |
| * |
| * PCI DMA mapping code partly based on work by Francois Romieu. |
| */ |
| |
| |
| #define DEBUG 1 |
| #define RX_DMA_SKBUFF 1 |
| #define PKT_COPY_THRESHOLD 512 |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/hippidevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/delay.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <net/sock.h> |
| |
| #include <asm/cache.h> |
| #include <asm/byteorder.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <linux/uaccess.h> |
| |
| #define rr_if_busy(dev) netif_queue_stopped(dev) |
| #define rr_if_running(dev) netif_running(dev) |
| |
| #include "rrunner.h" |
| |
| #define RUN_AT(x) (jiffies + (x)) |
| |
| |
| MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); |
| MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); |
| MODULE_LICENSE("GPL"); |
| |
| static const char version[] = |
| "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; |
| |
| |
| static const struct net_device_ops rr_netdev_ops = { |
| .ndo_open = rr_open, |
| .ndo_stop = rr_close, |
| .ndo_do_ioctl = rr_ioctl, |
| .ndo_start_xmit = rr_start_xmit, |
| .ndo_set_mac_address = hippi_mac_addr, |
| }; |
| |
| /* |
| * Implementation notes: |
| * |
| * The DMA engine only allows for DMA within physical 64KB chunks of |
| * memory. The current approach of the driver (and stack) is to use |
| * linear blocks of memory for the skbuffs. However, as the data block |
| * is always the first part of the skb and skbs are 2^n aligned so we |
| * are guarantted to get the whole block within one 64KB align 64KB |
| * chunk. |
| * |
| * On the long term, relying on being able to allocate 64KB linear |
| * chunks of memory is not feasible and the skb handling code and the |
| * stack will need to know about I/O vectors or something similar. |
| */ |
| |
| static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *dev; |
| static int version_disp; |
| u8 pci_latency; |
| struct rr_private *rrpriv; |
| void *tmpptr; |
| dma_addr_t ring_dma; |
| int ret = -ENOMEM; |
| |
| dev = alloc_hippi_dev(sizeof(struct rr_private)); |
| if (!dev) |
| goto out3; |
| |
| ret = pci_enable_device(pdev); |
| if (ret) { |
| ret = -ENODEV; |
| goto out2; |
| } |
| |
| rrpriv = netdev_priv(dev); |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| ret = pci_request_regions(pdev, "rrunner"); |
| if (ret < 0) |
| goto out; |
| |
| pci_set_drvdata(pdev, dev); |
| |
| rrpriv->pci_dev = pdev; |
| |
| spin_lock_init(&rrpriv->lock); |
| |
| dev->netdev_ops = &rr_netdev_ops; |
| |
| /* display version info if adapter is found */ |
| if (!version_disp) { |
| /* set display flag to TRUE so that */ |
| /* we only display this string ONCE */ |
| version_disp = 1; |
| printk(version); |
| } |
| |
| pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); |
| if (pci_latency <= 0x58){ |
| pci_latency = 0x58; |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); |
| } |
| |
| pci_set_master(pdev); |
| |
| printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " |
| "at 0x%llx, irq %i, PCI latency %i\n", dev->name, |
| (unsigned long long)pci_resource_start(pdev, 0), |
| pdev->irq, pci_latency); |
| |
| /* |
| * Remap the MMIO regs into kernel space. |
| */ |
| rrpriv->regs = pci_iomap(pdev, 0, 0x1000); |
| if (!rrpriv->regs) { |
| printk(KERN_ERR "%s: Unable to map I/O register, " |
| "RoadRunner will be disabled.\n", dev->name); |
| ret = -EIO; |
| goto out; |
| } |
| |
| tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); |
| rrpriv->tx_ring = tmpptr; |
| rrpriv->tx_ring_dma = ring_dma; |
| |
| if (!tmpptr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); |
| rrpriv->rx_ring = tmpptr; |
| rrpriv->rx_ring_dma = ring_dma; |
| |
| if (!tmpptr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); |
| rrpriv->evt_ring = tmpptr; |
| rrpriv->evt_ring_dma = ring_dma; |
| |
| if (!tmpptr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Don't access any register before this point! |
| */ |
| #ifdef __BIG_ENDIAN |
| writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, |
| &rrpriv->regs->HostCtrl); |
| #endif |
| /* |
| * Need to add a case for little-endian 64-bit hosts here. |
| */ |
| |
| rr_init(dev); |
| |
| ret = register_netdev(dev); |
| if (ret) |
| goto out; |
| return 0; |
| |
| out: |
| if (rrpriv->evt_ring) |
| pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring, |
| rrpriv->evt_ring_dma); |
| if (rrpriv->rx_ring) |
| pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, |
| rrpriv->rx_ring_dma); |
| if (rrpriv->tx_ring) |
| pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, |
| rrpriv->tx_ring_dma); |
| if (rrpriv->regs) |
| pci_iounmap(pdev, rrpriv->regs); |
| if (pdev) |
| pci_release_regions(pdev); |
| out2: |
| free_netdev(dev); |
| out3: |
| return ret; |
| } |
| |
| static void rr_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct rr_private *rr = netdev_priv(dev); |
| |
| if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) { |
| printk(KERN_ERR "%s: trying to unload running NIC\n", |
| dev->name); |
| writel(HALT_NIC, &rr->regs->HostCtrl); |
| } |
| |
| unregister_netdev(dev); |
| pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, |
| rr->evt_ring_dma); |
| pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, |
| rr->rx_ring_dma); |
| pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, |
| rr->tx_ring_dma); |
| pci_iounmap(pdev, rr->regs); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| free_netdev(dev); |
| } |
| |
| |
| /* |
| * Commands are considered to be slow, thus there is no reason to |
| * inline this. |
| */ |
| static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) |
| { |
| struct rr_regs __iomem *regs; |
| u32 idx; |
| |
| regs = rrpriv->regs; |
| /* |
| * This is temporary - it will go away in the final version. |
| * We probably also want to make this function inline. |
| */ |
| if (readl(®s->HostCtrl) & NIC_HALTED){ |
| printk("issuing command for halted NIC, code 0x%x, " |
| "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); |
| if (readl(®s->Mode) & FATAL_ERR) |
| printk("error codes Fail1 %02x, Fail2 %02x\n", |
| readl(®s->Fail1), readl(®s->Fail2)); |
| } |
| |
| idx = rrpriv->info->cmd_ctrl.pi; |
| |
| writel(*(u32*)(cmd), ®s->CmdRing[idx]); |
| wmb(); |
| |
| idx = (idx - 1) % CMD_RING_ENTRIES; |
| rrpriv->info->cmd_ctrl.pi = idx; |
| wmb(); |
| |
| if (readl(®s->Mode) & FATAL_ERR) |
| printk("error code %02x\n", readl(®s->Fail1)); |
| } |
| |
| |
| /* |
| * Reset the board in a sensible manner. The NIC is already halted |
| * when we get here and a spin-lock is held. |
| */ |
| static int rr_reset(struct net_device *dev) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| u32 start_pc; |
| int i; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| rr_load_firmware(dev); |
| |
| writel(0x01000000, ®s->TX_state); |
| writel(0xff800000, ®s->RX_state); |
| writel(0, ®s->AssistState); |
| writel(CLEAR_INTA, ®s->LocalCtrl); |
| writel(0x01, ®s->BrkPt); |
| writel(0, ®s->Timer); |
| writel(0, ®s->TimerRef); |
| writel(RESET_DMA, ®s->DmaReadState); |
| writel(RESET_DMA, ®s->DmaWriteState); |
| writel(0, ®s->DmaWriteHostHi); |
| writel(0, ®s->DmaWriteHostLo); |
| writel(0, ®s->DmaReadHostHi); |
| writel(0, ®s->DmaReadHostLo); |
| writel(0, ®s->DmaReadLen); |
| writel(0, ®s->DmaWriteLen); |
| writel(0, ®s->DmaWriteLcl); |
| writel(0, ®s->DmaWriteIPchecksum); |
| writel(0, ®s->DmaReadLcl); |
| writel(0, ®s->DmaReadIPchecksum); |
| writel(0, ®s->PciState); |
| #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN |
| writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); |
| #elif (BITS_PER_LONG == 64) |
| writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); |
| #else |
| writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); |
| #endif |
| |
| #if 0 |
| /* |
| * Don't worry, this is just black magic. |
| */ |
| writel(0xdf000, ®s->RxBase); |
| writel(0xdf000, ®s->RxPrd); |
| writel(0xdf000, ®s->RxCon); |
| writel(0xce000, ®s->TxBase); |
| writel(0xce000, ®s->TxPrd); |
| writel(0xce000, ®s->TxCon); |
| writel(0, ®s->RxIndPro); |
| writel(0, ®s->RxIndCon); |
| writel(0, ®s->RxIndRef); |
| writel(0, ®s->TxIndPro); |
| writel(0, ®s->TxIndCon); |
| writel(0, ®s->TxIndRef); |
| writel(0xcc000, ®s->pad10[0]); |
| writel(0, ®s->DrCmndPro); |
| writel(0, ®s->DrCmndCon); |
| writel(0, ®s->DwCmndPro); |
| writel(0, ®s->DwCmndCon); |
| writel(0, ®s->DwCmndRef); |
| writel(0, ®s->DrDataPro); |
| writel(0, ®s->DrDataCon); |
| writel(0, ®s->DrDataRef); |
| writel(0, ®s->DwDataPro); |
| writel(0, ®s->DwDataCon); |
| writel(0, ®s->DwDataRef); |
| #endif |
| |
| writel(0xffffffff, ®s->MbEvent); |
| writel(0, ®s->Event); |
| |
| writel(0, ®s->TxPi); |
| writel(0, ®s->IpRxPi); |
| |
| writel(0, ®s->EvtCon); |
| writel(0, ®s->EvtPrd); |
| |
| rrpriv->info->evt_ctrl.pi = 0; |
| |
| for (i = 0; i < CMD_RING_ENTRIES; i++) |
| writel(0, ®s->CmdRing[i]); |
| |
| /* |
| * Why 32 ? is this not cache line size dependent? |
| */ |
| writel(RBURST_64|WBURST_64, ®s->PciState); |
| wmb(); |
| |
| start_pc = rr_read_eeprom_word(rrpriv, |
| offsetof(struct eeprom, rncd_info.FwStart)); |
| |
| #if (DEBUG > 1) |
| printk("%s: Executing firmware at address 0x%06x\n", |
| dev->name, start_pc); |
| #endif |
| |
| writel(start_pc + 0x800, ®s->Pc); |
| wmb(); |
| udelay(5); |
| |
| writel(start_pc, ®s->Pc); |
| wmb(); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Read a string from the EEPROM. |
| */ |
| static unsigned int rr_read_eeprom(struct rr_private *rrpriv, |
| unsigned long offset, |
| unsigned char *buf, |
| unsigned long length) |
| { |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| u32 misc, io, host, i; |
| |
| io = readl(®s->ExtIo); |
| writel(0, ®s->ExtIo); |
| misc = readl(®s->LocalCtrl); |
| writel(0, ®s->LocalCtrl); |
| host = readl(®s->HostCtrl); |
| writel(host | HALT_NIC, ®s->HostCtrl); |
| mb(); |
| |
| for (i = 0; i < length; i++){ |
| writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); |
| mb(); |
| buf[i] = (readl(®s->WinData) >> 24) & 0xff; |
| mb(); |
| } |
| |
| writel(host, ®s->HostCtrl); |
| writel(misc, ®s->LocalCtrl); |
| writel(io, ®s->ExtIo); |
| mb(); |
| return i; |
| } |
| |
| |
| /* |
| * Shortcut to read one word (4 bytes) out of the EEPROM and convert |
| * it to our CPU byte-order. |
| */ |
| static u32 rr_read_eeprom_word(struct rr_private *rrpriv, |
| size_t offset) |
| { |
| __be32 word; |
| |
| if ((rr_read_eeprom(rrpriv, offset, |
| (unsigned char *)&word, 4) == 4)) |
| return be32_to_cpu(word); |
| return 0; |
| } |
| |
| |
| /* |
| * Write a string to the EEPROM. |
| * |
| * This is only called when the firmware is not running. |
| */ |
| static unsigned int write_eeprom(struct rr_private *rrpriv, |
| unsigned long offset, |
| unsigned char *buf, |
| unsigned long length) |
| { |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| u32 misc, io, data, i, j, ready, error = 0; |
| |
| io = readl(®s->ExtIo); |
| writel(0, ®s->ExtIo); |
| misc = readl(®s->LocalCtrl); |
| writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); |
| mb(); |
| |
| for (i = 0; i < length; i++){ |
| writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); |
| mb(); |
| data = buf[i] << 24; |
| /* |
| * Only try to write the data if it is not the same |
| * value already. |
| */ |
| if ((readl(®s->WinData) & 0xff000000) != data){ |
| writel(data, ®s->WinData); |
| ready = 0; |
| j = 0; |
| mb(); |
| while(!ready){ |
| udelay(20); |
| if ((readl(®s->WinData) & 0xff000000) == |
| data) |
| ready = 1; |
| mb(); |
| if (j++ > 5000){ |
| printk("data mismatch: %08x, " |
| "WinData %08x\n", data, |
| readl(®s->WinData)); |
| ready = 1; |
| error = 1; |
| } |
| } |
| } |
| } |
| |
| writel(misc, ®s->LocalCtrl); |
| writel(io, ®s->ExtIo); |
| mb(); |
| |
| return error; |
| } |
| |
| |
| static int rr_init(struct net_device *dev) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| u32 sram_size, rev; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| rev = readl(®s->FwRev); |
| rrpriv->fw_rev = rev; |
| if (rev > 0x00020024) |
| printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), |
| ((rev >> 8) & 0xff), (rev & 0xff)); |
| else if (rev >= 0x00020000) { |
| printk(" Firmware revision: %i.%i.%i (2.0.37 or " |
| "later is recommended)\n", (rev >> 16), |
| ((rev >> 8) & 0xff), (rev & 0xff)); |
| }else{ |
| printk(" Firmware revision too old: %i.%i.%i, please " |
| "upgrade to 2.0.37 or later.\n", |
| (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); |
| } |
| |
| #if (DEBUG > 2) |
| printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); |
| #endif |
| |
| /* |
| * Read the hardware address from the eeprom. The HW address |
| * is not really necessary for HIPPI but awfully convenient. |
| * The pointer arithmetic to put it in dev_addr is ugly, but |
| * Donald Becker does it this way for the GigE version of this |
| * card and it's shorter and more portable than any |
| * other method I've seen. -VAL |
| */ |
| |
| *(__be16 *)(dev->dev_addr) = |
| htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); |
| *(__be32 *)(dev->dev_addr+2) = |
| htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); |
| |
| printk(" MAC: %pM\n", dev->dev_addr); |
| |
| sram_size = rr_read_eeprom_word(rrpriv, 8); |
| printk(" SRAM size 0x%06x\n", sram_size); |
| |
| return 0; |
| } |
| |
| |
| static int rr_init1(struct net_device *dev) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| unsigned long myjif, flags; |
| struct cmd cmd; |
| u32 hostctrl; |
| int ecode = 0; |
| short i; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| |
| hostctrl = readl(®s->HostCtrl); |
| writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); |
| wmb(); |
| |
| if (hostctrl & PARITY_ERR){ |
| printk("%s: Parity error halting NIC - this is serious!\n", |
| dev->name); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| ecode = -EFAULT; |
| goto error; |
| } |
| |
| set_rxaddr(regs, rrpriv->rx_ctrl_dma); |
| set_infoaddr(regs, rrpriv->info_dma); |
| |
| rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); |
| rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; |
| rrpriv->info->evt_ctrl.mode = 0; |
| rrpriv->info->evt_ctrl.pi = 0; |
| set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); |
| |
| rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); |
| rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; |
| rrpriv->info->cmd_ctrl.mode = 0; |
| rrpriv->info->cmd_ctrl.pi = 15; |
| |
| for (i = 0; i < CMD_RING_ENTRIES; i++) { |
| writel(0, ®s->CmdRing[i]); |
| } |
| |
| for (i = 0; i < TX_RING_ENTRIES; i++) { |
| rrpriv->tx_ring[i].size = 0; |
| set_rraddr(&rrpriv->tx_ring[i].addr, 0); |
| rrpriv->tx_skbuff[i] = NULL; |
| } |
| rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); |
| rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; |
| rrpriv->info->tx_ctrl.mode = 0; |
| rrpriv->info->tx_ctrl.pi = 0; |
| set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); |
| |
| /* |
| * Set dirty_tx before we start receiving interrupts, otherwise |
| * the interrupt handler might think it is supposed to process |
| * tx ints before we are up and running, which may cause a null |
| * pointer access in the int handler. |
| */ |
| rrpriv->tx_full = 0; |
| rrpriv->cur_rx = 0; |
| rrpriv->dirty_rx = rrpriv->dirty_tx = 0; |
| |
| rr_reset(dev); |
| |
| /* Tuning values */ |
| writel(0x5000, ®s->ConRetry); |
| writel(0x100, ®s->ConRetryTmr); |
| writel(0x500000, ®s->ConTmout); |
| writel(0x60, ®s->IntrTmr); |
| writel(0x500000, ®s->TxDataMvTimeout); |
| writel(0x200000, ®s->RxDataMvTimeout); |
| writel(0x80, ®s->WriteDmaThresh); |
| writel(0x80, ®s->ReadDmaThresh); |
| |
| rrpriv->fw_running = 0; |
| wmb(); |
| |
| hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); |
| writel(hostctrl, ®s->HostCtrl); |
| wmb(); |
| |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| |
| for (i = 0; i < RX_RING_ENTRIES; i++) { |
| struct sk_buff *skb; |
| dma_addr_t addr; |
| |
| rrpriv->rx_ring[i].mode = 0; |
| skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); |
| if (!skb) { |
| printk(KERN_WARNING "%s: Unable to allocate memory " |
| "for receive ring - halting NIC\n", dev->name); |
| ecode = -ENOMEM; |
| goto error; |
| } |
| rrpriv->rx_skbuff[i] = skb; |
| addr = pci_map_single(rrpriv->pci_dev, skb->data, |
| dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| /* |
| * Sanity test to see if we conflict with the DMA |
| * limitations of the Roadrunner. |
| */ |
| if ((((unsigned long)skb->data) & 0xfff) > ~65320) |
| printk("skb alloc error\n"); |
| |
| set_rraddr(&rrpriv->rx_ring[i].addr, addr); |
| rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; |
| } |
| |
| rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); |
| rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; |
| rrpriv->rx_ctrl[4].mode = 8; |
| rrpriv->rx_ctrl[4].pi = 0; |
| wmb(); |
| set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); |
| |
| udelay(1000); |
| |
| /* |
| * Now start the FirmWare. |
| */ |
| cmd.code = C_START_FW; |
| cmd.ring = 0; |
| cmd.index = 0; |
| |
| rr_issue_cmd(rrpriv, &cmd); |
| |
| /* |
| * Give the FirmWare time to chew on the `get running' command. |
| */ |
| myjif = jiffies + 5 * HZ; |
| while (time_before(jiffies, myjif) && !rrpriv->fw_running) |
| cpu_relax(); |
| |
| netif_start_queue(dev); |
| |
| return ecode; |
| |
| error: |
| /* |
| * We might have gotten here because we are out of memory, |
| * make sure we release everything we allocated before failing |
| */ |
| for (i = 0; i < RX_RING_ENTRIES; i++) { |
| struct sk_buff *skb = rrpriv->rx_skbuff[i]; |
| |
| if (skb) { |
| pci_unmap_single(rrpriv->pci_dev, |
| rrpriv->rx_ring[i].addr.addrlo, |
| dev->mtu + HIPPI_HLEN, |
| PCI_DMA_FROMDEVICE); |
| rrpriv->rx_ring[i].size = 0; |
| set_rraddr(&rrpriv->rx_ring[i].addr, 0); |
| dev_kfree_skb(skb); |
| rrpriv->rx_skbuff[i] = NULL; |
| } |
| } |
| return ecode; |
| } |
| |
| |
| /* |
| * All events are considered to be slow (RX/TX ints do not generate |
| * events) and are handled here, outside the main interrupt handler, |
| * to reduce the size of the handler. |
| */ |
| static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| u32 tmp; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| while (prodidx != eidx){ |
| switch (rrpriv->evt_ring[eidx].code){ |
| case E_NIC_UP: |
| tmp = readl(®s->FwRev); |
| printk(KERN_INFO "%s: Firmware revision %i.%i.%i " |
| "up and running\n", dev->name, |
| (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); |
| rrpriv->fw_running = 1; |
| writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); |
| wmb(); |
| break; |
| case E_LINK_ON: |
| printk(KERN_INFO "%s: Optical link ON\n", dev->name); |
| break; |
| case E_LINK_OFF: |
| printk(KERN_INFO "%s: Optical link OFF\n", dev->name); |
| break; |
| case E_RX_IDLE: |
| printk(KERN_WARNING "%s: RX data not moving\n", |
| dev->name); |
| goto drop; |
| case E_WATCHDOG: |
| printk(KERN_INFO "%s: The watchdog is here to see " |
| "us\n", dev->name); |
| break; |
| case E_INTERN_ERR: |
| printk(KERN_ERR "%s: HIPPI Internal NIC error\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_HOST_ERR: |
| printk(KERN_ERR "%s: Host software error\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| /* |
| * TX events. |
| */ |
| case E_CON_REJ: |
| printk(KERN_WARNING "%s: Connection rejected\n", |
| dev->name); |
| dev->stats.tx_aborted_errors++; |
| break; |
| case E_CON_TMOUT: |
| printk(KERN_WARNING "%s: Connection timeout\n", |
| dev->name); |
| break; |
| case E_DISC_ERR: |
| printk(KERN_WARNING "%s: HIPPI disconnect error\n", |
| dev->name); |
| dev->stats.tx_aborted_errors++; |
| break; |
| case E_INT_PRTY: |
| printk(KERN_ERR "%s: HIPPI Internal Parity error\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_TX_IDLE: |
| printk(KERN_WARNING "%s: Transmitter idle\n", |
| dev->name); |
| break; |
| case E_TX_LINK_DROP: |
| printk(KERN_WARNING "%s: Link lost during transmit\n", |
| dev->name); |
| dev->stats.tx_aborted_errors++; |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_TX_INV_RNG: |
| printk(KERN_ERR "%s: Invalid send ring block\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_TX_INV_BUF: |
| printk(KERN_ERR "%s: Invalid send buffer address\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_TX_INV_DSC: |
| printk(KERN_ERR "%s: Invalid descriptor address\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| /* |
| * RX events. |
| */ |
| case E_RX_RNG_OUT: |
| printk(KERN_INFO "%s: Receive ring full\n", dev->name); |
| break; |
| |
| case E_RX_PAR_ERR: |
| printk(KERN_WARNING "%s: Receive parity error\n", |
| dev->name); |
| goto drop; |
| case E_RX_LLRC_ERR: |
| printk(KERN_WARNING "%s: Receive LLRC error\n", |
| dev->name); |
| goto drop; |
| case E_PKT_LN_ERR: |
| printk(KERN_WARNING "%s: Receive packet length " |
| "error\n", dev->name); |
| goto drop; |
| case E_DTA_CKSM_ERR: |
| printk(KERN_WARNING "%s: Data checksum error\n", |
| dev->name); |
| goto drop; |
| case E_SHT_BST: |
| printk(KERN_WARNING "%s: Unexpected short burst " |
| "error\n", dev->name); |
| goto drop; |
| case E_STATE_ERR: |
| printk(KERN_WARNING "%s: Recv. state transition" |
| " error\n", dev->name); |
| goto drop; |
| case E_UNEXP_DATA: |
| printk(KERN_WARNING "%s: Unexpected data error\n", |
| dev->name); |
| goto drop; |
| case E_LST_LNK_ERR: |
| printk(KERN_WARNING "%s: Link lost error\n", |
| dev->name); |
| goto drop; |
| case E_FRM_ERR: |
| printk(KERN_WARNING "%s: Framing Error\n", |
| dev->name); |
| goto drop; |
| case E_FLG_SYN_ERR: |
| printk(KERN_WARNING "%s: Flag sync. lost during " |
| "packet\n", dev->name); |
| goto drop; |
| case E_RX_INV_BUF: |
| printk(KERN_ERR "%s: Invalid receive buffer " |
| "address\n", dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_RX_INV_DSC: |
| printk(KERN_ERR "%s: Invalid receive descriptor " |
| "address\n", dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| case E_RNG_BLK: |
| printk(KERN_ERR "%s: Invalid ring block\n", |
| dev->name); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| wmb(); |
| break; |
| drop: |
| /* Label packet to be dropped. |
| * Actual dropping occurs in rx |
| * handling. |
| * |
| * The index of packet we get to drop is |
| * the index of the packet following |
| * the bad packet. -kbf |
| */ |
| { |
| u16 index = rrpriv->evt_ring[eidx].index; |
| index = (index + (RX_RING_ENTRIES - 1)) % |
| RX_RING_ENTRIES; |
| rrpriv->rx_ring[index].mode |= |
| (PACKET_BAD | PACKET_END); |
| } |
| break; |
| default: |
| printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", |
| dev->name, rrpriv->evt_ring[eidx].code); |
| } |
| eidx = (eidx + 1) % EVT_RING_ENTRIES; |
| } |
| |
| rrpriv->info->evt_ctrl.pi = eidx; |
| wmb(); |
| return eidx; |
| } |
| |
| |
| static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) |
| { |
| struct rr_private *rrpriv = netdev_priv(dev); |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| |
| do { |
| struct rx_desc *desc; |
| u32 pkt_len; |
| |
| desc = &(rrpriv->rx_ring[index]); |
| pkt_len = desc->size; |
| #if (DEBUG > 2) |
| printk("index %i, rxlimit %i\n", index, rxlimit); |
| printk("len %x, mode %x\n", pkt_len, desc->mode); |
| #endif |
| if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ |
| dev->stats.rx_dropped++; |
| goto defer; |
| } |
| |
| if (pkt_len > 0){ |
| struct sk_buff *skb, *rx_skb; |
| |
| rx_skb = rrpriv->rx_skbuff[index]; |
| |
| if (pkt_len < PKT_COPY_THRESHOLD) { |
| skb = alloc_skb(pkt_len, GFP_ATOMIC); |
| if (skb == NULL){ |
| printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); |
| dev->stats.rx_dropped++; |
| goto defer; |
| } else { |
| pci_dma_sync_single_for_cpu(rrpriv->pci_dev, |
| desc->addr.addrlo, |
| pkt_len, |
| PCI_DMA_FROMDEVICE); |
| |
| skb_put_data(skb, rx_skb->data, |
| pkt_len); |
| |
| pci_dma_sync_single_for_device(rrpriv->pci_dev, |
| desc->addr.addrlo, |
| pkt_len, |
| PCI_DMA_FROMDEVICE); |
| } |
| }else{ |
| struct sk_buff *newskb; |
| |
| newskb = alloc_skb(dev->mtu + HIPPI_HLEN, |
| GFP_ATOMIC); |
| if (newskb){ |
| dma_addr_t addr; |
| |
| pci_unmap_single(rrpriv->pci_dev, |
| desc->addr.addrlo, dev->mtu + |
| HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| skb = rx_skb; |
| skb_put(skb, pkt_len); |
| rrpriv->rx_skbuff[index] = newskb; |
| addr = pci_map_single(rrpriv->pci_dev, |
| newskb->data, |
| dev->mtu + HIPPI_HLEN, |
| PCI_DMA_FROMDEVICE); |
| set_rraddr(&desc->addr, addr); |
| } else { |
| printk("%s: Out of memory, deferring " |
| "packet\n", dev->name); |
| dev->stats.rx_dropped++; |
| goto defer; |
| } |
| } |
| skb->protocol = hippi_type_trans(skb, dev); |
| |
| netif_rx(skb); /* send it up */ |
| |
| dev->stats.rx_packets++; |
| dev->stats.rx_bytes += pkt_len; |
| } |
| defer: |
| desc->mode = 0; |
| desc->size = dev->mtu + HIPPI_HLEN; |
| |
| if ((index & 7) == 7) |
| writel(index, ®s->IpRxPi); |
| |
| index = (index + 1) % RX_RING_ENTRIES; |
| } while(index != rxlimit); |
| |
| rrpriv->cur_rx = index; |
| wmb(); |
| } |
| |
| |
| static irqreturn_t rr_interrupt(int irq, void *dev_id) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| struct net_device *dev = (struct net_device *)dev_id; |
| u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| if (!(readl(®s->HostCtrl) & RR_INT)) |
| return IRQ_NONE; |
| |
| spin_lock(&rrpriv->lock); |
| |
| prodidx = readl(®s->EvtPrd); |
| txcsmr = (prodidx >> 8) & 0xff; |
| rxlimit = (prodidx >> 16) & 0xff; |
| prodidx &= 0xff; |
| |
| #if (DEBUG > 2) |
| printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, |
| prodidx, rrpriv->info->evt_ctrl.pi); |
| #endif |
| /* |
| * Order here is important. We must handle events |
| * before doing anything else in order to catch |
| * such things as LLRC errors, etc -kbf |
| */ |
| |
| eidx = rrpriv->info->evt_ctrl.pi; |
| if (prodidx != eidx) |
| eidx = rr_handle_event(dev, prodidx, eidx); |
| |
| rxindex = rrpriv->cur_rx; |
| if (rxindex != rxlimit) |
| rx_int(dev, rxlimit, rxindex); |
| |
| txcon = rrpriv->dirty_tx; |
| if (txcsmr != txcon) { |
| do { |
| /* Due to occational firmware TX producer/consumer out |
| * of sync. error need to check entry in ring -kbf |
| */ |
| if(rrpriv->tx_skbuff[txcon]){ |
| struct tx_desc *desc; |
| struct sk_buff *skb; |
| |
| desc = &(rrpriv->tx_ring[txcon]); |
| skb = rrpriv->tx_skbuff[txcon]; |
| |
| dev->stats.tx_packets++; |
| dev->stats.tx_bytes += skb->len; |
| |
| pci_unmap_single(rrpriv->pci_dev, |
| desc->addr.addrlo, skb->len, |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb_irq(skb); |
| |
| rrpriv->tx_skbuff[txcon] = NULL; |
| desc->size = 0; |
| set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); |
| desc->mode = 0; |
| } |
| txcon = (txcon + 1) % TX_RING_ENTRIES; |
| } while (txcsmr != txcon); |
| wmb(); |
| |
| rrpriv->dirty_tx = txcon; |
| if (rrpriv->tx_full && rr_if_busy(dev) && |
| (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) |
| != rrpriv->dirty_tx)){ |
| rrpriv->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| } |
| |
| eidx |= ((txcsmr << 8) | (rxlimit << 16)); |
| writel(eidx, ®s->EvtCon); |
| wmb(); |
| |
| spin_unlock(&rrpriv->lock); |
| return IRQ_HANDLED; |
| } |
| |
| static inline void rr_raz_tx(struct rr_private *rrpriv, |
| struct net_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < TX_RING_ENTRIES; i++) { |
| struct sk_buff *skb = rrpriv->tx_skbuff[i]; |
| |
| if (skb) { |
| struct tx_desc *desc = &(rrpriv->tx_ring[i]); |
| |
| pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, |
| skb->len, PCI_DMA_TODEVICE); |
| desc->size = 0; |
| set_rraddr(&desc->addr, 0); |
| dev_kfree_skb(skb); |
| rrpriv->tx_skbuff[i] = NULL; |
| } |
| } |
| } |
| |
| |
| static inline void rr_raz_rx(struct rr_private *rrpriv, |
| struct net_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < RX_RING_ENTRIES; i++) { |
| struct sk_buff *skb = rrpriv->rx_skbuff[i]; |
| |
| if (skb) { |
| struct rx_desc *desc = &(rrpriv->rx_ring[i]); |
| |
| pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, |
| dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| desc->size = 0; |
| set_rraddr(&desc->addr, 0); |
| dev_kfree_skb(skb); |
| rrpriv->rx_skbuff[i] = NULL; |
| } |
| } |
| } |
| |
| static void rr_timer(struct timer_list *t) |
| { |
| struct rr_private *rrpriv = from_timer(rrpriv, t, timer); |
| struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev); |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| unsigned long flags; |
| |
| if (readl(®s->HostCtrl) & NIC_HALTED){ |
| printk("%s: Restarting nic\n", dev->name); |
| memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); |
| memset(rrpriv->info, 0, sizeof(struct rr_info)); |
| wmb(); |
| |
| rr_raz_tx(rrpriv, dev); |
| rr_raz_rx(rrpriv, dev); |
| |
| if (rr_init1(dev)) { |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| ®s->HostCtrl); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| } |
| } |
| rrpriv->timer.expires = RUN_AT(5*HZ); |
| add_timer(&rrpriv->timer); |
| } |
| |
| |
| static int rr_open(struct net_device *dev) |
| { |
| struct rr_private *rrpriv = netdev_priv(dev); |
| struct pci_dev *pdev = rrpriv->pci_dev; |
| struct rr_regs __iomem *regs; |
| int ecode = 0; |
| unsigned long flags; |
| dma_addr_t dma_addr; |
| |
| regs = rrpriv->regs; |
| |
| if (rrpriv->fw_rev < 0x00020000) { |
| printk(KERN_WARNING "%s: trying to configure device with " |
| "obsolete firmware\n", dev->name); |
| ecode = -EBUSY; |
| goto error; |
| } |
| |
| rrpriv->rx_ctrl = pci_alloc_consistent(pdev, |
| 256 * sizeof(struct ring_ctrl), |
| &dma_addr); |
| if (!rrpriv->rx_ctrl) { |
| ecode = -ENOMEM; |
| goto error; |
| } |
| rrpriv->rx_ctrl_dma = dma_addr; |
| memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); |
| |
| rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), |
| &dma_addr); |
| if (!rrpriv->info) { |
| ecode = -ENOMEM; |
| goto error; |
| } |
| rrpriv->info_dma = dma_addr; |
| memset(rrpriv->info, 0, sizeof(struct rr_info)); |
| wmb(); |
| |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); |
| readl(®s->HostCtrl); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| |
| if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { |
| printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", |
| dev->name, pdev->irq); |
| ecode = -EAGAIN; |
| goto error; |
| } |
| |
| if ((ecode = rr_init1(dev))) |
| goto error; |
| |
| /* Set the timer to switch to check for link beat and perhaps switch |
| to an alternate media type. */ |
| timer_setup(&rrpriv->timer, rr_timer, 0); |
| rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ |
| add_timer(&rrpriv->timer); |
| |
| netif_start_queue(dev); |
| |
| return ecode; |
| |
| error: |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| |
| if (rrpriv->info) { |
| pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, |
| rrpriv->info_dma); |
| rrpriv->info = NULL; |
| } |
| if (rrpriv->rx_ctrl) { |
| pci_free_consistent(pdev, sizeof(struct ring_ctrl), |
| rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); |
| rrpriv->rx_ctrl = NULL; |
| } |
| |
| netif_stop_queue(dev); |
| |
| return ecode; |
| } |
| |
| |
| static void rr_dump(struct net_device *dev) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| u32 index, cons; |
| short i; |
| int len; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| printk("%s: dumping NIC TX rings\n", dev->name); |
| |
| printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", |
| readl(®s->RxPrd), readl(®s->TxPrd), |
| readl(®s->EvtPrd), readl(®s->TxPi), |
| rrpriv->info->tx_ctrl.pi); |
| |
| printk("Error code 0x%x\n", readl(®s->Fail1)); |
| |
| index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES; |
| cons = rrpriv->dirty_tx; |
| printk("TX ring index %i, TX consumer %i\n", |
| index, cons); |
| |
| if (rrpriv->tx_skbuff[index]){ |
| len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); |
| printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); |
| for (i = 0; i < len; i++){ |
| if (!(i & 7)) |
| printk("\n"); |
| printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); |
| } |
| printk("\n"); |
| } |
| |
| if (rrpriv->tx_skbuff[cons]){ |
| len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); |
| printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); |
| printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n", |
| rrpriv->tx_ring[cons].mode, |
| rrpriv->tx_ring[cons].size, |
| (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, |
| rrpriv->tx_skbuff[cons]->data, |
| (unsigned int)rrpriv->tx_skbuff[cons]->truesize); |
| for (i = 0; i < len; i++){ |
| if (!(i & 7)) |
| printk("\n"); |
| printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); |
| } |
| printk("\n"); |
| } |
| |
| printk("dumping TX ring info:\n"); |
| for (i = 0; i < TX_RING_ENTRIES; i++) |
| printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", |
| rrpriv->tx_ring[i].mode, |
| rrpriv->tx_ring[i].size, |
| (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); |
| |
| } |
| |
| |
| static int rr_close(struct net_device *dev) |
| { |
| struct rr_private *rrpriv = netdev_priv(dev); |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| struct pci_dev *pdev = rrpriv->pci_dev; |
| unsigned long flags; |
| u32 tmp; |
| short i; |
| |
| netif_stop_queue(dev); |
| |
| |
| /* |
| * Lock to make sure we are not cleaning up while another CPU |
| * is handling interrupts. |
| */ |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| |
| tmp = readl(®s->HostCtrl); |
| if (tmp & NIC_HALTED){ |
| printk("%s: NIC already halted\n", dev->name); |
| rr_dump(dev); |
| }else{ |
| tmp |= HALT_NIC | RR_CLEAR_INT; |
| writel(tmp, ®s->HostCtrl); |
| readl(®s->HostCtrl); |
| } |
| |
| rrpriv->fw_running = 0; |
| |
| del_timer_sync(&rrpriv->timer); |
| |
| writel(0, ®s->TxPi); |
| writel(0, ®s->IpRxPi); |
| |
| writel(0, ®s->EvtCon); |
| writel(0, ®s->EvtPrd); |
| |
| for (i = 0; i < CMD_RING_ENTRIES; i++) |
| writel(0, ®s->CmdRing[i]); |
| |
| rrpriv->info->tx_ctrl.entries = 0; |
| rrpriv->info->cmd_ctrl.pi = 0; |
| rrpriv->info->evt_ctrl.pi = 0; |
| rrpriv->rx_ctrl[4].entries = 0; |
| |
| rr_raz_tx(rrpriv, dev); |
| rr_raz_rx(rrpriv, dev); |
| |
| pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl), |
| rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); |
| rrpriv->rx_ctrl = NULL; |
| |
| pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, |
| rrpriv->info_dma); |
| rrpriv->info = NULL; |
| |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| free_irq(pdev->irq, dev); |
| |
| return 0; |
| } |
| |
| |
| static netdev_tx_t rr_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct rr_private *rrpriv = netdev_priv(dev); |
| struct rr_regs __iomem *regs = rrpriv->regs; |
| struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; |
| struct ring_ctrl *txctrl; |
| unsigned long flags; |
| u32 index, len = skb->len; |
| u32 *ifield; |
| struct sk_buff *new_skb; |
| |
| if (readl(®s->Mode) & FATAL_ERR) |
| printk("error codes Fail1 %02x, Fail2 %02x\n", |
| readl(®s->Fail1), readl(®s->Fail2)); |
| |
| /* |
| * We probably need to deal with tbusy here to prevent overruns. |
| */ |
| |
| if (skb_headroom(skb) < 8){ |
| printk("incoming skb too small - reallocating\n"); |
| if (!(new_skb = dev_alloc_skb(len + 8))) { |
| dev_kfree_skb(skb); |
| netif_wake_queue(dev); |
| return NETDEV_TX_OK; |
| } |
| skb_reserve(new_skb, 8); |
| skb_put(new_skb, len); |
| skb_copy_from_linear_data(skb, new_skb->data, len); |
| dev_kfree_skb(skb); |
| skb = new_skb; |
| } |
| |
| ifield = skb_push(skb, 8); |
| |
| ifield[0] = 0; |
| ifield[1] = hcb->ifield; |
| |
| /* |
| * We don't need the lock before we are actually going to start |
| * fiddling with the control blocks. |
| */ |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| |
| txctrl = &rrpriv->info->tx_ctrl; |
| |
| index = txctrl->pi; |
| |
| rrpriv->tx_skbuff[index] = skb; |
| set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( |
| rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); |
| rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ |
| rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; |
| txctrl->pi = (index + 1) % TX_RING_ENTRIES; |
| wmb(); |
| writel(txctrl->pi, ®s->TxPi); |
| |
| if (txctrl->pi == rrpriv->dirty_tx){ |
| rrpriv->tx_full = 1; |
| netif_stop_queue(dev); |
| } |
| |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /* |
| * Read the firmware out of the EEPROM and put it into the SRAM |
| * (or from user space - later) |
| * |
| * This operation requires the NIC to be halted and is performed with |
| * interrupts disabled and with the spinlock hold. |
| */ |
| static int rr_load_firmware(struct net_device *dev) |
| { |
| struct rr_private *rrpriv; |
| struct rr_regs __iomem *regs; |
| size_t eptr, segptr; |
| int i, j; |
| u32 localctrl, sptr, len, tmp; |
| u32 p2len, p2size, nr_seg, revision, io, sram_size; |
| |
| rrpriv = netdev_priv(dev); |
| regs = rrpriv->regs; |
| |
| if (dev->flags & IFF_UP) |
| return -EBUSY; |
| |
| if (!(readl(®s->HostCtrl) & NIC_HALTED)){ |
| printk("%s: Trying to load firmware to a running NIC.\n", |
| dev->name); |
| return -EBUSY; |
| } |
| |
| localctrl = readl(®s->LocalCtrl); |
| writel(0, ®s->LocalCtrl); |
| |
| writel(0, ®s->EvtPrd); |
| writel(0, ®s->RxPrd); |
| writel(0, ®s->TxPrd); |
| |
| /* |
| * First wipe the entire SRAM, otherwise we might run into all |
| * kinds of trouble ... sigh, this took almost all afternoon |
| * to track down ;-( |
| */ |
| io = readl(®s->ExtIo); |
| writel(0, ®s->ExtIo); |
| sram_size = rr_read_eeprom_word(rrpriv, 8); |
| |
| for (i = 200; i < sram_size / 4; i++){ |
| writel(i * 4, ®s->WinBase); |
| mb(); |
| writel(0, ®s->WinData); |
| mb(); |
| } |
| writel(io, ®s->ExtIo); |
| mb(); |
| |
| eptr = rr_read_eeprom_word(rrpriv, |
| offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); |
| eptr = ((eptr & 0x1fffff) >> 3); |
| |
| p2len = rr_read_eeprom_word(rrpriv, 0x83*4); |
| p2len = (p2len << 2); |
| p2size = rr_read_eeprom_word(rrpriv, 0x84*4); |
| p2size = ((p2size & 0x1fffff) >> 3); |
| |
| if ((eptr < p2size) || (eptr > (p2size + p2len))){ |
| printk("%s: eptr is invalid\n", dev->name); |
| goto out; |
| } |
| |
| revision = rr_read_eeprom_word(rrpriv, |
| offsetof(struct eeprom, manf.HeaderFmt)); |
| |
| if (revision != 1){ |
| printk("%s: invalid firmware format (%i)\n", |
| dev->name, revision); |
| goto out; |
| } |
| |
| nr_seg = rr_read_eeprom_word(rrpriv, eptr); |
| eptr +=4; |
| #if (DEBUG > 1) |
| printk("%s: nr_seg %i\n", dev->name, nr_seg); |
| #endif |
| |
| for (i = 0; i < nr_seg; i++){ |
| sptr = rr_read_eeprom_word(rrpriv, eptr); |
| eptr += 4; |
| len = rr_read_eeprom_word(rrpriv, eptr); |
| eptr += 4; |
| segptr = rr_read_eeprom_word(rrpriv, eptr); |
| segptr = ((segptr & 0x1fffff) >> 3); |
| eptr += 4; |
| #if (DEBUG > 1) |
| printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", |
| dev->name, i, sptr, len, segptr); |
| #endif |
| for (j = 0; j < len; j++){ |
| tmp = rr_read_eeprom_word(rrpriv, segptr); |
| writel(sptr, ®s->WinBase); |
| mb(); |
| writel(tmp, ®s->WinData); |
| mb(); |
| segptr += 4; |
| sptr += 4; |
| } |
| } |
| |
| out: |
| writel(localctrl, ®s->LocalCtrl); |
| mb(); |
| return 0; |
| } |
| |
| |
| static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct rr_private *rrpriv; |
| unsigned char *image, *oldimage; |
| unsigned long flags; |
| unsigned int i; |
| int error = -EOPNOTSUPP; |
| |
| rrpriv = netdev_priv(dev); |
| |
| switch(cmd){ |
| case SIOCRRGFW: |
| if (!capable(CAP_SYS_RAWIO)){ |
| return -EPERM; |
| } |
| |
| image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL); |
| if (!image) |
| return -ENOMEM; |
| |
| if (rrpriv->fw_running){ |
| printk("%s: Firmware already running\n", dev->name); |
| error = -EPERM; |
| goto gf_out; |
| } |
| |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| if (i != EEPROM_BYTES){ |
| printk(KERN_ERR "%s: Error reading EEPROM\n", |
| dev->name); |
| error = -EFAULT; |
| goto gf_out; |
| } |
| error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); |
| if (error) |
| error = -EFAULT; |
| gf_out: |
| kfree(image); |
| return error; |
| |
| case SIOCRRPFW: |
| if (!capable(CAP_SYS_RAWIO)){ |
| return -EPERM; |
| } |
| |
| image = memdup_user(rq->ifr_data, EEPROM_BYTES); |
| if (IS_ERR(image)) |
| return PTR_ERR(image); |
| |
| oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL); |
| if (!oldimage) { |
| kfree(image); |
| return -ENOMEM; |
| } |
| |
| if (rrpriv->fw_running){ |
| printk("%s: Firmware already running\n", dev->name); |
| error = -EPERM; |
| goto wf_out; |
| } |
| |
| printk("%s: Updating EEPROM firmware\n", dev->name); |
| |
| spin_lock_irqsave(&rrpriv->lock, flags); |
| error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); |
| if (error) |
| printk(KERN_ERR "%s: Error writing EEPROM\n", |
| dev->name); |
| |
| i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); |
| spin_unlock_irqrestore(&rrpriv->lock, flags); |
| |
| if (i != EEPROM_BYTES) |
| printk(KERN_ERR "%s: Error reading back EEPROM " |
| "image\n", dev->name); |
| |
| error = memcmp(image, oldimage, EEPROM_BYTES); |
| if (error){ |
| printk(KERN_ERR "%s: Error verifying EEPROM image\n", |
| dev->name); |
| error = -EFAULT; |
| } |
| wf_out: |
| kfree(oldimage); |
| kfree(image); |
| return error; |
| |
| case SIOCRRID: |
| return put_user(0x52523032, (int __user *)rq->ifr_data); |
| default: |
| return error; |
| } |
| } |
| |
| static const struct pci_device_id rr_pci_tbl[] = { |
| { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, |
| PCI_ANY_ID, PCI_ANY_ID, }, |
| { 0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, rr_pci_tbl); |
| |
| static struct pci_driver rr_driver = { |
| .name = "rrunner", |
| .id_table = rr_pci_tbl, |
| .probe = rr_init_one, |
| .remove = rr_remove_one, |
| }; |
| |
| module_pci_driver(rr_driver); |