| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * DMA driver for Xilinx Video DMA Engine |
| * |
| * Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved. |
| * |
| * Based on the Freescale DMA driver. |
| * |
| * Description: |
| * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP |
| * core that provides high-bandwidth direct memory access between memory |
| * and AXI4-Stream type video target peripherals. The core provides efficient |
| * two dimensional DMA operations with independent asynchronous read (S2MM) |
| * and write (MM2S) channel operation. It can be configured to have either |
| * one channel or two channels. If configured as two channels, one is to |
| * transmit to the video device (MM2S) and another is to receive from the |
| * video device (S2MM). Initialization, status, interrupt and management |
| * registers are accessed through an AXI4-Lite slave interface. |
| * |
| * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that |
| * provides high-bandwidth one dimensional direct memory access between memory |
| * and AXI4-Stream target peripherals. It supports one receive and one |
| * transmit channel, both of them optional at synthesis time. |
| * |
| * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory |
| * Access (DMA) between a memory-mapped source address and a memory-mapped |
| * destination address. |
| * |
| * The AXI Multichannel Direct Memory Access (AXI MCDMA) core is a soft |
| * Xilinx IP that provides high-bandwidth direct memory access between |
| * memory and AXI4-Stream target peripherals. It provides scatter gather |
| * (SG) interface with multiple channels independent configuration support. |
| * |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma/xilinx_dma.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_dma.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_irq.h> |
| #include <linux/slab.h> |
| #include <linux/clk.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| |
| #include "../dmaengine.h" |
| |
| /* Register/Descriptor Offsets */ |
| #define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000 |
| #define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030 |
| #define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050 |
| #define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0 |
| |
| /* Control Registers */ |
| #define XILINX_DMA_REG_DMACR 0x0000 |
| #define XILINX_DMA_DMACR_DELAY_MAX 0xff |
| #define XILINX_DMA_DMACR_DELAY_SHIFT 24 |
| #define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff |
| #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16 |
| #define XILINX_DMA_DMACR_ERR_IRQ BIT(14) |
| #define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13) |
| #define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12) |
| #define XILINX_DMA_DMACR_MASTER_SHIFT 8 |
| #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5 |
| #define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4) |
| #define XILINX_DMA_DMACR_GENLOCK_EN BIT(3) |
| #define XILINX_DMA_DMACR_RESET BIT(2) |
| #define XILINX_DMA_DMACR_CIRC_EN BIT(1) |
| #define XILINX_DMA_DMACR_RUNSTOP BIT(0) |
| #define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5) |
| #define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24) |
| #define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16) |
| #define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8) |
| |
| #define XILINX_DMA_REG_DMASR 0x0004 |
| #define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15) |
| #define XILINX_DMA_DMASR_ERR_IRQ BIT(14) |
| #define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13) |
| #define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12) |
| #define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11) |
| #define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10) |
| #define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9) |
| #define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8) |
| #define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7) |
| #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6) |
| #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5) |
| #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4) |
| #define XILINX_DMA_DMASR_SG_MASK BIT(3) |
| #define XILINX_DMA_DMASR_IDLE BIT(1) |
| #define XILINX_DMA_DMASR_HALTED BIT(0) |
| #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24) |
| #define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16) |
| |
| #define XILINX_DMA_REG_CURDESC 0x0008 |
| #define XILINX_DMA_REG_TAILDESC 0x0010 |
| #define XILINX_DMA_REG_REG_INDEX 0x0014 |
| #define XILINX_DMA_REG_FRMSTORE 0x0018 |
| #define XILINX_DMA_REG_THRESHOLD 0x001c |
| #define XILINX_DMA_REG_FRMPTR_STS 0x0024 |
| #define XILINX_DMA_REG_PARK_PTR 0x0028 |
| #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8 |
| #define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8) |
| #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0 |
| #define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0) |
| #define XILINX_DMA_REG_VDMA_VERSION 0x002c |
| |
| /* Register Direct Mode Registers */ |
| #define XILINX_DMA_REG_VSIZE 0x0000 |
| #define XILINX_DMA_REG_HSIZE 0x0004 |
| |
| #define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008 |
| #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24 |
| #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0 |
| |
| #define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n)) |
| #define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n)) |
| |
| #define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec |
| #define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0) |
| |
| /* HW specific definitions */ |
| #define XILINX_MCDMA_MAX_CHANS_PER_DEVICE 0x20 |
| #define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2 |
| #define XILINX_CDMA_MAX_CHANS_PER_DEVICE 0x1 |
| |
| #define XILINX_DMA_DMAXR_ALL_IRQ_MASK \ |
| (XILINX_DMA_DMASR_FRM_CNT_IRQ | \ |
| XILINX_DMA_DMASR_DLY_CNT_IRQ | \ |
| XILINX_DMA_DMASR_ERR_IRQ) |
| |
| #define XILINX_DMA_DMASR_ALL_ERR_MASK \ |
| (XILINX_DMA_DMASR_EOL_LATE_ERR | \ |
| XILINX_DMA_DMASR_SOF_LATE_ERR | \ |
| XILINX_DMA_DMASR_SG_DEC_ERR | \ |
| XILINX_DMA_DMASR_SG_SLV_ERR | \ |
| XILINX_DMA_DMASR_EOF_EARLY_ERR | \ |
| XILINX_DMA_DMASR_SOF_EARLY_ERR | \ |
| XILINX_DMA_DMASR_DMA_DEC_ERR | \ |
| XILINX_DMA_DMASR_DMA_SLAVE_ERR | \ |
| XILINX_DMA_DMASR_DMA_INT_ERR) |
| |
| /* |
| * Recoverable errors are DMA Internal error, SOF Early, EOF Early |
| * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC |
| * is enabled in the h/w system. |
| */ |
| #define XILINX_DMA_DMASR_ERR_RECOVER_MASK \ |
| (XILINX_DMA_DMASR_SOF_LATE_ERR | \ |
| XILINX_DMA_DMASR_EOF_EARLY_ERR | \ |
| XILINX_DMA_DMASR_SOF_EARLY_ERR | \ |
| XILINX_DMA_DMASR_DMA_INT_ERR) |
| |
| /* Axi VDMA Flush on Fsync bits */ |
| #define XILINX_DMA_FLUSH_S2MM 3 |
| #define XILINX_DMA_FLUSH_MM2S 2 |
| #define XILINX_DMA_FLUSH_BOTH 1 |
| |
| /* Delay loop counter to prevent hardware failure */ |
| #define XILINX_DMA_LOOP_COUNT 1000000 |
| |
| /* AXI DMA Specific Registers/Offsets */ |
| #define XILINX_DMA_REG_SRCDSTADDR 0x18 |
| #define XILINX_DMA_REG_BTT 0x28 |
| |
| /* AXI DMA Specific Masks/Bit fields */ |
| #define XILINX_DMA_MAX_TRANS_LEN_MIN 8 |
| #define XILINX_DMA_MAX_TRANS_LEN_MAX 23 |
| #define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26 |
| #define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16) |
| #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4) |
| #define XILINX_DMA_CR_COALESCE_SHIFT 16 |
| #define XILINX_DMA_BD_SOP BIT(27) |
| #define XILINX_DMA_BD_EOP BIT(26) |
| #define XILINX_DMA_COALESCE_MAX 255 |
| #define XILINX_DMA_NUM_DESCS 255 |
| #define XILINX_DMA_NUM_APP_WORDS 5 |
| |
| /* AXI CDMA Specific Registers/Offsets */ |
| #define XILINX_CDMA_REG_SRCADDR 0x18 |
| #define XILINX_CDMA_REG_DSTADDR 0x20 |
| |
| /* AXI CDMA Specific Masks */ |
| #define XILINX_CDMA_CR_SGMODE BIT(3) |
| |
| #define xilinx_prep_dma_addr_t(addr) \ |
| ((dma_addr_t)((u64)addr##_##msb << 32 | (addr))) |
| |
| /* AXI MCDMA Specific Registers/Offsets */ |
| #define XILINX_MCDMA_MM2S_CTRL_OFFSET 0x0000 |
| #define XILINX_MCDMA_S2MM_CTRL_OFFSET 0x0500 |
| #define XILINX_MCDMA_CHEN_OFFSET 0x0008 |
| #define XILINX_MCDMA_CH_ERR_OFFSET 0x0010 |
| #define XILINX_MCDMA_RXINT_SER_OFFSET 0x0020 |
| #define XILINX_MCDMA_TXINT_SER_OFFSET 0x0028 |
| #define XILINX_MCDMA_CHAN_CR_OFFSET(x) (0x40 + (x) * 0x40) |
| #define XILINX_MCDMA_CHAN_SR_OFFSET(x) (0x44 + (x) * 0x40) |
| #define XILINX_MCDMA_CHAN_CDESC_OFFSET(x) (0x48 + (x) * 0x40) |
| #define XILINX_MCDMA_CHAN_TDESC_OFFSET(x) (0x50 + (x) * 0x40) |
| |
| /* AXI MCDMA Specific Masks/Shifts */ |
| #define XILINX_MCDMA_COALESCE_SHIFT 16 |
| #define XILINX_MCDMA_COALESCE_MAX 24 |
| #define XILINX_MCDMA_IRQ_ALL_MASK GENMASK(7, 5) |
| #define XILINX_MCDMA_COALESCE_MASK GENMASK(23, 16) |
| #define XILINX_MCDMA_CR_RUNSTOP_MASK BIT(0) |
| #define XILINX_MCDMA_IRQ_IOC_MASK BIT(5) |
| #define XILINX_MCDMA_IRQ_DELAY_MASK BIT(6) |
| #define XILINX_MCDMA_IRQ_ERR_MASK BIT(7) |
| #define XILINX_MCDMA_BD_EOP BIT(30) |
| #define XILINX_MCDMA_BD_SOP BIT(31) |
| |
| /** |
| * struct xilinx_vdma_desc_hw - Hardware Descriptor |
| * @next_desc: Next Descriptor Pointer @0x00 |
| * @pad1: Reserved @0x04 |
| * @buf_addr: Buffer address @0x08 |
| * @buf_addr_msb: MSB of Buffer address @0x0C |
| * @vsize: Vertical Size @0x10 |
| * @hsize: Horizontal Size @0x14 |
| * @stride: Number of bytes between the first |
| * pixels of each horizontal line @0x18 |
| */ |
| struct xilinx_vdma_desc_hw { |
| u32 next_desc; |
| u32 pad1; |
| u32 buf_addr; |
| u32 buf_addr_msb; |
| u32 vsize; |
| u32 hsize; |
| u32 stride; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA |
| * @next_desc: Next Descriptor Pointer @0x00 |
| * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 |
| * @buf_addr: Buffer address @0x08 |
| * @buf_addr_msb: MSB of Buffer address @0x0C |
| * @reserved1: Reserved @0x10 |
| * @reserved2: Reserved @0x14 |
| * @control: Control field @0x18 |
| * @status: Status field @0x1C |
| * @app: APP Fields @0x20 - 0x30 |
| */ |
| struct xilinx_axidma_desc_hw { |
| u32 next_desc; |
| u32 next_desc_msb; |
| u32 buf_addr; |
| u32 buf_addr_msb; |
| u32 reserved1; |
| u32 reserved2; |
| u32 control; |
| u32 status; |
| u32 app[XILINX_DMA_NUM_APP_WORDS]; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_aximcdma_desc_hw - Hardware Descriptor for AXI MCDMA |
| * @next_desc: Next Descriptor Pointer @0x00 |
| * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 |
| * @buf_addr: Buffer address @0x08 |
| * @buf_addr_msb: MSB of Buffer address @0x0C |
| * @rsvd: Reserved field @0x10 |
| * @control: Control Information field @0x14 |
| * @status: Status field @0x18 |
| * @sideband_status: Status of sideband signals @0x1C |
| * @app: APP Fields @0x20 - 0x30 |
| */ |
| struct xilinx_aximcdma_desc_hw { |
| u32 next_desc; |
| u32 next_desc_msb; |
| u32 buf_addr; |
| u32 buf_addr_msb; |
| u32 rsvd; |
| u32 control; |
| u32 status; |
| u32 sideband_status; |
| u32 app[XILINX_DMA_NUM_APP_WORDS]; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_cdma_desc_hw - Hardware Descriptor |
| * @next_desc: Next Descriptor Pointer @0x00 |
| * @next_desc_msb: Next Descriptor Pointer MSB @0x04 |
| * @src_addr: Source address @0x08 |
| * @src_addr_msb: Source address MSB @0x0C |
| * @dest_addr: Destination address @0x10 |
| * @dest_addr_msb: Destination address MSB @0x14 |
| * @control: Control field @0x18 |
| * @status: Status field @0x1C |
| */ |
| struct xilinx_cdma_desc_hw { |
| u32 next_desc; |
| u32 next_desc_msb; |
| u32 src_addr; |
| u32 src_addr_msb; |
| u32 dest_addr; |
| u32 dest_addr_msb; |
| u32 control; |
| u32 status; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_vdma_tx_segment - Descriptor segment |
| * @hw: Hardware descriptor |
| * @node: Node in the descriptor segments list |
| * @phys: Physical address of segment |
| */ |
| struct xilinx_vdma_tx_segment { |
| struct xilinx_vdma_desc_hw hw; |
| struct list_head node; |
| dma_addr_t phys; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_axidma_tx_segment - Descriptor segment |
| * @hw: Hardware descriptor |
| * @node: Node in the descriptor segments list |
| * @phys: Physical address of segment |
| */ |
| struct xilinx_axidma_tx_segment { |
| struct xilinx_axidma_desc_hw hw; |
| struct list_head node; |
| dma_addr_t phys; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_aximcdma_tx_segment - Descriptor segment |
| * @hw: Hardware descriptor |
| * @node: Node in the descriptor segments list |
| * @phys: Physical address of segment |
| */ |
| struct xilinx_aximcdma_tx_segment { |
| struct xilinx_aximcdma_desc_hw hw; |
| struct list_head node; |
| dma_addr_t phys; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_cdma_tx_segment - Descriptor segment |
| * @hw: Hardware descriptor |
| * @node: Node in the descriptor segments list |
| * @phys: Physical address of segment |
| */ |
| struct xilinx_cdma_tx_segment { |
| struct xilinx_cdma_desc_hw hw; |
| struct list_head node; |
| dma_addr_t phys; |
| } __aligned(64); |
| |
| /** |
| * struct xilinx_dma_tx_descriptor - Per Transaction structure |
| * @async_tx: Async transaction descriptor |
| * @segments: TX segments list |
| * @node: Node in the channel descriptors list |
| * @cyclic: Check for cyclic transfers. |
| * @err: Whether the descriptor has an error. |
| * @residue: Residue of the completed descriptor |
| */ |
| struct xilinx_dma_tx_descriptor { |
| struct dma_async_tx_descriptor async_tx; |
| struct list_head segments; |
| struct list_head node; |
| bool cyclic; |
| bool err; |
| u32 residue; |
| }; |
| |
| /** |
| * struct xilinx_dma_chan - Driver specific DMA channel structure |
| * @xdev: Driver specific device structure |
| * @ctrl_offset: Control registers offset |
| * @desc_offset: TX descriptor registers offset |
| * @lock: Descriptor operation lock |
| * @pending_list: Descriptors waiting |
| * @active_list: Descriptors ready to submit |
| * @done_list: Complete descriptors |
| * @free_seg_list: Free descriptors |
| * @common: DMA common channel |
| * @desc_pool: Descriptors pool |
| * @dev: The dma device |
| * @irq: Channel IRQ |
| * @id: Channel ID |
| * @direction: Transfer direction |
| * @num_frms: Number of frames |
| * @has_sg: Support scatter transfers |
| * @cyclic: Check for cyclic transfers. |
| * @genlock: Support genlock mode |
| * @err: Channel has errors |
| * @idle: Check for channel idle |
| * @tasklet: Cleanup work after irq |
| * @config: Device configuration info |
| * @flush_on_fsync: Flush on Frame sync |
| * @desc_pendingcount: Descriptor pending count |
| * @ext_addr: Indicates 64 bit addressing is supported by dma channel |
| * @desc_submitcount: Descriptor h/w submitted count |
| * @seg_v: Statically allocated segments base |
| * @seg_mv: Statically allocated segments base for MCDMA |
| * @seg_p: Physical allocated segments base |
| * @cyclic_seg_v: Statically allocated segment base for cyclic transfers |
| * @cyclic_seg_p: Physical allocated segments base for cyclic dma |
| * @start_transfer: Differentiate b/w DMA IP's transfer |
| * @stop_transfer: Differentiate b/w DMA IP's quiesce |
| * @tdest: TDEST value for mcdma |
| * @has_vflip: S2MM vertical flip |
| */ |
| struct xilinx_dma_chan { |
| struct xilinx_dma_device *xdev; |
| u32 ctrl_offset; |
| u32 desc_offset; |
| spinlock_t lock; |
| struct list_head pending_list; |
| struct list_head active_list; |
| struct list_head done_list; |
| struct list_head free_seg_list; |
| struct dma_chan common; |
| struct dma_pool *desc_pool; |
| struct device *dev; |
| int irq; |
| int id; |
| enum dma_transfer_direction direction; |
| int num_frms; |
| bool has_sg; |
| bool cyclic; |
| bool genlock; |
| bool err; |
| bool idle; |
| struct tasklet_struct tasklet; |
| struct xilinx_vdma_config config; |
| bool flush_on_fsync; |
| u32 desc_pendingcount; |
| bool ext_addr; |
| u32 desc_submitcount; |
| struct xilinx_axidma_tx_segment *seg_v; |
| struct xilinx_aximcdma_tx_segment *seg_mv; |
| dma_addr_t seg_p; |
| struct xilinx_axidma_tx_segment *cyclic_seg_v; |
| dma_addr_t cyclic_seg_p; |
| void (*start_transfer)(struct xilinx_dma_chan *chan); |
| int (*stop_transfer)(struct xilinx_dma_chan *chan); |
| u16 tdest; |
| bool has_vflip; |
| }; |
| |
| /** |
| * enum xdma_ip_type - DMA IP type. |
| * |
| * @XDMA_TYPE_AXIDMA: Axi dma ip. |
| * @XDMA_TYPE_CDMA: Axi cdma ip. |
| * @XDMA_TYPE_VDMA: Axi vdma ip. |
| * @XDMA_TYPE_AXIMCDMA: Axi MCDMA ip. |
| * |
| */ |
| enum xdma_ip_type { |
| XDMA_TYPE_AXIDMA = 0, |
| XDMA_TYPE_CDMA, |
| XDMA_TYPE_VDMA, |
| XDMA_TYPE_AXIMCDMA |
| }; |
| |
| struct xilinx_dma_config { |
| enum xdma_ip_type dmatype; |
| int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk, |
| struct clk **tx_clk, struct clk **txs_clk, |
| struct clk **rx_clk, struct clk **rxs_clk); |
| irqreturn_t (*irq_handler)(int irq, void *data); |
| const int max_channels; |
| }; |
| |
| /** |
| * struct xilinx_dma_device - DMA device structure |
| * @regs: I/O mapped base address |
| * @dev: Device Structure |
| * @common: DMA device structure |
| * @chan: Driver specific DMA channel |
| * @flush_on_fsync: Flush on frame sync |
| * @ext_addr: Indicates 64 bit addressing is supported by dma device |
| * @pdev: Platform device structure pointer |
| * @dma_config: DMA config structure |
| * @axi_clk: DMA Axi4-lite interace clock |
| * @tx_clk: DMA mm2s clock |
| * @txs_clk: DMA mm2s stream clock |
| * @rx_clk: DMA s2mm clock |
| * @rxs_clk: DMA s2mm stream clock |
| * @s2mm_chan_id: DMA s2mm channel identifier |
| * @mm2s_chan_id: DMA mm2s channel identifier |
| * @max_buffer_len: Max buffer length |
| */ |
| struct xilinx_dma_device { |
| void __iomem *regs; |
| struct device *dev; |
| struct dma_device common; |
| struct xilinx_dma_chan *chan[XILINX_MCDMA_MAX_CHANS_PER_DEVICE]; |
| u32 flush_on_fsync; |
| bool ext_addr; |
| struct platform_device *pdev; |
| const struct xilinx_dma_config *dma_config; |
| struct clk *axi_clk; |
| struct clk *tx_clk; |
| struct clk *txs_clk; |
| struct clk *rx_clk; |
| struct clk *rxs_clk; |
| u32 s2mm_chan_id; |
| u32 mm2s_chan_id; |
| u32 max_buffer_len; |
| }; |
| |
| /* Macros */ |
| #define to_xilinx_chan(chan) \ |
| container_of(chan, struct xilinx_dma_chan, common) |
| #define to_dma_tx_descriptor(tx) \ |
| container_of(tx, struct xilinx_dma_tx_descriptor, async_tx) |
| #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \ |
| readl_poll_timeout_atomic(chan->xdev->regs + chan->ctrl_offset + reg, \ |
| val, cond, delay_us, timeout_us) |
| |
| /* IO accessors */ |
| static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg) |
| { |
| return ioread32(chan->xdev->regs + reg); |
| } |
| |
| static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) |
| { |
| iowrite32(value, chan->xdev->regs + reg); |
| } |
| |
| static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg, |
| u32 value) |
| { |
| dma_write(chan, chan->desc_offset + reg, value); |
| } |
| |
| static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg) |
| { |
| return dma_read(chan, chan->ctrl_offset + reg); |
| } |
| |
| static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg, |
| u32 value) |
| { |
| dma_write(chan, chan->ctrl_offset + reg, value); |
| } |
| |
| static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg, |
| u32 clr) |
| { |
| dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr); |
| } |
| |
| static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg, |
| u32 set) |
| { |
| dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set); |
| } |
| |
| /** |
| * vdma_desc_write_64 - 64-bit descriptor write |
| * @chan: Driver specific VDMA channel |
| * @reg: Register to write |
| * @value_lsb: lower address of the descriptor. |
| * @value_msb: upper address of the descriptor. |
| * |
| * Since vdma driver is trying to write to a register offset which is not a |
| * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits |
| * instead of a single 64 bit register write. |
| */ |
| static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg, |
| u32 value_lsb, u32 value_msb) |
| { |
| /* Write the lsb 32 bits*/ |
| writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg); |
| |
| /* Write the msb 32 bits */ |
| writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4); |
| } |
| |
| static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value) |
| { |
| lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg); |
| } |
| |
| static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg, |
| dma_addr_t addr) |
| { |
| if (chan->ext_addr) |
| dma_writeq(chan, reg, addr); |
| else |
| dma_ctrl_write(chan, reg, addr); |
| } |
| |
| static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan, |
| struct xilinx_axidma_desc_hw *hw, |
| dma_addr_t buf_addr, size_t sg_used, |
| size_t period_len) |
| { |
| if (chan->ext_addr) { |
| hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len); |
| hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used + |
| period_len); |
| } else { |
| hw->buf_addr = buf_addr + sg_used + period_len; |
| } |
| } |
| |
| static inline void xilinx_aximcdma_buf(struct xilinx_dma_chan *chan, |
| struct xilinx_aximcdma_desc_hw *hw, |
| dma_addr_t buf_addr, size_t sg_used) |
| { |
| if (chan->ext_addr) { |
| hw->buf_addr = lower_32_bits(buf_addr + sg_used); |
| hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used); |
| } else { |
| hw->buf_addr = buf_addr + sg_used; |
| } |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Descriptors and segments alloc and free |
| */ |
| |
| /** |
| * xilinx_vdma_alloc_tx_segment - Allocate transaction segment |
| * @chan: Driver specific DMA channel |
| * |
| * Return: The allocated segment on success and NULL on failure. |
| */ |
| static struct xilinx_vdma_tx_segment * |
| xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_vdma_tx_segment *segment; |
| dma_addr_t phys; |
| |
| segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); |
| if (!segment) |
| return NULL; |
| |
| segment->phys = phys; |
| |
| return segment; |
| } |
| |
| /** |
| * xilinx_cdma_alloc_tx_segment - Allocate transaction segment |
| * @chan: Driver specific DMA channel |
| * |
| * Return: The allocated segment on success and NULL on failure. |
| */ |
| static struct xilinx_cdma_tx_segment * |
| xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_cdma_tx_segment *segment; |
| dma_addr_t phys; |
| |
| segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); |
| if (!segment) |
| return NULL; |
| |
| segment->phys = phys; |
| |
| return segment; |
| } |
| |
| /** |
| * xilinx_axidma_alloc_tx_segment - Allocate transaction segment |
| * @chan: Driver specific DMA channel |
| * |
| * Return: The allocated segment on success and NULL on failure. |
| */ |
| static struct xilinx_axidma_tx_segment * |
| xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_axidma_tx_segment *segment = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| if (!list_empty(&chan->free_seg_list)) { |
| segment = list_first_entry(&chan->free_seg_list, |
| struct xilinx_axidma_tx_segment, |
| node); |
| list_del(&segment->node); |
| } |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| if (!segment) |
| dev_dbg(chan->dev, "Could not find free tx segment\n"); |
| |
| return segment; |
| } |
| |
| /** |
| * xilinx_aximcdma_alloc_tx_segment - Allocate transaction segment |
| * @chan: Driver specific DMA channel |
| * |
| * Return: The allocated segment on success and NULL on failure. |
| */ |
| static struct xilinx_aximcdma_tx_segment * |
| xilinx_aximcdma_alloc_tx_segment(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_aximcdma_tx_segment *segment = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| if (!list_empty(&chan->free_seg_list)) { |
| segment = list_first_entry(&chan->free_seg_list, |
| struct xilinx_aximcdma_tx_segment, |
| node); |
| list_del(&segment->node); |
| } |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| return segment; |
| } |
| |
| static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw) |
| { |
| u32 next_desc = hw->next_desc; |
| u32 next_desc_msb = hw->next_desc_msb; |
| |
| memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw)); |
| |
| hw->next_desc = next_desc; |
| hw->next_desc_msb = next_desc_msb; |
| } |
| |
| static void xilinx_mcdma_clean_hw_desc(struct xilinx_aximcdma_desc_hw *hw) |
| { |
| u32 next_desc = hw->next_desc; |
| u32 next_desc_msb = hw->next_desc_msb; |
| |
| memset(hw, 0, sizeof(struct xilinx_aximcdma_desc_hw)); |
| |
| hw->next_desc = next_desc; |
| hw->next_desc_msb = next_desc_msb; |
| } |
| |
| /** |
| * xilinx_dma_free_tx_segment - Free transaction segment |
| * @chan: Driver specific DMA channel |
| * @segment: DMA transaction segment |
| */ |
| static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan, |
| struct xilinx_axidma_tx_segment *segment) |
| { |
| xilinx_dma_clean_hw_desc(&segment->hw); |
| |
| list_add_tail(&segment->node, &chan->free_seg_list); |
| } |
| |
| /** |
| * xilinx_mcdma_free_tx_segment - Free transaction segment |
| * @chan: Driver specific DMA channel |
| * @segment: DMA transaction segment |
| */ |
| static void xilinx_mcdma_free_tx_segment(struct xilinx_dma_chan *chan, |
| struct xilinx_aximcdma_tx_segment * |
| segment) |
| { |
| xilinx_mcdma_clean_hw_desc(&segment->hw); |
| |
| list_add_tail(&segment->node, &chan->free_seg_list); |
| } |
| |
| /** |
| * xilinx_cdma_free_tx_segment - Free transaction segment |
| * @chan: Driver specific DMA channel |
| * @segment: DMA transaction segment |
| */ |
| static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan, |
| struct xilinx_cdma_tx_segment *segment) |
| { |
| dma_pool_free(chan->desc_pool, segment, segment->phys); |
| } |
| |
| /** |
| * xilinx_vdma_free_tx_segment - Free transaction segment |
| * @chan: Driver specific DMA channel |
| * @segment: DMA transaction segment |
| */ |
| static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan, |
| struct xilinx_vdma_tx_segment *segment) |
| { |
| dma_pool_free(chan->desc_pool, segment, segment->phys); |
| } |
| |
| /** |
| * xilinx_dma_tx_descriptor - Allocate transaction descriptor |
| * @chan: Driver specific DMA channel |
| * |
| * Return: The allocated descriptor on success and NULL on failure. |
| */ |
| static struct xilinx_dma_tx_descriptor * |
| xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) |
| return NULL; |
| |
| INIT_LIST_HEAD(&desc->segments); |
| |
| return desc; |
| } |
| |
| /** |
| * xilinx_dma_free_tx_descriptor - Free transaction descriptor |
| * @chan: Driver specific DMA channel |
| * @desc: DMA transaction descriptor |
| */ |
| static void |
| xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan, |
| struct xilinx_dma_tx_descriptor *desc) |
| { |
| struct xilinx_vdma_tx_segment *segment, *next; |
| struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next; |
| struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next; |
| struct xilinx_aximcdma_tx_segment *aximcdma_segment, *aximcdma_next; |
| |
| if (!desc) |
| return; |
| |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| list_for_each_entry_safe(segment, next, &desc->segments, node) { |
| list_del(&segment->node); |
| xilinx_vdma_free_tx_segment(chan, segment); |
| } |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| list_for_each_entry_safe(cdma_segment, cdma_next, |
| &desc->segments, node) { |
| list_del(&cdma_segment->node); |
| xilinx_cdma_free_tx_segment(chan, cdma_segment); |
| } |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| list_for_each_entry_safe(axidma_segment, axidma_next, |
| &desc->segments, node) { |
| list_del(&axidma_segment->node); |
| xilinx_dma_free_tx_segment(chan, axidma_segment); |
| } |
| } else { |
| list_for_each_entry_safe(aximcdma_segment, aximcdma_next, |
| &desc->segments, node) { |
| list_del(&aximcdma_segment->node); |
| xilinx_mcdma_free_tx_segment(chan, aximcdma_segment); |
| } |
| } |
| |
| kfree(desc); |
| } |
| |
| /* Required functions */ |
| |
| /** |
| * xilinx_dma_free_desc_list - Free descriptors list |
| * @chan: Driver specific DMA channel |
| * @list: List to parse and delete the descriptor |
| */ |
| static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan, |
| struct list_head *list) |
| { |
| struct xilinx_dma_tx_descriptor *desc, *next; |
| |
| list_for_each_entry_safe(desc, next, list, node) { |
| list_del(&desc->node); |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| } |
| } |
| |
| /** |
| * xilinx_dma_free_descriptors - Free channel descriptors |
| * @chan: Driver specific DMA channel |
| */ |
| static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| xilinx_dma_free_desc_list(chan, &chan->pending_list); |
| xilinx_dma_free_desc_list(chan, &chan->done_list); |
| xilinx_dma_free_desc_list(chan, &chan->active_list); |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| /** |
| * xilinx_dma_free_chan_resources - Free channel resources |
| * @dchan: DMA channel |
| */ |
| static void xilinx_dma_free_chan_resources(struct dma_chan *dchan) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| unsigned long flags; |
| |
| dev_dbg(chan->dev, "Free all channel resources.\n"); |
| |
| xilinx_dma_free_descriptors(chan); |
| |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| spin_lock_irqsave(&chan->lock, flags); |
| INIT_LIST_HEAD(&chan->free_seg_list); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| /* Free memory that is allocated for BD */ |
| dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * |
| XILINX_DMA_NUM_DESCS, chan->seg_v, |
| chan->seg_p); |
| |
| /* Free Memory that is allocated for cyclic DMA Mode */ |
| dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v), |
| chan->cyclic_seg_v, chan->cyclic_seg_p); |
| } |
| |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { |
| spin_lock_irqsave(&chan->lock, flags); |
| INIT_LIST_HEAD(&chan->free_seg_list); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| /* Free memory that is allocated for BD */ |
| dma_free_coherent(chan->dev, sizeof(*chan->seg_mv) * |
| XILINX_DMA_NUM_DESCS, chan->seg_mv, |
| chan->seg_p); |
| } |
| |
| if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA && |
| chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA) { |
| dma_pool_destroy(chan->desc_pool); |
| chan->desc_pool = NULL; |
| } |
| |
| } |
| |
| /** |
| * xilinx_dma_get_residue - Compute residue for a given descriptor |
| * @chan: Driver specific dma channel |
| * @desc: dma transaction descriptor |
| * |
| * Return: The number of residue bytes for the descriptor. |
| */ |
| static u32 xilinx_dma_get_residue(struct xilinx_dma_chan *chan, |
| struct xilinx_dma_tx_descriptor *desc) |
| { |
| struct xilinx_cdma_tx_segment *cdma_seg; |
| struct xilinx_axidma_tx_segment *axidma_seg; |
| struct xilinx_aximcdma_tx_segment *aximcdma_seg; |
| struct xilinx_cdma_desc_hw *cdma_hw; |
| struct xilinx_axidma_desc_hw *axidma_hw; |
| struct xilinx_aximcdma_desc_hw *aximcdma_hw; |
| struct list_head *entry; |
| u32 residue = 0; |
| |
| list_for_each(entry, &desc->segments) { |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| cdma_seg = list_entry(entry, |
| struct xilinx_cdma_tx_segment, |
| node); |
| cdma_hw = &cdma_seg->hw; |
| residue += (cdma_hw->control - cdma_hw->status) & |
| chan->xdev->max_buffer_len; |
| } else if (chan->xdev->dma_config->dmatype == |
| XDMA_TYPE_AXIDMA) { |
| axidma_seg = list_entry(entry, |
| struct xilinx_axidma_tx_segment, |
| node); |
| axidma_hw = &axidma_seg->hw; |
| residue += (axidma_hw->control - axidma_hw->status) & |
| chan->xdev->max_buffer_len; |
| } else { |
| aximcdma_seg = |
| list_entry(entry, |
| struct xilinx_aximcdma_tx_segment, |
| node); |
| aximcdma_hw = &aximcdma_seg->hw; |
| residue += |
| (aximcdma_hw->control - aximcdma_hw->status) & |
| chan->xdev->max_buffer_len; |
| } |
| } |
| |
| return residue; |
| } |
| |
| /** |
| * xilinx_dma_chan_handle_cyclic - Cyclic dma callback |
| * @chan: Driver specific dma channel |
| * @desc: dma transaction descriptor |
| * @flags: flags for spin lock |
| */ |
| static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan, |
| struct xilinx_dma_tx_descriptor *desc, |
| unsigned long *flags) |
| { |
| dma_async_tx_callback callback; |
| void *callback_param; |
| |
| callback = desc->async_tx.callback; |
| callback_param = desc->async_tx.callback_param; |
| if (callback) { |
| spin_unlock_irqrestore(&chan->lock, *flags); |
| callback(callback_param); |
| spin_lock_irqsave(&chan->lock, *flags); |
| } |
| } |
| |
| /** |
| * xilinx_dma_chan_desc_cleanup - Clean channel descriptors |
| * @chan: Driver specific DMA channel |
| */ |
| static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *desc, *next; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| list_for_each_entry_safe(desc, next, &chan->done_list, node) { |
| struct dmaengine_result result; |
| |
| if (desc->cyclic) { |
| xilinx_dma_chan_handle_cyclic(chan, desc, &flags); |
| break; |
| } |
| |
| /* Remove from the list of running transactions */ |
| list_del(&desc->node); |
| |
| if (unlikely(desc->err)) { |
| if (chan->direction == DMA_DEV_TO_MEM) |
| result.result = DMA_TRANS_READ_FAILED; |
| else |
| result.result = DMA_TRANS_WRITE_FAILED; |
| } else { |
| result.result = DMA_TRANS_NOERROR; |
| } |
| |
| result.residue = desc->residue; |
| |
| /* Run the link descriptor callback function */ |
| spin_unlock_irqrestore(&chan->lock, flags); |
| dmaengine_desc_get_callback_invoke(&desc->async_tx, &result); |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| /* Run any dependencies, then free the descriptor */ |
| dma_run_dependencies(&desc->async_tx); |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| } |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| /** |
| * xilinx_dma_do_tasklet - Schedule completion tasklet |
| * @t: Pointer to the Xilinx DMA channel structure |
| */ |
| static void xilinx_dma_do_tasklet(struct tasklet_struct *t) |
| { |
| struct xilinx_dma_chan *chan = from_tasklet(chan, t, tasklet); |
| |
| xilinx_dma_chan_desc_cleanup(chan); |
| } |
| |
| /** |
| * xilinx_dma_alloc_chan_resources - Allocate channel resources |
| * @dchan: DMA channel |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| int i; |
| |
| /* Has this channel already been allocated? */ |
| if (chan->desc_pool) |
| return 0; |
| |
| /* |
| * We need the descriptor to be aligned to 64bytes |
| * for meeting Xilinx VDMA specification requirement. |
| */ |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| /* Allocate the buffer descriptors. */ |
| chan->seg_v = dma_alloc_coherent(chan->dev, |
| sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, |
| &chan->seg_p, GFP_KERNEL); |
| if (!chan->seg_v) { |
| dev_err(chan->dev, |
| "unable to allocate channel %d descriptors\n", |
| chan->id); |
| return -ENOMEM; |
| } |
| /* |
| * For cyclic DMA mode we need to program the tail Descriptor |
| * register with a value which is not a part of the BD chain |
| * so allocating a desc segment during channel allocation for |
| * programming tail descriptor. |
| */ |
| chan->cyclic_seg_v = dma_alloc_coherent(chan->dev, |
| sizeof(*chan->cyclic_seg_v), |
| &chan->cyclic_seg_p, |
| GFP_KERNEL); |
| if (!chan->cyclic_seg_v) { |
| dev_err(chan->dev, |
| "unable to allocate desc segment for cyclic DMA\n"); |
| dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * |
| XILINX_DMA_NUM_DESCS, chan->seg_v, |
| chan->seg_p); |
| return -ENOMEM; |
| } |
| chan->cyclic_seg_v->phys = chan->cyclic_seg_p; |
| |
| for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { |
| chan->seg_v[i].hw.next_desc = |
| lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) * |
| ((i + 1) % XILINX_DMA_NUM_DESCS)); |
| chan->seg_v[i].hw.next_desc_msb = |
| upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) * |
| ((i + 1) % XILINX_DMA_NUM_DESCS)); |
| chan->seg_v[i].phys = chan->seg_p + |
| sizeof(*chan->seg_v) * i; |
| list_add_tail(&chan->seg_v[i].node, |
| &chan->free_seg_list); |
| } |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { |
| /* Allocate the buffer descriptors. */ |
| chan->seg_mv = dma_alloc_coherent(chan->dev, |
| sizeof(*chan->seg_mv) * |
| XILINX_DMA_NUM_DESCS, |
| &chan->seg_p, GFP_KERNEL); |
| if (!chan->seg_mv) { |
| dev_err(chan->dev, |
| "unable to allocate channel %d descriptors\n", |
| chan->id); |
| return -ENOMEM; |
| } |
| for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { |
| chan->seg_mv[i].hw.next_desc = |
| lower_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * |
| ((i + 1) % XILINX_DMA_NUM_DESCS)); |
| chan->seg_mv[i].hw.next_desc_msb = |
| upper_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * |
| ((i + 1) % XILINX_DMA_NUM_DESCS)); |
| chan->seg_mv[i].phys = chan->seg_p + |
| sizeof(*chan->seg_mv) * i; |
| list_add_tail(&chan->seg_mv[i].node, |
| &chan->free_seg_list); |
| } |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool", |
| chan->dev, |
| sizeof(struct xilinx_cdma_tx_segment), |
| __alignof__(struct xilinx_cdma_tx_segment), |
| 0); |
| } else { |
| chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool", |
| chan->dev, |
| sizeof(struct xilinx_vdma_tx_segment), |
| __alignof__(struct xilinx_vdma_tx_segment), |
| 0); |
| } |
| |
| if (!chan->desc_pool && |
| ((chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) && |
| chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA)) { |
| dev_err(chan->dev, |
| "unable to allocate channel %d descriptor pool\n", |
| chan->id); |
| return -ENOMEM; |
| } |
| |
| dma_cookie_init(dchan); |
| |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| /* For AXI DMA resetting once channel will reset the |
| * other channel as well so enable the interrupts here. |
| */ |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, |
| XILINX_DMA_DMAXR_ALL_IRQ_MASK); |
| } |
| |
| if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, |
| XILINX_CDMA_CR_SGMODE); |
| |
| return 0; |
| } |
| |
| /** |
| * xilinx_dma_calc_copysize - Calculate the amount of data to copy |
| * @chan: Driver specific DMA channel |
| * @size: Total data that needs to be copied |
| * @done: Amount of data that has been already copied |
| * |
| * Return: Amount of data that has to be copied |
| */ |
| static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan, |
| int size, int done) |
| { |
| size_t copy; |
| |
| copy = min_t(size_t, size - done, |
| chan->xdev->max_buffer_len); |
| |
| if ((copy + done < size) && |
| chan->xdev->common.copy_align) { |
| /* |
| * If this is not the last descriptor, make sure |
| * the next one will be properly aligned |
| */ |
| copy = rounddown(copy, |
| (1 << chan->xdev->common.copy_align)); |
| } |
| return copy; |
| } |
| |
| /** |
| * xilinx_dma_tx_status - Get DMA transaction status |
| * @dchan: DMA channel |
| * @cookie: Transaction identifier |
| * @txstate: Transaction state |
| * |
| * Return: DMA transaction status |
| */ |
| static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| enum dma_status ret; |
| unsigned long flags; |
| u32 residue = 0; |
| |
| ret = dma_cookie_status(dchan, cookie, txstate); |
| if (ret == DMA_COMPLETE || !txstate) |
| return ret; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| if (!list_empty(&chan->active_list)) { |
| desc = list_last_entry(&chan->active_list, |
| struct xilinx_dma_tx_descriptor, node); |
| /* |
| * VDMA and simple mode do not support residue reporting, so the |
| * residue field will always be 0. |
| */ |
| if (chan->has_sg && chan->xdev->dma_config->dmatype != XDMA_TYPE_VDMA) |
| residue = xilinx_dma_get_residue(chan, desc); |
| } |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| dma_set_residue(txstate, residue); |
| |
| return ret; |
| } |
| |
| /** |
| * xilinx_dma_stop_transfer - Halt DMA channel |
| * @chan: Driver specific DMA channel |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan) |
| { |
| u32 val; |
| |
| dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); |
| |
| /* Wait for the hardware to halt */ |
| return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, |
| val & XILINX_DMA_DMASR_HALTED, 0, |
| XILINX_DMA_LOOP_COUNT); |
| } |
| |
| /** |
| * xilinx_cdma_stop_transfer - Wait for the current transfer to complete |
| * @chan: Driver specific DMA channel |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan) |
| { |
| u32 val; |
| |
| return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, |
| val & XILINX_DMA_DMASR_IDLE, 0, |
| XILINX_DMA_LOOP_COUNT); |
| } |
| |
| /** |
| * xilinx_dma_start - Start DMA channel |
| * @chan: Driver specific DMA channel |
| */ |
| static void xilinx_dma_start(struct xilinx_dma_chan *chan) |
| { |
| int err; |
| u32 val; |
| |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); |
| |
| /* Wait for the hardware to start */ |
| err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, |
| !(val & XILINX_DMA_DMASR_HALTED), 0, |
| XILINX_DMA_LOOP_COUNT); |
| |
| if (err) { |
| dev_err(chan->dev, "Cannot start channel %p: %x\n", |
| chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); |
| |
| chan->err = true; |
| } |
| } |
| |
| /** |
| * xilinx_vdma_start_transfer - Starts VDMA transfer |
| * @chan: Driver specific channel struct pointer |
| */ |
| static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_vdma_config *config = &chan->config; |
| struct xilinx_dma_tx_descriptor *desc; |
| u32 reg, j; |
| struct xilinx_vdma_tx_segment *segment, *last = NULL; |
| int i = 0; |
| |
| /* This function was invoked with lock held */ |
| if (chan->err) |
| return; |
| |
| if (!chan->idle) |
| return; |
| |
| if (list_empty(&chan->pending_list)) |
| return; |
| |
| desc = list_first_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| |
| /* Configure the hardware using info in the config structure */ |
| if (chan->has_vflip) { |
| reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP); |
| reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP; |
| reg |= config->vflip_en; |
| dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP, |
| reg); |
| } |
| |
| reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); |
| |
| if (config->frm_cnt_en) |
| reg |= XILINX_DMA_DMACR_FRAMECNT_EN; |
| else |
| reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN; |
| |
| /* If not parking, enable circular mode */ |
| if (config->park) |
| reg &= ~XILINX_DMA_DMACR_CIRC_EN; |
| else |
| reg |= XILINX_DMA_DMACR_CIRC_EN; |
| |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); |
| |
| j = chan->desc_submitcount; |
| reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR); |
| if (chan->direction == DMA_MEM_TO_DEV) { |
| reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK; |
| reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT; |
| } else { |
| reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK; |
| reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT; |
| } |
| dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg); |
| |
| /* Start the hardware */ |
| xilinx_dma_start(chan); |
| |
| if (chan->err) |
| return; |
| |
| /* Start the transfer */ |
| if (chan->desc_submitcount < chan->num_frms) |
| i = chan->desc_submitcount; |
| |
| list_for_each_entry(segment, &desc->segments, node) { |
| if (chan->ext_addr) |
| vdma_desc_write_64(chan, |
| XILINX_VDMA_REG_START_ADDRESS_64(i++), |
| segment->hw.buf_addr, |
| segment->hw.buf_addr_msb); |
| else |
| vdma_desc_write(chan, |
| XILINX_VDMA_REG_START_ADDRESS(i++), |
| segment->hw.buf_addr); |
| |
| last = segment; |
| } |
| |
| if (!last) |
| return; |
| |
| /* HW expects these parameters to be same for one transaction */ |
| vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize); |
| vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE, |
| last->hw.stride); |
| vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize); |
| |
| chan->desc_submitcount++; |
| chan->desc_pendingcount--; |
| list_del(&desc->node); |
| list_add_tail(&desc->node, &chan->active_list); |
| if (chan->desc_submitcount == chan->num_frms) |
| chan->desc_submitcount = 0; |
| |
| chan->idle = false; |
| } |
| |
| /** |
| * xilinx_cdma_start_transfer - Starts cdma transfer |
| * @chan: Driver specific channel struct pointer |
| */ |
| static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; |
| struct xilinx_cdma_tx_segment *tail_segment; |
| u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR); |
| |
| if (chan->err) |
| return; |
| |
| if (!chan->idle) |
| return; |
| |
| if (list_empty(&chan->pending_list)) |
| return; |
| |
| head_desc = list_first_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_desc = list_last_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_cdma_tx_segment, node); |
| |
| if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { |
| ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX; |
| ctrl_reg |= chan->desc_pendingcount << |
| XILINX_DMA_CR_COALESCE_SHIFT; |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg); |
| } |
| |
| if (chan->has_sg) { |
| dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, |
| XILINX_CDMA_CR_SGMODE); |
| |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, |
| XILINX_CDMA_CR_SGMODE); |
| |
| xilinx_write(chan, XILINX_DMA_REG_CURDESC, |
| head_desc->async_tx.phys); |
| |
| /* Update tail ptr register which will start the transfer */ |
| xilinx_write(chan, XILINX_DMA_REG_TAILDESC, |
| tail_segment->phys); |
| } else { |
| /* In simple mode */ |
| struct xilinx_cdma_tx_segment *segment; |
| struct xilinx_cdma_desc_hw *hw; |
| |
| segment = list_first_entry(&head_desc->segments, |
| struct xilinx_cdma_tx_segment, |
| node); |
| |
| hw = &segment->hw; |
| |
| xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, |
| xilinx_prep_dma_addr_t(hw->src_addr)); |
| xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, |
| xilinx_prep_dma_addr_t(hw->dest_addr)); |
| |
| /* Start the transfer */ |
| dma_ctrl_write(chan, XILINX_DMA_REG_BTT, |
| hw->control & chan->xdev->max_buffer_len); |
| } |
| |
| list_splice_tail_init(&chan->pending_list, &chan->active_list); |
| chan->desc_pendingcount = 0; |
| chan->idle = false; |
| } |
| |
| /** |
| * xilinx_dma_start_transfer - Starts DMA transfer |
| * @chan: Driver specific channel struct pointer |
| */ |
| static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; |
| struct xilinx_axidma_tx_segment *tail_segment; |
| u32 reg; |
| |
| if (chan->err) |
| return; |
| |
| if (list_empty(&chan->pending_list)) |
| return; |
| |
| if (!chan->idle) |
| return; |
| |
| head_desc = list_first_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_desc = list_last_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_axidma_tx_segment, node); |
| |
| reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); |
| |
| if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { |
| reg &= ~XILINX_DMA_CR_COALESCE_MAX; |
| reg |= chan->desc_pendingcount << |
| XILINX_DMA_CR_COALESCE_SHIFT; |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); |
| } |
| |
| if (chan->has_sg) |
| xilinx_write(chan, XILINX_DMA_REG_CURDESC, |
| head_desc->async_tx.phys); |
| |
| xilinx_dma_start(chan); |
| |
| if (chan->err) |
| return; |
| |
| /* Start the transfer */ |
| if (chan->has_sg) { |
| if (chan->cyclic) |
| xilinx_write(chan, XILINX_DMA_REG_TAILDESC, |
| chan->cyclic_seg_v->phys); |
| else |
| xilinx_write(chan, XILINX_DMA_REG_TAILDESC, |
| tail_segment->phys); |
| } else { |
| struct xilinx_axidma_tx_segment *segment; |
| struct xilinx_axidma_desc_hw *hw; |
| |
| segment = list_first_entry(&head_desc->segments, |
| struct xilinx_axidma_tx_segment, |
| node); |
| hw = &segment->hw; |
| |
| xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, |
| xilinx_prep_dma_addr_t(hw->buf_addr)); |
| |
| /* Start the transfer */ |
| dma_ctrl_write(chan, XILINX_DMA_REG_BTT, |
| hw->control & chan->xdev->max_buffer_len); |
| } |
| |
| list_splice_tail_init(&chan->pending_list, &chan->active_list); |
| chan->desc_pendingcount = 0; |
| chan->idle = false; |
| } |
| |
| /** |
| * xilinx_mcdma_start_transfer - Starts MCDMA transfer |
| * @chan: Driver specific channel struct pointer |
| */ |
| static void xilinx_mcdma_start_transfer(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; |
| struct xilinx_aximcdma_tx_segment *tail_segment; |
| u32 reg; |
| |
| /* |
| * lock has been held by calling functions, so we don't need it |
| * to take it here again. |
| */ |
| |
| if (chan->err) |
| return; |
| |
| if (!chan->idle) |
| return; |
| |
| if (list_empty(&chan->pending_list)) |
| return; |
| |
| head_desc = list_first_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_desc = list_last_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_aximcdma_tx_segment, node); |
| |
| reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); |
| |
| if (chan->desc_pendingcount <= XILINX_MCDMA_COALESCE_MAX) { |
| reg &= ~XILINX_MCDMA_COALESCE_MASK; |
| reg |= chan->desc_pendingcount << |
| XILINX_MCDMA_COALESCE_SHIFT; |
| } |
| |
| reg |= XILINX_MCDMA_IRQ_ALL_MASK; |
| dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); |
| |
| /* Program current descriptor */ |
| xilinx_write(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET(chan->tdest), |
| head_desc->async_tx.phys); |
| |
| /* Program channel enable register */ |
| reg = dma_ctrl_read(chan, XILINX_MCDMA_CHEN_OFFSET); |
| reg |= BIT(chan->tdest); |
| dma_ctrl_write(chan, XILINX_MCDMA_CHEN_OFFSET, reg); |
| |
| /* Start the fetch of BDs for the channel */ |
| reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); |
| reg |= XILINX_MCDMA_CR_RUNSTOP_MASK; |
| dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); |
| |
| xilinx_dma_start(chan); |
| |
| if (chan->err) |
| return; |
| |
| /* Start the transfer */ |
| xilinx_write(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET(chan->tdest), |
| tail_segment->phys); |
| |
| list_splice_tail_init(&chan->pending_list, &chan->active_list); |
| chan->desc_pendingcount = 0; |
| chan->idle = false; |
| } |
| |
| /** |
| * xilinx_dma_issue_pending - Issue pending transactions |
| * @dchan: DMA channel |
| */ |
| static void xilinx_dma_issue_pending(struct dma_chan *dchan) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| chan->start_transfer(chan); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| /** |
| * xilinx_dma_complete_descriptor - Mark the active descriptor as complete |
| * @chan : xilinx DMA channel |
| * |
| * CONTEXT: hardirq |
| */ |
| static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan) |
| { |
| struct xilinx_dma_tx_descriptor *desc, *next; |
| |
| /* This function was invoked with lock held */ |
| if (list_empty(&chan->active_list)) |
| return; |
| |
| list_for_each_entry_safe(desc, next, &chan->active_list, node) { |
| if (chan->has_sg && chan->xdev->dma_config->dmatype != |
| XDMA_TYPE_VDMA) |
| desc->residue = xilinx_dma_get_residue(chan, desc); |
| else |
| desc->residue = 0; |
| desc->err = chan->err; |
| |
| list_del(&desc->node); |
| if (!desc->cyclic) |
| dma_cookie_complete(&desc->async_tx); |
| list_add_tail(&desc->node, &chan->done_list); |
| } |
| } |
| |
| /** |
| * xilinx_dma_reset - Reset DMA channel |
| * @chan: Driver specific DMA channel |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_reset(struct xilinx_dma_chan *chan) |
| { |
| int err; |
| u32 tmp; |
| |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET); |
| |
| /* Wait for the hardware to finish reset */ |
| err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp, |
| !(tmp & XILINX_DMA_DMACR_RESET), 0, |
| XILINX_DMA_LOOP_COUNT); |
| |
| if (err) { |
| dev_err(chan->dev, "reset timeout, cr %x, sr %x\n", |
| dma_ctrl_read(chan, XILINX_DMA_REG_DMACR), |
| dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); |
| return -ETIMEDOUT; |
| } |
| |
| chan->err = false; |
| chan->idle = true; |
| chan->desc_pendingcount = 0; |
| chan->desc_submitcount = 0; |
| |
| return err; |
| } |
| |
| /** |
| * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts |
| * @chan: Driver specific DMA channel |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan) |
| { |
| int err; |
| |
| /* Reset VDMA */ |
| err = xilinx_dma_reset(chan); |
| if (err) |
| return err; |
| |
| /* Enable interrupts */ |
| dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, |
| XILINX_DMA_DMAXR_ALL_IRQ_MASK); |
| |
| return 0; |
| } |
| |
| /** |
| * xilinx_mcdma_irq_handler - MCDMA Interrupt handler |
| * @irq: IRQ number |
| * @data: Pointer to the Xilinx MCDMA channel structure |
| * |
| * Return: IRQ_HANDLED/IRQ_NONE |
| */ |
| static irqreturn_t xilinx_mcdma_irq_handler(int irq, void *data) |
| { |
| struct xilinx_dma_chan *chan = data; |
| u32 status, ser_offset, chan_sermask, chan_offset = 0, chan_id; |
| |
| if (chan->direction == DMA_DEV_TO_MEM) |
| ser_offset = XILINX_MCDMA_RXINT_SER_OFFSET; |
| else |
| ser_offset = XILINX_MCDMA_TXINT_SER_OFFSET; |
| |
| /* Read the channel id raising the interrupt*/ |
| chan_sermask = dma_ctrl_read(chan, ser_offset); |
| chan_id = ffs(chan_sermask); |
| |
| if (!chan_id) |
| return IRQ_NONE; |
| |
| if (chan->direction == DMA_DEV_TO_MEM) |
| chan_offset = chan->xdev->dma_config->max_channels / 2; |
| |
| chan_offset = chan_offset + (chan_id - 1); |
| chan = chan->xdev->chan[chan_offset]; |
| /* Read the status and ack the interrupts. */ |
| status = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest)); |
| if (!(status & XILINX_MCDMA_IRQ_ALL_MASK)) |
| return IRQ_NONE; |
| |
| dma_ctrl_write(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest), |
| status & XILINX_MCDMA_IRQ_ALL_MASK); |
| |
| if (status & XILINX_MCDMA_IRQ_ERR_MASK) { |
| dev_err(chan->dev, "Channel %p has errors %x cdr %x tdr %x\n", |
| chan, |
| dma_ctrl_read(chan, XILINX_MCDMA_CH_ERR_OFFSET), |
| dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET |
| (chan->tdest)), |
| dma_ctrl_read(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET |
| (chan->tdest))); |
| chan->err = true; |
| } |
| |
| if (status & XILINX_MCDMA_IRQ_DELAY_MASK) { |
| /* |
| * Device takes too long to do the transfer when user requires |
| * responsiveness. |
| */ |
| dev_dbg(chan->dev, "Inter-packet latency too long\n"); |
| } |
| |
| if (status & XILINX_MCDMA_IRQ_IOC_MASK) { |
| spin_lock(&chan->lock); |
| xilinx_dma_complete_descriptor(chan); |
| chan->idle = true; |
| chan->start_transfer(chan); |
| spin_unlock(&chan->lock); |
| } |
| |
| tasklet_schedule(&chan->tasklet); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * xilinx_dma_irq_handler - DMA Interrupt handler |
| * @irq: IRQ number |
| * @data: Pointer to the Xilinx DMA channel structure |
| * |
| * Return: IRQ_HANDLED/IRQ_NONE |
| */ |
| static irqreturn_t xilinx_dma_irq_handler(int irq, void *data) |
| { |
| struct xilinx_dma_chan *chan = data; |
| u32 status; |
| |
| /* Read the status and ack the interrupts. */ |
| status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR); |
| if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK)) |
| return IRQ_NONE; |
| |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, |
| status & XILINX_DMA_DMAXR_ALL_IRQ_MASK); |
| |
| if (status & XILINX_DMA_DMASR_ERR_IRQ) { |
| /* |
| * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the |
| * error is recoverable, ignore it. Otherwise flag the error. |
| * |
| * Only recoverable errors can be cleared in the DMASR register, |
| * make sure not to write to other error bits to 1. |
| */ |
| u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK; |
| |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, |
| errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK); |
| |
| if (!chan->flush_on_fsync || |
| (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) { |
| dev_err(chan->dev, |
| "Channel %p has errors %x, cdr %x tdr %x\n", |
| chan, errors, |
| dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC), |
| dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC)); |
| chan->err = true; |
| } |
| } |
| |
| if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) { |
| /* |
| * Device takes too long to do the transfer when user requires |
| * responsiveness. |
| */ |
| dev_dbg(chan->dev, "Inter-packet latency too long\n"); |
| } |
| |
| if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) { |
| spin_lock(&chan->lock); |
| xilinx_dma_complete_descriptor(chan); |
| chan->idle = true; |
| chan->start_transfer(chan); |
| spin_unlock(&chan->lock); |
| } |
| |
| tasklet_schedule(&chan->tasklet); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * append_desc_queue - Queuing descriptor |
| * @chan: Driver specific dma channel |
| * @desc: dma transaction descriptor |
| */ |
| static void append_desc_queue(struct xilinx_dma_chan *chan, |
| struct xilinx_dma_tx_descriptor *desc) |
| { |
| struct xilinx_vdma_tx_segment *tail_segment; |
| struct xilinx_dma_tx_descriptor *tail_desc; |
| struct xilinx_axidma_tx_segment *axidma_tail_segment; |
| struct xilinx_aximcdma_tx_segment *aximcdma_tail_segment; |
| struct xilinx_cdma_tx_segment *cdma_tail_segment; |
| |
| if (list_empty(&chan->pending_list)) |
| goto append; |
| |
| /* |
| * Add the hardware descriptor to the chain of hardware descriptors |
| * that already exists in memory. |
| */ |
| tail_desc = list_last_entry(&chan->pending_list, |
| struct xilinx_dma_tx_descriptor, node); |
| if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_vdma_tx_segment, |
| node); |
| tail_segment->hw.next_desc = (u32)desc->async_tx.phys; |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| cdma_tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_cdma_tx_segment, |
| node); |
| cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; |
| } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| axidma_tail_segment = list_last_entry(&tail_desc->segments, |
| struct xilinx_axidma_tx_segment, |
| node); |
| axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; |
| } else { |
| aximcdma_tail_segment = |
| list_last_entry(&tail_desc->segments, |
| struct xilinx_aximcdma_tx_segment, |
| node); |
| aximcdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; |
| } |
| |
| /* |
| * Add the software descriptor and all children to the list |
| * of pending transactions |
| */ |
| append: |
| list_add_tail(&desc->node, &chan->pending_list); |
| chan->desc_pendingcount++; |
| |
| if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) |
| && unlikely(chan->desc_pendingcount > chan->num_frms)) { |
| dev_dbg(chan->dev, "desc pendingcount is too high\n"); |
| chan->desc_pendingcount = chan->num_frms; |
| } |
| } |
| |
| /** |
| * xilinx_dma_tx_submit - Submit DMA transaction |
| * @tx: Async transaction descriptor |
| * |
| * Return: cookie value on success and failure value on error |
| */ |
| static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx); |
| struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan); |
| dma_cookie_t cookie; |
| unsigned long flags; |
| int err; |
| |
| if (chan->cyclic) { |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| return -EBUSY; |
| } |
| |
| if (chan->err) { |
| /* |
| * If reset fails, need to hard reset the system. |
| * Channel is no longer functional |
| */ |
| err = xilinx_dma_chan_reset(chan); |
| if (err < 0) |
| return err; |
| } |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| cookie = dma_cookie_assign(tx); |
| |
| /* Put this transaction onto the tail of the pending queue */ |
| append_desc_queue(chan, desc); |
| |
| if (desc->cyclic) |
| chan->cyclic = true; |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| return cookie; |
| } |
| |
| /** |
| * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a |
| * DMA_SLAVE transaction |
| * @dchan: DMA channel |
| * @xt: Interleaved template pointer |
| * @flags: transfer ack flags |
| * |
| * Return: Async transaction descriptor on success and NULL on failure |
| */ |
| static struct dma_async_tx_descriptor * |
| xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, |
| struct dma_interleaved_template *xt, |
| unsigned long flags) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| struct xilinx_vdma_tx_segment *segment; |
| struct xilinx_vdma_desc_hw *hw; |
| |
| if (!is_slave_direction(xt->dir)) |
| return NULL; |
| |
| if (!xt->numf || !xt->sgl[0].size) |
| return NULL; |
| |
| if (xt->frame_size != 1) |
| return NULL; |
| |
| /* Allocate a transaction descriptor. */ |
| desc = xilinx_dma_alloc_tx_descriptor(chan); |
| if (!desc) |
| return NULL; |
| |
| dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
| desc->async_tx.tx_submit = xilinx_dma_tx_submit; |
| async_tx_ack(&desc->async_tx); |
| |
| /* Allocate the link descriptor from DMA pool */ |
| segment = xilinx_vdma_alloc_tx_segment(chan); |
| if (!segment) |
| goto error; |
| |
| /* Fill in the hardware descriptor */ |
| hw = &segment->hw; |
| hw->vsize = xt->numf; |
| hw->hsize = xt->sgl[0].size; |
| hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) << |
| XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT; |
| hw->stride |= chan->config.frm_dly << |
| XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT; |
| |
| if (xt->dir != DMA_MEM_TO_DEV) { |
| if (chan->ext_addr) { |
| hw->buf_addr = lower_32_bits(xt->dst_start); |
| hw->buf_addr_msb = upper_32_bits(xt->dst_start); |
| } else { |
| hw->buf_addr = xt->dst_start; |
| } |
| } else { |
| if (chan->ext_addr) { |
| hw->buf_addr = lower_32_bits(xt->src_start); |
| hw->buf_addr_msb = upper_32_bits(xt->src_start); |
| } else { |
| hw->buf_addr = xt->src_start; |
| } |
| } |
| |
| /* Insert the segment into the descriptor segments list. */ |
| list_add_tail(&segment->node, &desc->segments); |
| |
| /* Link the last hardware descriptor with the first. */ |
| segment = list_first_entry(&desc->segments, |
| struct xilinx_vdma_tx_segment, node); |
| desc->async_tx.phys = segment->phys; |
| |
| return &desc->async_tx; |
| |
| error: |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| return NULL; |
| } |
| |
| /** |
| * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction |
| * @dchan: DMA channel |
| * @dma_dst: destination address |
| * @dma_src: source address |
| * @len: transfer length |
| * @flags: transfer ack flags |
| * |
| * Return: Async transaction descriptor on success and NULL on failure |
| */ |
| static struct dma_async_tx_descriptor * |
| xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, |
| dma_addr_t dma_src, size_t len, unsigned long flags) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| struct xilinx_cdma_tx_segment *segment; |
| struct xilinx_cdma_desc_hw *hw; |
| |
| if (!len || len > chan->xdev->max_buffer_len) |
| return NULL; |
| |
| desc = xilinx_dma_alloc_tx_descriptor(chan); |
| if (!desc) |
| return NULL; |
| |
| dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
| desc->async_tx.tx_submit = xilinx_dma_tx_submit; |
| |
| /* Allocate the link descriptor from DMA pool */ |
| segment = xilinx_cdma_alloc_tx_segment(chan); |
| if (!segment) |
| goto error; |
| |
| hw = &segment->hw; |
| hw->control = len; |
| hw->src_addr = dma_src; |
| hw->dest_addr = dma_dst; |
| if (chan->ext_addr) { |
| hw->src_addr_msb = upper_32_bits(dma_src); |
| hw->dest_addr_msb = upper_32_bits(dma_dst); |
| } |
| |
| /* Insert the segment into the descriptor segments list. */ |
| list_add_tail(&segment->node, &desc->segments); |
| |
| desc->async_tx.phys = segment->phys; |
| hw->next_desc = segment->phys; |
| |
| return &desc->async_tx; |
| |
| error: |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| return NULL; |
| } |
| |
| /** |
| * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction |
| * @dchan: DMA channel |
| * @sgl: scatterlist to transfer to/from |
| * @sg_len: number of entries in @scatterlist |
| * @direction: DMA direction |
| * @flags: transfer ack flags |
| * @context: APP words of the descriptor |
| * |
| * Return: Async transaction descriptor on success and NULL on failure |
| */ |
| static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg( |
| struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, |
| enum dma_transfer_direction direction, unsigned long flags, |
| void *context) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| struct xilinx_axidma_tx_segment *segment = NULL; |
| u32 *app_w = (u32 *)context; |
| struct scatterlist *sg; |
| size_t copy; |
| size_t sg_used; |
| unsigned int i; |
| |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| /* Allocate a transaction descriptor. */ |
| desc = xilinx_dma_alloc_tx_descriptor(chan); |
| if (!desc) |
| return NULL; |
| |
| dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
| desc->async_tx.tx_submit = xilinx_dma_tx_submit; |
| |
| /* Build transactions using information in the scatter gather list */ |
| for_each_sg(sgl, sg, sg_len, i) { |
| sg_used = 0; |
| |
| /* Loop until the entire scatterlist entry is used */ |
| while (sg_used < sg_dma_len(sg)) { |
| struct xilinx_axidma_desc_hw *hw; |
| |
| /* Get a free segment */ |
| segment = xilinx_axidma_alloc_tx_segment(chan); |
| if (!segment) |
| goto error; |
| |
| /* |
| * Calculate the maximum number of bytes to transfer, |
| * making sure it is less than the hw limit |
| */ |
| copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg), |
| sg_used); |
| hw = &segment->hw; |
| |
| /* Fill in the descriptor */ |
| xilinx_axidma_buf(chan, hw, sg_dma_address(sg), |
| sg_used, 0); |
| |
| hw->control = copy; |
| |
| if (chan->direction == DMA_MEM_TO_DEV) { |
| if (app_w) |
| memcpy(hw->app, app_w, sizeof(u32) * |
| XILINX_DMA_NUM_APP_WORDS); |
| } |
| |
| sg_used += copy; |
| |
| /* |
| * Insert the segment into the descriptor segments |
| * list. |
| */ |
| list_add_tail(&segment->node, &desc->segments); |
| } |
| } |
| |
| segment = list_first_entry(&desc->segments, |
| struct xilinx_axidma_tx_segment, node); |
| desc->async_tx.phys = segment->phys; |
| |
| /* For the last DMA_MEM_TO_DEV transfer, set EOP */ |
| if (chan->direction == DMA_MEM_TO_DEV) { |
| segment->hw.control |= XILINX_DMA_BD_SOP; |
| segment = list_last_entry(&desc->segments, |
| struct xilinx_axidma_tx_segment, |
| node); |
| segment->hw.control |= XILINX_DMA_BD_EOP; |
| } |
| |
| return &desc->async_tx; |
| |
| error: |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| return NULL; |
| } |
| |
| /** |
| * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction |
| * @dchan: DMA channel |
| * @buf_addr: Physical address of the buffer |
| * @buf_len: Total length of the cyclic buffers |
| * @period_len: length of individual cyclic buffer |
| * @direction: DMA direction |
| * @flags: transfer ack flags |
| * |
| * Return: Async transaction descriptor on success and NULL on failure |
| */ |
| static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic( |
| struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL; |
| size_t copy, sg_used; |
| unsigned int num_periods; |
| int i; |
| u32 reg; |
| |
| if (!period_len) |
| return NULL; |
| |
| num_periods = buf_len / period_len; |
| |
| if (!num_periods) |
| return NULL; |
| |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| /* Allocate a transaction descriptor. */ |
| desc = xilinx_dma_alloc_tx_descriptor(chan); |
| if (!desc) |
| return NULL; |
| |
| chan->direction = direction; |
| dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
| desc->async_tx.tx_submit = xilinx_dma_tx_submit; |
| |
| for (i = 0; i < num_periods; ++i) { |
| sg_used = 0; |
| |
| while (sg_used < period_len) { |
| struct xilinx_axidma_desc_hw *hw; |
| |
| /* Get a free segment */ |
| segment = xilinx_axidma_alloc_tx_segment(chan); |
| if (!segment) |
| goto error; |
| |
| /* |
| * Calculate the maximum number of bytes to transfer, |
| * making sure it is less than the hw limit |
| */ |
| copy = xilinx_dma_calc_copysize(chan, period_len, |
| sg_used); |
| hw = &segment->hw; |
| xilinx_axidma_buf(chan, hw, buf_addr, sg_used, |
| period_len * i); |
| hw->control = copy; |
| |
| if (prev) |
| prev->hw.next_desc = segment->phys; |
| |
| prev = segment; |
| sg_used += copy; |
| |
| /* |
| * Insert the segment into the descriptor segments |
| * list. |
| */ |
| list_add_tail(&segment->node, &desc->segments); |
| } |
| } |
| |
| head_segment = list_first_entry(&desc->segments, |
| struct xilinx_axidma_tx_segment, node); |
| desc->async_tx.phys = head_segment->phys; |
| |
| desc->cyclic = true; |
| reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); |
| reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK; |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); |
| |
| segment = list_last_entry(&desc->segments, |
| struct xilinx_axidma_tx_segment, |
| node); |
| segment->hw.next_desc = (u32) head_segment->phys; |
| |
| /* For the last DMA_MEM_TO_DEV transfer, set EOP */ |
| if (direction == DMA_MEM_TO_DEV) { |
| head_segment->hw.control |= XILINX_DMA_BD_SOP; |
| segment->hw.control |= XILINX_DMA_BD_EOP; |
| } |
| |
| return &desc->async_tx; |
| |
| error: |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| return NULL; |
| } |
| |
| /** |
| * xilinx_mcdma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction |
| * @dchan: DMA channel |
| * @sgl: scatterlist to transfer to/from |
| * @sg_len: number of entries in @scatterlist |
| * @direction: DMA direction |
| * @flags: transfer ack flags |
| * @context: APP words of the descriptor |
| * |
| * Return: Async transaction descriptor on success and NULL on failure |
| */ |
| static struct dma_async_tx_descriptor * |
| xilinx_mcdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| struct xilinx_dma_tx_descriptor *desc; |
| struct xilinx_aximcdma_tx_segment *segment = NULL; |
| u32 *app_w = (u32 *)context; |
| struct scatterlist *sg; |
| size_t copy; |
| size_t sg_used; |
| unsigned int i; |
| |
| if (!is_slave_direction(direction)) |
| return NULL; |
| |
| /* Allocate a transaction descriptor. */ |
| desc = xilinx_dma_alloc_tx_descriptor(chan); |
| if (!desc) |
| return NULL; |
| |
| dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); |
| desc->async_tx.tx_submit = xilinx_dma_tx_submit; |
| |
| /* Build transactions using information in the scatter gather list */ |
| for_each_sg(sgl, sg, sg_len, i) { |
| sg_used = 0; |
| |
| /* Loop until the entire scatterlist entry is used */ |
| while (sg_used < sg_dma_len(sg)) { |
| struct xilinx_aximcdma_desc_hw *hw; |
| |
| /* Get a free segment */ |
| segment = xilinx_aximcdma_alloc_tx_segment(chan); |
| if (!segment) |
| goto error; |
| |
| /* |
| * Calculate the maximum number of bytes to transfer, |
| * making sure it is less than the hw limit |
| */ |
| copy = min_t(size_t, sg_dma_len(sg) - sg_used, |
| chan->xdev->max_buffer_len); |
| hw = &segment->hw; |
| |
| /* Fill in the descriptor */ |
| xilinx_aximcdma_buf(chan, hw, sg_dma_address(sg), |
| sg_used); |
| hw->control = copy; |
| |
| if (chan->direction == DMA_MEM_TO_DEV && app_w) { |
| memcpy(hw->app, app_w, sizeof(u32) * |
| XILINX_DMA_NUM_APP_WORDS); |
| } |
| |
| sg_used += copy; |
| /* |
| * Insert the segment into the descriptor segments |
| * list. |
| */ |
| list_add_tail(&segment->node, &desc->segments); |
| } |
| } |
| |
| segment = list_first_entry(&desc->segments, |
| struct xilinx_aximcdma_tx_segment, node); |
| desc->async_tx.phys = segment->phys; |
| |
| /* For the last DMA_MEM_TO_DEV transfer, set EOP */ |
| if (chan->direction == DMA_MEM_TO_DEV) { |
| segment->hw.control |= XILINX_MCDMA_BD_SOP; |
| segment = list_last_entry(&desc->segments, |
| struct xilinx_aximcdma_tx_segment, |
| node); |
| segment->hw.control |= XILINX_MCDMA_BD_EOP; |
| } |
| |
| return &desc->async_tx; |
| |
| error: |
| xilinx_dma_free_tx_descriptor(chan, desc); |
| |
| return NULL; |
| } |
| |
| /** |
| * xilinx_dma_terminate_all - Halt the channel and free descriptors |
| * @dchan: Driver specific DMA Channel pointer |
| * |
| * Return: '0' always. |
| */ |
| static int xilinx_dma_terminate_all(struct dma_chan *dchan) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| u32 reg; |
| int err; |
| |
| if (!chan->cyclic) { |
| err = chan->stop_transfer(chan); |
| if (err) { |
| dev_err(chan->dev, "Cannot stop channel %p: %x\n", |
| chan, dma_ctrl_read(chan, |
| XILINX_DMA_REG_DMASR)); |
| chan->err = true; |
| } |
| } |
| |
| xilinx_dma_chan_reset(chan); |
| /* Remove and free all of the descriptors in the lists */ |
| xilinx_dma_free_descriptors(chan); |
| chan->idle = true; |
| |
| if (chan->cyclic) { |
| reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); |
| reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK; |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); |
| chan->cyclic = false; |
| } |
| |
| if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) |
| dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, |
| XILINX_CDMA_CR_SGMODE); |
| |
| return 0; |
| } |
| |
| /** |
| * xilinx_dma_channel_set_config - Configure VDMA channel |
| * Run-time configuration for Axi VDMA, supports: |
| * . halt the channel |
| * . configure interrupt coalescing and inter-packet delay threshold |
| * . start/stop parking |
| * . enable genlock |
| * |
| * @dchan: DMA channel |
| * @cfg: VDMA device configuration pointer |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| int xilinx_vdma_channel_set_config(struct dma_chan *dchan, |
| struct xilinx_vdma_config *cfg) |
| { |
| struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); |
| u32 dmacr; |
| |
| if (cfg->reset) |
| return xilinx_dma_chan_reset(chan); |
| |
| dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); |
| |
| chan->config.frm_dly = cfg->frm_dly; |
| chan->config.park = cfg->park; |
| |
| /* genlock settings */ |
| chan->config.gen_lock = cfg->gen_lock; |
| chan->config.master = cfg->master; |
| |
| dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN; |
| if (cfg->gen_lock && chan->genlock) { |
| dmacr |= XILINX_DMA_DMACR_GENLOCK_EN; |
| dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK; |
| dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT; |
| } |
| |
| chan->config.frm_cnt_en = cfg->frm_cnt_en; |
| chan->config.vflip_en = cfg->vflip_en; |
| |
| if (cfg->park) |
| chan->config.park_frm = cfg->park_frm; |
| else |
| chan->config.park_frm = -1; |
| |
| chan->config.coalesc = cfg->coalesc; |
| chan->config.delay = cfg->delay; |
| |
| if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) { |
| dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK; |
| dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT; |
| chan->config.coalesc = cfg->coalesc; |
| } |
| |
| if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) { |
| dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK; |
| dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT; |
| chan->config.delay = cfg->delay; |
| } |
| |
| /* FSync Source selection */ |
| dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK; |
| dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT; |
| |
| dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(xilinx_vdma_channel_set_config); |
| |
| /* ----------------------------------------------------------------------------- |
| * Probe and remove |
| */ |
| |
| /** |
| * xilinx_dma_chan_remove - Per Channel remove function |
| * @chan: Driver specific DMA channel |
| */ |
| static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan) |
| { |
| /* Disable all interrupts */ |
| dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, |
| XILINX_DMA_DMAXR_ALL_IRQ_MASK); |
| |
| if (chan->irq > 0) |
| free_irq(chan->irq, chan); |
| |
| tasklet_kill(&chan->tasklet); |
| |
| list_del(&chan->common.device_node); |
| } |
| |
| static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk, |
| struct clk **tx_clk, struct clk **rx_clk, |
| struct clk **sg_clk, struct clk **tmp_clk) |
| { |
| int err; |
| |
| *tmp_clk = NULL; |
| |
| *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); |
| if (IS_ERR(*axi_clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); |
| |
| *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); |
| if (IS_ERR(*tx_clk)) |
| *tx_clk = NULL; |
| |
| *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); |
| if (IS_ERR(*rx_clk)) |
| *rx_clk = NULL; |
| |
| *sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk"); |
| if (IS_ERR(*sg_clk)) |
| *sg_clk = NULL; |
| |
| err = clk_prepare_enable(*axi_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); |
| return err; |
| } |
| |
| err = clk_prepare_enable(*tx_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); |
| goto err_disable_axiclk; |
| } |
| |
| err = clk_prepare_enable(*rx_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); |
| goto err_disable_txclk; |
| } |
| |
| err = clk_prepare_enable(*sg_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err); |
| goto err_disable_rxclk; |
| } |
| |
| return 0; |
| |
| err_disable_rxclk: |
| clk_disable_unprepare(*rx_clk); |
| err_disable_txclk: |
| clk_disable_unprepare(*tx_clk); |
| err_disable_axiclk: |
| clk_disable_unprepare(*axi_clk); |
| |
| return err; |
| } |
| |
| static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, |
| struct clk **dev_clk, struct clk **tmp_clk, |
| struct clk **tmp1_clk, struct clk **tmp2_clk) |
| { |
| int err; |
| |
| *tmp_clk = NULL; |
| *tmp1_clk = NULL; |
| *tmp2_clk = NULL; |
| |
| *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); |
| if (IS_ERR(*axi_clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); |
| |
| *dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk"); |
| if (IS_ERR(*dev_clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(*dev_clk), "failed to get dev_clk\n"); |
| |
| err = clk_prepare_enable(*axi_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); |
| return err; |
| } |
| |
| err = clk_prepare_enable(*dev_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err); |
| goto err_disable_axiclk; |
| } |
| |
| return 0; |
| |
| err_disable_axiclk: |
| clk_disable_unprepare(*axi_clk); |
| |
| return err; |
| } |
| |
| static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, |
| struct clk **tx_clk, struct clk **txs_clk, |
| struct clk **rx_clk, struct clk **rxs_clk) |
| { |
| int err; |
| |
| *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); |
| if (IS_ERR(*axi_clk)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); |
| |
| *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); |
| if (IS_ERR(*tx_clk)) |
| *tx_clk = NULL; |
| |
| *txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk"); |
| if (IS_ERR(*txs_clk)) |
| *txs_clk = NULL; |
| |
| *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); |
| if (IS_ERR(*rx_clk)) |
| *rx_clk = NULL; |
| |
| *rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk"); |
| if (IS_ERR(*rxs_clk)) |
| *rxs_clk = NULL; |
| |
| err = clk_prepare_enable(*axi_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", |
| err); |
| return err; |
| } |
| |
| err = clk_prepare_enable(*tx_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); |
| goto err_disable_axiclk; |
| } |
| |
| err = clk_prepare_enable(*txs_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err); |
| goto err_disable_txclk; |
| } |
| |
| err = clk_prepare_enable(*rx_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); |
| goto err_disable_txsclk; |
| } |
| |
| err = clk_prepare_enable(*rxs_clk); |
| if (err) { |
| dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err); |
| goto err_disable_rxclk; |
| } |
| |
| return 0; |
| |
| err_disable_rxclk: |
| clk_disable_unprepare(*rx_clk); |
| err_disable_txsclk: |
| clk_disable_unprepare(*txs_clk); |
| err_disable_txclk: |
| clk_disable_unprepare(*tx_clk); |
| err_disable_axiclk: |
| clk_disable_unprepare(*axi_clk); |
| |
| return err; |
| } |
| |
| static void xdma_disable_allclks(struct xilinx_dma_device *xdev) |
| { |
| clk_disable_unprepare(xdev->rxs_clk); |
| clk_disable_unprepare(xdev->rx_clk); |
| clk_disable_unprepare(xdev->txs_clk); |
| clk_disable_unprepare(xdev->tx_clk); |
| clk_disable_unprepare(xdev->axi_clk); |
| } |
| |
| /** |
| * xilinx_dma_chan_probe - Per Channel Probing |
| * It get channel features from the device tree entry and |
| * initialize special channel handling routines |
| * |
| * @xdev: Driver specific device structure |
| * @node: Device node |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev, |
| struct device_node *node) |
| { |
| struct xilinx_dma_chan *chan; |
| bool has_dre = false; |
| u32 value, width; |
| int err; |
| |
| /* Allocate and initialize the channel structure */ |
| chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL); |
| if (!chan) |
| return -ENOMEM; |
| |
| chan->dev = xdev->dev; |
| chan->xdev = xdev; |
| chan->desc_pendingcount = 0x0; |
| chan->ext_addr = xdev->ext_addr; |
| /* This variable ensures that descriptors are not |
| * Submitted when dma engine is in progress. This variable is |
| * Added to avoid polling for a bit in the status register to |
| * Know dma state in the driver hot path. |
| */ |
| chan->idle = true; |
| |
| spin_lock_init(&chan->lock); |
| INIT_LIST_HEAD(&chan->pending_list); |
| INIT_LIST_HEAD(&chan->done_list); |
| INIT_LIST_HEAD(&chan->active_list); |
| INIT_LIST_HEAD(&chan->free_seg_list); |
| |
| /* Retrieve the channel properties from the device tree */ |
| has_dre = of_property_read_bool(node, "xlnx,include-dre"); |
| |
| chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode"); |
| |
| err = of_property_read_u32(node, "xlnx,datawidth", &value); |
| if (err) { |
| dev_err(xdev->dev, "missing xlnx,datawidth property\n"); |
| return err; |
| } |
| width = value >> 3; /* Convert bits to bytes */ |
| |
| /* If data width is greater than 8 bytes, DRE is not in hw */ |
| if (width > 8) |
| has_dre = false; |
| |
| if (!has_dre) |
| xdev->common.copy_align = (enum dmaengine_alignment)fls(width - 1); |
| |
| if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") || |
| of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") || |
| of_device_is_compatible(node, "xlnx,axi-cdma-channel")) { |
| chan->direction = DMA_MEM_TO_DEV; |
| chan->id = xdev->mm2s_chan_id++; |
| chan->tdest = chan->id; |
| |
| chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET; |
| if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET; |
| chan->config.park = 1; |
| |
| if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || |
| xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S) |
| chan->flush_on_fsync = true; |
| } |
| } else if (of_device_is_compatible(node, |
| "xlnx,axi-vdma-s2mm-channel") || |
| of_device_is_compatible(node, |
| "xlnx,axi-dma-s2mm-channel")) { |
| chan->direction = DMA_DEV_TO_MEM; |
| chan->id = xdev->s2mm_chan_id++; |
| chan->tdest = chan->id - xdev->dma_config->max_channels / 2; |
| chan->has_vflip = of_property_read_bool(node, |
| "xlnx,enable-vert-flip"); |
| if (chan->has_vflip) { |
| chan->config.vflip_en = dma_read(chan, |
| XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) & |
| XILINX_VDMA_ENABLE_VERTICAL_FLIP; |
| } |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) |
| chan->ctrl_offset = XILINX_MCDMA_S2MM_CTRL_OFFSET; |
| else |
| chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET; |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET; |
| chan->config.park = 1; |
| |
| if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || |
| xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM) |
| chan->flush_on_fsync = true; |
| } |
| } else { |
| dev_err(xdev->dev, "Invalid channel compatible node\n"); |
| return -EINVAL; |
| } |
| |
| /* Request the interrupt */ |
| chan->irq = irq_of_parse_and_map(node, chan->tdest); |
| err = request_irq(chan->irq, xdev->dma_config->irq_handler, |
| IRQF_SHARED, "xilinx-dma-controller", chan); |
| if (err) { |
| dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq); |
| return err; |
| } |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| chan->start_transfer = xilinx_dma_start_transfer; |
| chan->stop_transfer = xilinx_dma_stop_transfer; |
| } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { |
| chan->start_transfer = xilinx_mcdma_start_transfer; |
| chan->stop_transfer = xilinx_dma_stop_transfer; |
| } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| chan->start_transfer = xilinx_cdma_start_transfer; |
| chan->stop_transfer = xilinx_cdma_stop_transfer; |
| } else { |
| chan->start_transfer = xilinx_vdma_start_transfer; |
| chan->stop_transfer = xilinx_dma_stop_transfer; |
| } |
| |
| /* check if SG is enabled (only for AXIDMA, AXIMCDMA, and CDMA) */ |
| if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) { |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA || |
| dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) & |
| XILINX_DMA_DMASR_SG_MASK) |
| chan->has_sg = true; |
| dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id, |
| chan->has_sg ? "enabled" : "disabled"); |
| } |
| |
| /* Initialize the tasklet */ |
| tasklet_setup(&chan->tasklet, xilinx_dma_do_tasklet); |
| |
| /* |
| * Initialize the DMA channel and add it to the DMA engine channels |
| * list. |
| */ |
| chan->common.device = &xdev->common; |
| |
| list_add_tail(&chan->common.device_node, &xdev->common.channels); |
| xdev->chan[chan->id] = chan; |
| |
| /* Reset the channel */ |
| err = xilinx_dma_chan_reset(chan); |
| if (err < 0) { |
| dev_err(xdev->dev, "Reset channel failed\n"); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * xilinx_dma_child_probe - Per child node probe |
| * It get number of dma-channels per child node from |
| * device-tree and initializes all the channels. |
| * |
| * @xdev: Driver specific device structure |
| * @node: Device node |
| * |
| * Return: 0 always. |
| */ |
| static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev, |
| struct device_node *node) |
| { |
| int ret, i; |
| u32 nr_channels = 1; |
| |
| ret = of_property_read_u32(node, "dma-channels", &nr_channels); |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA && ret < 0) |
| dev_warn(xdev->dev, "missing dma-channels property\n"); |
| |
| for (i = 0; i < nr_channels; i++) |
| xilinx_dma_chan_probe(xdev, node); |
| |
| return 0; |
| } |
| |
| /** |
| * of_dma_xilinx_xlate - Translation function |
| * @dma_spec: Pointer to DMA specifier as found in the device tree |
| * @ofdma: Pointer to DMA controller data |
| * |
| * Return: DMA channel pointer on success and NULL on error |
| */ |
| static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct xilinx_dma_device *xdev = ofdma->of_dma_data; |
| int chan_id = dma_spec->args[0]; |
| |
| if (chan_id >= xdev->dma_config->max_channels || !xdev->chan[chan_id]) |
| return NULL; |
| |
| return dma_get_slave_channel(&xdev->chan[chan_id]->common); |
| } |
| |
| static const struct xilinx_dma_config axidma_config = { |
| .dmatype = XDMA_TYPE_AXIDMA, |
| .clk_init = axidma_clk_init, |
| .irq_handler = xilinx_dma_irq_handler, |
| .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, |
| }; |
| |
| static const struct xilinx_dma_config aximcdma_config = { |
| .dmatype = XDMA_TYPE_AXIMCDMA, |
| .clk_init = axidma_clk_init, |
| .irq_handler = xilinx_mcdma_irq_handler, |
| .max_channels = XILINX_MCDMA_MAX_CHANS_PER_DEVICE, |
| }; |
| static const struct xilinx_dma_config axicdma_config = { |
| .dmatype = XDMA_TYPE_CDMA, |
| .clk_init = axicdma_clk_init, |
| .irq_handler = xilinx_dma_irq_handler, |
| .max_channels = XILINX_CDMA_MAX_CHANS_PER_DEVICE, |
| }; |
| |
| static const struct xilinx_dma_config axivdma_config = { |
| .dmatype = XDMA_TYPE_VDMA, |
| .clk_init = axivdma_clk_init, |
| .irq_handler = xilinx_dma_irq_handler, |
| .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, |
| }; |
| |
| static const struct of_device_id xilinx_dma_of_ids[] = { |
| { .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config }, |
| { .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config }, |
| { .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config }, |
| { .compatible = "xlnx,axi-mcdma-1.00.a", .data = &aximcdma_config }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids); |
| |
| /** |
| * xilinx_dma_probe - Driver probe function |
| * @pdev: Pointer to the platform_device structure |
| * |
| * Return: '0' on success and failure value on error |
| */ |
| static int xilinx_dma_probe(struct platform_device *pdev) |
| { |
| int (*clk_init)(struct platform_device *, struct clk **, struct clk **, |
| struct clk **, struct clk **, struct clk **) |
| = axivdma_clk_init; |
| struct device_node *node = pdev->dev.of_node; |
| struct xilinx_dma_device *xdev; |
| struct device_node *child, *np = pdev->dev.of_node; |
| u32 num_frames, addr_width, len_width; |
| int i, err; |
| |
| /* Allocate and initialize the DMA engine structure */ |
| xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); |
| if (!xdev) |
| return -ENOMEM; |
| |
| xdev->dev = &pdev->dev; |
| if (np) { |
| const struct of_device_id *match; |
| |
| match = of_match_node(xilinx_dma_of_ids, np); |
| if (match && match->data) { |
| xdev->dma_config = match->data; |
| clk_init = xdev->dma_config->clk_init; |
| } |
| } |
| |
| err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk, |
| &xdev->rx_clk, &xdev->rxs_clk); |
| if (err) |
| return err; |
| |
| /* Request and map I/O memory */ |
| xdev->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(xdev->regs)) |
| return PTR_ERR(xdev->regs); |
| |
| /* Retrieve the DMA engine properties from the device tree */ |
| xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0); |
| xdev->s2mm_chan_id = xdev->dma_config->max_channels / 2; |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA || |
| xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { |
| if (!of_property_read_u32(node, "xlnx,sg-length-width", |
| &len_width)) { |
| if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN || |
| len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) { |
| dev_warn(xdev->dev, |
| "invalid xlnx,sg-length-width property value. Using default width\n"); |
| } else { |
| if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX) |
| dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n"); |
| xdev->max_buffer_len = |
| GENMASK(len_width - 1, 0); |
| } |
| } |
| } |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| err = of_property_read_u32(node, "xlnx,num-fstores", |
| &num_frames); |
| if (err < 0) { |
| dev_err(xdev->dev, |
| "missing xlnx,num-fstores property\n"); |
| return err; |
| } |
| |
| err = of_property_read_u32(node, "xlnx,flush-fsync", |
| &xdev->flush_on_fsync); |
| if (err < 0) |
| dev_warn(xdev->dev, |
| "missing xlnx,flush-fsync property\n"); |
| } |
| |
| err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width); |
| if (err < 0) |
| dev_warn(xdev->dev, "missing xlnx,addrwidth property\n"); |
| |
| if (addr_width > 32) |
| xdev->ext_addr = true; |
| else |
| xdev->ext_addr = false; |
| |
| /* Set the dma mask bits */ |
| dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width)); |
| |
| /* Initialize the DMA engine */ |
| xdev->common.dev = &pdev->dev; |
| |
| INIT_LIST_HEAD(&xdev->common.channels); |
| if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) { |
| dma_cap_set(DMA_SLAVE, xdev->common.cap_mask); |
| dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask); |
| } |
| |
| xdev->common.device_alloc_chan_resources = |
| xilinx_dma_alloc_chan_resources; |
| xdev->common.device_free_chan_resources = |
| xilinx_dma_free_chan_resources; |
| xdev->common.device_terminate_all = xilinx_dma_terminate_all; |
| xdev->common.device_tx_status = xilinx_dma_tx_status; |
| xdev->common.device_issue_pending = xilinx_dma_issue_pending; |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { |
| dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask); |
| xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg; |
| xdev->common.device_prep_dma_cyclic = |
| xilinx_dma_prep_dma_cyclic; |
| /* Residue calculation is supported by only AXI DMA and CDMA */ |
| xdev->common.residue_granularity = |
| DMA_RESIDUE_GRANULARITY_SEGMENT; |
| } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { |
| dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask); |
| xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy; |
| /* Residue calculation is supported by only AXI DMA and CDMA */ |
| xdev->common.residue_granularity = |
| DMA_RESIDUE_GRANULARITY_SEGMENT; |
| } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { |
| xdev->common.device_prep_slave_sg = xilinx_mcdma_prep_slave_sg; |
| } else { |
| xdev->common.device_prep_interleaved_dma = |
| xilinx_vdma_dma_prep_interleaved; |
| } |
| |
| platform_set_drvdata(pdev, xdev); |
| |
| /* Initialize the channels */ |
| for_each_child_of_node(node, child) { |
| err = xilinx_dma_child_probe(xdev, child); |
| if (err < 0) |
| goto disable_clks; |
| } |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { |
| for (i = 0; i < xdev->dma_config->max_channels; i++) |
| if (xdev->chan[i]) |
| xdev->chan[i]->num_frms = num_frames; |
| } |
| |
| /* Register the DMA engine with the core */ |
| err = dma_async_device_register(&xdev->common); |
| if (err) { |
| dev_err(xdev->dev, "failed to register the dma device\n"); |
| goto error; |
| } |
| |
| err = of_dma_controller_register(node, of_dma_xilinx_xlate, |
| xdev); |
| if (err < 0) { |
| dev_err(&pdev->dev, "Unable to register DMA to DT\n"); |
| dma_async_device_unregister(&xdev->common); |
| goto error; |
| } |
| |
| if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) |
| dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n"); |
| else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) |
| dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n"); |
| else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) |
| dev_info(&pdev->dev, "Xilinx AXI MCDMA Engine Driver Probed!!\n"); |
| else |
| dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n"); |
| |
| return 0; |
| |
| disable_clks: |
| xdma_disable_allclks(xdev); |
| error: |
| for (i = 0; i < xdev->dma_config->max_channels; i++) |
| if (xdev->chan[i]) |
| xilinx_dma_chan_remove(xdev->chan[i]); |
| |
| return err; |
| } |
| |
| /** |
| * xilinx_dma_remove - Driver remove function |
| * @pdev: Pointer to the platform_device structure |
| * |
| * Return: Always '0' |
| */ |
| static int xilinx_dma_remove(struct platform_device *pdev) |
| { |
| struct xilinx_dma_device *xdev = platform_get_drvdata(pdev); |
| int i; |
| |
| of_dma_controller_free(pdev->dev.of_node); |
| |
| dma_async_device_unregister(&xdev->common); |
| |
| for (i = 0; i < xdev->dma_config->max_channels; i++) |
| if (xdev->chan[i]) |
| xilinx_dma_chan_remove(xdev->chan[i]); |
| |
| xdma_disable_allclks(xdev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver xilinx_vdma_driver = { |
| .driver = { |
| .name = "xilinx-vdma", |
| .of_match_table = xilinx_dma_of_ids, |
| }, |
| .probe = xilinx_dma_probe, |
| .remove = xilinx_dma_remove, |
| }; |
| |
| module_platform_driver(xilinx_vdma_driver); |
| |
| MODULE_AUTHOR("Xilinx, Inc."); |
| MODULE_DESCRIPTION("Xilinx VDMA driver"); |
| MODULE_LICENSE("GPL v2"); |