| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2016 Broadcom |
| */ |
| |
| /** |
| * DOC: VC4 DSI0/DSI1 module |
| * |
| * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a |
| * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI |
| * controller. |
| * |
| * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, |
| * while the compute module brings both DSI0 and DSI1 out. |
| * |
| * This driver has been tested for DSI1 video-mode display only |
| * currently, with most of the information necessary for DSI0 |
| * hopefully present. |
| */ |
| |
| #include <linux/clk-provider.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/component.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/i2c.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| #include <linux/of_platform.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_bridge.h> |
| #include <drm/drm_edid.h> |
| #include <drm/drm_mipi_dsi.h> |
| #include <drm/drm_of.h> |
| #include <drm/drm_panel.h> |
| #include <drm/drm_probe_helper.h> |
| #include <drm/drm_simple_kms_helper.h> |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| #define DSI_CMD_FIFO_DEPTH 16 |
| #define DSI_PIX_FIFO_DEPTH 256 |
| #define DSI_PIX_FIFO_WIDTH 4 |
| |
| #define DSI0_CTRL 0x00 |
| |
| /* Command packet control. */ |
| #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ |
| #define DSI1_TXPKT1C 0x04 |
| # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) |
| # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 |
| # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) |
| # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 |
| |
| # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) |
| # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 |
| /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ |
| # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 |
| /* Primary display where cmdfifo provides part of the payload and |
| * pixelvalve the rest. |
| */ |
| # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 |
| /* Secondary display where cmdfifo provides part of the payload and |
| * pixfifo the rest. |
| */ |
| # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 |
| |
| # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) |
| # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 |
| |
| # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) |
| # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 |
| /* Command only. Uses TXPKT1H and DISPLAY_NO */ |
| # define DSI_TXPKT1C_CMD_CTRL_TX 0 |
| /* Command with BTA for either ack or read data. */ |
| # define DSI_TXPKT1C_CMD_CTRL_RX 1 |
| /* Trigger according to TRIG_CMD */ |
| # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 |
| /* BTA alone for getting error status after a command, or a TE trigger |
| * without a previous command. |
| */ |
| # define DSI_TXPKT1C_CMD_CTRL_BTA 3 |
| |
| # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) |
| # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) |
| # define DSI_TXPKT1C_CMD_TE_EN BIT(1) |
| # define DSI_TXPKT1C_CMD_EN BIT(0) |
| |
| /* Command packet header. */ |
| #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ |
| #define DSI1_TXPKT1H 0x08 |
| # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) |
| # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 |
| # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) |
| # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 |
| # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) |
| # define DSI_TXPKT1H_BC_DT_SHIFT 0 |
| |
| #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ |
| #define DSI1_RXPKT1H 0x14 |
| # define DSI_RXPKT1H_CRC_ERR BIT(31) |
| # define DSI_RXPKT1H_DET_ERR BIT(30) |
| # define DSI_RXPKT1H_ECC_ERR BIT(29) |
| # define DSI_RXPKT1H_COR_ERR BIT(28) |
| # define DSI_RXPKT1H_INCOMP_PKT BIT(25) |
| # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) |
| /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ |
| # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) |
| # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 |
| /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ |
| # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) |
| # define DSI_RXPKT1H_SHORT_1_SHIFT 16 |
| # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) |
| # define DSI_RXPKT1H_SHORT_0_SHIFT 8 |
| # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) |
| # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 |
| |
| #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ |
| #define DSI1_RXPKT2H 0x18 |
| # define DSI_RXPKT1H_DET_ERR BIT(30) |
| # define DSI_RXPKT1H_ECC_ERR BIT(29) |
| # define DSI_RXPKT1H_COR_ERR BIT(28) |
| # define DSI_RXPKT1H_INCOMP_PKT BIT(25) |
| # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) |
| # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 |
| # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) |
| # define DSI_RXPKT1H_DT_SHIFT 0 |
| |
| #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ |
| #define DSI1_TXPKT_CMD_FIFO 0x1c |
| |
| #define DSI0_DISP0_CTRL 0x18 |
| # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) |
| # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 |
| # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) |
| # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 |
| # define DSI_DISP0_LP_STOP_DISABLE 0 |
| # define DSI_DISP0_LP_STOP_PERLINE 1 |
| # define DSI_DISP0_LP_STOP_PERFRAME 2 |
| |
| /* Transmit RGB pixels and null packets only during HACTIVE, instead |
| * of going to LP-STOP. |
| */ |
| # define DSI_DISP_HACTIVE_NULL BIT(10) |
| /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ |
| # define DSI_DISP_VBLP_CTRL BIT(9) |
| /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ |
| # define DSI_DISP_HFP_CTRL BIT(8) |
| /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ |
| # define DSI_DISP_HBP_CTRL BIT(7) |
| # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) |
| # define DSI_DISP0_CHANNEL_SHIFT 5 |
| /* Enables end events for HSYNC/VSYNC, not just start events. */ |
| # define DSI_DISP0_ST_END BIT(4) |
| # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) |
| # define DSI_DISP0_PFORMAT_SHIFT 2 |
| # define DSI_PFORMAT_RGB565 0 |
| # define DSI_PFORMAT_RGB666_PACKED 1 |
| # define DSI_PFORMAT_RGB666 2 |
| # define DSI_PFORMAT_RGB888 3 |
| /* Default is VIDEO mode. */ |
| # define DSI_DISP0_COMMAND_MODE BIT(1) |
| # define DSI_DISP0_ENABLE BIT(0) |
| |
| #define DSI0_DISP1_CTRL 0x1c |
| #define DSI1_DISP1_CTRL 0x2c |
| /* Format of the data written to TXPKT_PIX_FIFO. */ |
| # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) |
| # define DSI_DISP1_PFORMAT_SHIFT 1 |
| # define DSI_DISP1_PFORMAT_16BIT 0 |
| # define DSI_DISP1_PFORMAT_24BIT 1 |
| # define DSI_DISP1_PFORMAT_32BIT_LE 2 |
| # define DSI_DISP1_PFORMAT_32BIT_BE 3 |
| |
| /* DISP1 is always command mode. */ |
| # define DSI_DISP1_ENABLE BIT(0) |
| |
| #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ |
| |
| #define DSI0_INT_STAT 0x24 |
| #define DSI0_INT_EN 0x28 |
| # define DSI1_INT_PHY_D3_ULPS BIT(30) |
| # define DSI1_INT_PHY_D3_STOP BIT(29) |
| # define DSI1_INT_PHY_D2_ULPS BIT(28) |
| # define DSI1_INT_PHY_D2_STOP BIT(27) |
| # define DSI1_INT_PHY_D1_ULPS BIT(26) |
| # define DSI1_INT_PHY_D1_STOP BIT(25) |
| # define DSI1_INT_PHY_D0_ULPS BIT(24) |
| # define DSI1_INT_PHY_D0_STOP BIT(23) |
| # define DSI1_INT_FIFO_ERR BIT(22) |
| # define DSI1_INT_PHY_DIR_RTF BIT(21) |
| # define DSI1_INT_PHY_RXLPDT BIT(20) |
| # define DSI1_INT_PHY_RXTRIG BIT(19) |
| # define DSI1_INT_PHY_D0_LPDT BIT(18) |
| # define DSI1_INT_PHY_DIR_FTR BIT(17) |
| |
| /* Signaled when the clock lane enters the given state. */ |
| # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) |
| # define DSI1_INT_PHY_CLOCK_HS BIT(15) |
| # define DSI1_INT_PHY_CLOCK_STOP BIT(14) |
| |
| /* Signaled on timeouts */ |
| # define DSI1_INT_PR_TO BIT(13) |
| # define DSI1_INT_TA_TO BIT(12) |
| # define DSI1_INT_LPRX_TO BIT(11) |
| # define DSI1_INT_HSTX_TO BIT(10) |
| |
| /* Contention on a line when trying to drive the line low */ |
| # define DSI1_INT_ERR_CONT_LP1 BIT(9) |
| # define DSI1_INT_ERR_CONT_LP0 BIT(8) |
| |
| /* Control error: incorrect line state sequence on data lane 0. */ |
| # define DSI1_INT_ERR_CONTROL BIT(7) |
| /* LPDT synchronization error (bits received not a multiple of 8. */ |
| |
| # define DSI1_INT_ERR_SYNC_ESC BIT(6) |
| /* Signaled after receiving an error packet from the display in |
| * response to a read. |
| */ |
| # define DSI1_INT_RXPKT2 BIT(5) |
| /* Signaled after receiving a packet. The header and optional short |
| * response will be in RXPKT1H, and a long response will be in the |
| * RXPKT_FIFO. |
| */ |
| # define DSI1_INT_RXPKT1 BIT(4) |
| # define DSI1_INT_TXPKT2_DONE BIT(3) |
| # define DSI1_INT_TXPKT2_END BIT(2) |
| /* Signaled after all repeats of TXPKT1 are transferred. */ |
| # define DSI1_INT_TXPKT1_DONE BIT(1) |
| /* Signaled after each TXPKT1 repeat is scheduled. */ |
| # define DSI1_INT_TXPKT1_END BIT(0) |
| |
| #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ |
| DSI1_INT_ERR_CONTROL | \ |
| DSI1_INT_ERR_CONT_LP0 | \ |
| DSI1_INT_ERR_CONT_LP1 | \ |
| DSI1_INT_HSTX_TO | \ |
| DSI1_INT_LPRX_TO | \ |
| DSI1_INT_TA_TO | \ |
| DSI1_INT_PR_TO) |
| |
| #define DSI0_STAT 0x2c |
| #define DSI0_HSTX_TO_CNT 0x30 |
| #define DSI0_LPRX_TO_CNT 0x34 |
| #define DSI0_TA_TO_CNT 0x38 |
| #define DSI0_PR_TO_CNT 0x3c |
| #define DSI0_PHYC 0x40 |
| # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) |
| # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 |
| # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) |
| # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) |
| # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 |
| # define DSI1_PHYC_CLANE_ULPS BIT(17) |
| # define DSI1_PHYC_CLANE_ENABLE BIT(16) |
| # define DSI_PHYC_DLANE3_ULPS BIT(13) |
| # define DSI_PHYC_DLANE3_ENABLE BIT(12) |
| # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) |
| # define DSI0_PHYC_CLANE_ULPS BIT(9) |
| # define DSI_PHYC_DLANE2_ULPS BIT(9) |
| # define DSI0_PHYC_CLANE_ENABLE BIT(8) |
| # define DSI_PHYC_DLANE2_ENABLE BIT(8) |
| # define DSI_PHYC_DLANE1_ULPS BIT(5) |
| # define DSI_PHYC_DLANE1_ENABLE BIT(4) |
| # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) |
| # define DSI_PHYC_DLANE0_ULPS BIT(1) |
| # define DSI_PHYC_DLANE0_ENABLE BIT(0) |
| |
| #define DSI0_HS_CLT0 0x44 |
| #define DSI0_HS_CLT1 0x48 |
| #define DSI0_HS_CLT2 0x4c |
| #define DSI0_HS_DLT3 0x50 |
| #define DSI0_HS_DLT4 0x54 |
| #define DSI0_HS_DLT5 0x58 |
| #define DSI0_HS_DLT6 0x5c |
| #define DSI0_HS_DLT7 0x60 |
| |
| #define DSI0_PHY_AFEC0 0x64 |
| # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) |
| # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) |
| # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) |
| # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) |
| # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 |
| # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) |
| # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 |
| # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) |
| # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 |
| # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) |
| # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 |
| # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) |
| # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 |
| # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) |
| # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 |
| # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) |
| # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 |
| # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) |
| # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 |
| # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) |
| # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) |
| # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) |
| # define DSI1_PHY_AFEC0_RESET BIT(13) |
| # define DSI1_PHY_AFEC0_PD BIT(12) |
| # define DSI0_PHY_AFEC0_RESET BIT(11) |
| # define DSI1_PHY_AFEC0_PD_BG BIT(11) |
| # define DSI0_PHY_AFEC0_PD BIT(10) |
| # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) |
| # define DSI0_PHY_AFEC0_PD_BG BIT(9) |
| # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) |
| # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) |
| # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) |
| # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) |
| # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 |
| # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) |
| # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 |
| |
| #define DSI0_PHY_AFEC1 0x68 |
| # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) |
| # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 |
| # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) |
| # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 |
| # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) |
| # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 |
| |
| #define DSI0_TST_SEL 0x6c |
| #define DSI0_TST_MON 0x70 |
| #define DSI0_ID 0x74 |
| # define DSI_ID_VALUE 0x00647369 |
| |
| #define DSI1_CTRL 0x00 |
| # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) |
| # define DSI_CTRL_HS_CLKC_SHIFT 14 |
| # define DSI_CTRL_HS_CLKC_BYTE 0 |
| # define DSI_CTRL_HS_CLKC_DDR2 1 |
| # define DSI_CTRL_HS_CLKC_DDR 2 |
| |
| # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) |
| # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) |
| # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) |
| # define DSI_CTRL_SOFT_RESET_CFG BIT(10) |
| # define DSI_CTRL_CAL_BYTE BIT(9) |
| # define DSI_CTRL_INV_BYTE BIT(8) |
| # define DSI_CTRL_CLR_LDF BIT(7) |
| # define DSI0_CTRL_CLR_PBCF BIT(6) |
| # define DSI1_CTRL_CLR_RXF BIT(6) |
| # define DSI0_CTRL_CLR_CPBCF BIT(5) |
| # define DSI1_CTRL_CLR_PDF BIT(5) |
| # define DSI0_CTRL_CLR_PDF BIT(4) |
| # define DSI1_CTRL_CLR_CDF BIT(4) |
| # define DSI0_CTRL_CLR_CDF BIT(3) |
| # define DSI0_CTRL_CTRL2 BIT(2) |
| # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) |
| # define DSI0_CTRL_CTRL1 BIT(1) |
| # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) |
| # define DSI0_CTRL_CTRL0 BIT(0) |
| # define DSI1_CTRL_EN BIT(0) |
| # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ |
| DSI0_CTRL_CLR_PBCF | \ |
| DSI0_CTRL_CLR_CPBCF | \ |
| DSI0_CTRL_CLR_PDF | \ |
| DSI0_CTRL_CLR_CDF) |
| # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ |
| DSI1_CTRL_CLR_RXF | \ |
| DSI1_CTRL_CLR_PDF | \ |
| DSI1_CTRL_CLR_CDF) |
| |
| #define DSI1_TXPKT2C 0x0c |
| #define DSI1_TXPKT2H 0x10 |
| #define DSI1_TXPKT_PIX_FIFO 0x20 |
| #define DSI1_RXPKT_FIFO 0x24 |
| #define DSI1_DISP0_CTRL 0x28 |
| #define DSI1_INT_STAT 0x30 |
| #define DSI1_INT_EN 0x34 |
| /* State reporting bits. These mostly behave like INT_STAT, where |
| * writing a 1 clears the bit. |
| */ |
| #define DSI1_STAT 0x38 |
| # define DSI1_STAT_PHY_D3_ULPS BIT(31) |
| # define DSI1_STAT_PHY_D3_STOP BIT(30) |
| # define DSI1_STAT_PHY_D2_ULPS BIT(29) |
| # define DSI1_STAT_PHY_D2_STOP BIT(28) |
| # define DSI1_STAT_PHY_D1_ULPS BIT(27) |
| # define DSI1_STAT_PHY_D1_STOP BIT(26) |
| # define DSI1_STAT_PHY_D0_ULPS BIT(25) |
| # define DSI1_STAT_PHY_D0_STOP BIT(24) |
| # define DSI1_STAT_FIFO_ERR BIT(23) |
| # define DSI1_STAT_PHY_RXLPDT BIT(22) |
| # define DSI1_STAT_PHY_RXTRIG BIT(21) |
| # define DSI1_STAT_PHY_D0_LPDT BIT(20) |
| /* Set when in forward direction */ |
| # define DSI1_STAT_PHY_DIR BIT(19) |
| # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) |
| # define DSI1_STAT_PHY_CLOCK_HS BIT(17) |
| # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) |
| # define DSI1_STAT_PR_TO BIT(15) |
| # define DSI1_STAT_TA_TO BIT(14) |
| # define DSI1_STAT_LPRX_TO BIT(13) |
| # define DSI1_STAT_HSTX_TO BIT(12) |
| # define DSI1_STAT_ERR_CONT_LP1 BIT(11) |
| # define DSI1_STAT_ERR_CONT_LP0 BIT(10) |
| # define DSI1_STAT_ERR_CONTROL BIT(9) |
| # define DSI1_STAT_ERR_SYNC_ESC BIT(8) |
| # define DSI1_STAT_RXPKT2 BIT(7) |
| # define DSI1_STAT_RXPKT1 BIT(6) |
| # define DSI1_STAT_TXPKT2_BUSY BIT(5) |
| # define DSI1_STAT_TXPKT2_DONE BIT(4) |
| # define DSI1_STAT_TXPKT2_END BIT(3) |
| # define DSI1_STAT_TXPKT1_BUSY BIT(2) |
| # define DSI1_STAT_TXPKT1_DONE BIT(1) |
| # define DSI1_STAT_TXPKT1_END BIT(0) |
| |
| #define DSI1_HSTX_TO_CNT 0x3c |
| #define DSI1_LPRX_TO_CNT 0x40 |
| #define DSI1_TA_TO_CNT 0x44 |
| #define DSI1_PR_TO_CNT 0x48 |
| #define DSI1_PHYC 0x4c |
| |
| #define DSI1_HS_CLT0 0x50 |
| # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) |
| # define DSI_HS_CLT0_CZERO_SHIFT 18 |
| # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) |
| # define DSI_HS_CLT0_CPRE_SHIFT 9 |
| # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) |
| # define DSI_HS_CLT0_CPREP_SHIFT 0 |
| |
| #define DSI1_HS_CLT1 0x54 |
| # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) |
| # define DSI_HS_CLT1_CTRAIL_SHIFT 9 |
| # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) |
| # define DSI_HS_CLT1_CPOST_SHIFT 0 |
| |
| #define DSI1_HS_CLT2 0x58 |
| # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) |
| # define DSI_HS_CLT2_WUP_SHIFT 0 |
| |
| #define DSI1_HS_DLT3 0x5c |
| # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) |
| # define DSI_HS_DLT3_EXIT_SHIFT 18 |
| # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) |
| # define DSI_HS_DLT3_ZERO_SHIFT 9 |
| # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) |
| # define DSI_HS_DLT3_PRE_SHIFT 0 |
| |
| #define DSI1_HS_DLT4 0x60 |
| # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) |
| # define DSI_HS_DLT4_ANLAT_SHIFT 18 |
| # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) |
| # define DSI_HS_DLT4_TRAIL_SHIFT 9 |
| # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) |
| # define DSI_HS_DLT4_LPX_SHIFT 0 |
| |
| #define DSI1_HS_DLT5 0x64 |
| # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) |
| # define DSI_HS_DLT5_INIT_SHIFT 0 |
| |
| #define DSI1_HS_DLT6 0x68 |
| # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) |
| # define DSI_HS_DLT6_TA_GET_SHIFT 24 |
| # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) |
| # define DSI_HS_DLT6_TA_SURE_SHIFT 16 |
| # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) |
| # define DSI_HS_DLT6_TA_GO_SHIFT 8 |
| # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) |
| # define DSI_HS_DLT6_LP_LPX_SHIFT 0 |
| |
| #define DSI1_HS_DLT7 0x6c |
| # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) |
| # define DSI_HS_DLT7_LP_WUP_SHIFT 0 |
| |
| #define DSI1_PHY_AFEC0 0x70 |
| |
| #define DSI1_PHY_AFEC1 0x74 |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) |
| # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 |
| # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) |
| # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 |
| |
| #define DSI1_TST_SEL 0x78 |
| #define DSI1_TST_MON 0x7c |
| #define DSI1_PHY_TST1 0x80 |
| #define DSI1_PHY_TST2 0x84 |
| #define DSI1_PHY_FIFO_STAT 0x88 |
| /* Actually, all registers in the range that aren't otherwise claimed |
| * will return the ID. |
| */ |
| #define DSI1_ID 0x8c |
| |
| /* General DSI hardware state. */ |
| struct vc4_dsi { |
| struct platform_device *pdev; |
| |
| struct mipi_dsi_host dsi_host; |
| struct drm_encoder *encoder; |
| struct drm_bridge *bridge; |
| struct list_head bridge_chain; |
| |
| void __iomem *regs; |
| |
| struct dma_chan *reg_dma_chan; |
| dma_addr_t reg_dma_paddr; |
| u32 *reg_dma_mem; |
| dma_addr_t reg_paddr; |
| |
| /* Whether we're on bcm2835's DSI0 or DSI1. */ |
| int port; |
| |
| /* DSI channel for the panel we're connected to. */ |
| u32 channel; |
| u32 lanes; |
| u32 format; |
| u32 divider; |
| u32 mode_flags; |
| |
| /* Input clock from CPRMAN to the digital PHY, for the DSI |
| * escape clock. |
| */ |
| struct clk *escape_clock; |
| |
| /* Input clock to the analog PHY, used to generate the DSI bit |
| * clock. |
| */ |
| struct clk *pll_phy_clock; |
| |
| /* HS Clocks generated within the DSI analog PHY. */ |
| struct clk_fixed_factor phy_clocks[3]; |
| |
| struct clk_hw_onecell_data *clk_onecell; |
| |
| /* Pixel clock output to the pixelvalve, generated from the HS |
| * clock. |
| */ |
| struct clk *pixel_clock; |
| |
| struct completion xfer_completion; |
| int xfer_result; |
| |
| struct debugfs_regset32 regset; |
| }; |
| |
| #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) |
| |
| static inline void |
| dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) |
| { |
| struct dma_chan *chan = dsi->reg_dma_chan; |
| struct dma_async_tx_descriptor *tx; |
| dma_cookie_t cookie; |
| int ret; |
| |
| /* DSI0 should be able to write normally. */ |
| if (!chan) { |
| writel(val, dsi->regs + offset); |
| return; |
| } |
| |
| *dsi->reg_dma_mem = val; |
| |
| tx = chan->device->device_prep_dma_memcpy(chan, |
| dsi->reg_paddr + offset, |
| dsi->reg_dma_paddr, |
| 4, 0); |
| if (!tx) { |
| DRM_ERROR("Failed to set up DMA register write\n"); |
| return; |
| } |
| |
| cookie = tx->tx_submit(tx); |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| DRM_ERROR("Failed to submit DMA: %d\n", ret); |
| return; |
| } |
| ret = dma_sync_wait(chan, cookie); |
| if (ret) |
| DRM_ERROR("Failed to wait for DMA: %d\n", ret); |
| } |
| |
| #define DSI_READ(offset) readl(dsi->regs + (offset)) |
| #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) |
| #define DSI_PORT_READ(offset) \ |
| DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) |
| #define DSI_PORT_WRITE(offset, val) \ |
| DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) |
| #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) |
| |
| /* VC4 DSI encoder KMS struct */ |
| struct vc4_dsi_encoder { |
| struct vc4_encoder base; |
| struct vc4_dsi *dsi; |
| }; |
| |
| static inline struct vc4_dsi_encoder * |
| to_vc4_dsi_encoder(struct drm_encoder *encoder) |
| { |
| return container_of(encoder, struct vc4_dsi_encoder, base.base); |
| } |
| |
| static const struct debugfs_reg32 dsi0_regs[] = { |
| VC4_REG32(DSI0_CTRL), |
| VC4_REG32(DSI0_STAT), |
| VC4_REG32(DSI0_HSTX_TO_CNT), |
| VC4_REG32(DSI0_LPRX_TO_CNT), |
| VC4_REG32(DSI0_TA_TO_CNT), |
| VC4_REG32(DSI0_PR_TO_CNT), |
| VC4_REG32(DSI0_DISP0_CTRL), |
| VC4_REG32(DSI0_DISP1_CTRL), |
| VC4_REG32(DSI0_INT_STAT), |
| VC4_REG32(DSI0_INT_EN), |
| VC4_REG32(DSI0_PHYC), |
| VC4_REG32(DSI0_HS_CLT0), |
| VC4_REG32(DSI0_HS_CLT1), |
| VC4_REG32(DSI0_HS_CLT2), |
| VC4_REG32(DSI0_HS_DLT3), |
| VC4_REG32(DSI0_HS_DLT4), |
| VC4_REG32(DSI0_HS_DLT5), |
| VC4_REG32(DSI0_HS_DLT6), |
| VC4_REG32(DSI0_HS_DLT7), |
| VC4_REG32(DSI0_PHY_AFEC0), |
| VC4_REG32(DSI0_PHY_AFEC1), |
| VC4_REG32(DSI0_ID), |
| }; |
| |
| static const struct debugfs_reg32 dsi1_regs[] = { |
| VC4_REG32(DSI1_CTRL), |
| VC4_REG32(DSI1_STAT), |
| VC4_REG32(DSI1_HSTX_TO_CNT), |
| VC4_REG32(DSI1_LPRX_TO_CNT), |
| VC4_REG32(DSI1_TA_TO_CNT), |
| VC4_REG32(DSI1_PR_TO_CNT), |
| VC4_REG32(DSI1_DISP0_CTRL), |
| VC4_REG32(DSI1_DISP1_CTRL), |
| VC4_REG32(DSI1_INT_STAT), |
| VC4_REG32(DSI1_INT_EN), |
| VC4_REG32(DSI1_PHYC), |
| VC4_REG32(DSI1_HS_CLT0), |
| VC4_REG32(DSI1_HS_CLT1), |
| VC4_REG32(DSI1_HS_CLT2), |
| VC4_REG32(DSI1_HS_DLT3), |
| VC4_REG32(DSI1_HS_DLT4), |
| VC4_REG32(DSI1_HS_DLT5), |
| VC4_REG32(DSI1_HS_DLT6), |
| VC4_REG32(DSI1_HS_DLT7), |
| VC4_REG32(DSI1_PHY_AFEC0), |
| VC4_REG32(DSI1_PHY_AFEC1), |
| VC4_REG32(DSI1_ID), |
| }; |
| |
| static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) |
| { |
| u32 afec0 = DSI_PORT_READ(PHY_AFEC0); |
| |
| if (latch) |
| afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); |
| else |
| afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); |
| |
| DSI_PORT_WRITE(PHY_AFEC0, afec0); |
| } |
| |
| /* Enters or exits Ultra Low Power State. */ |
| static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) |
| { |
| bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; |
| u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | |
| DSI_PHYC_DLANE0_ULPS | |
| (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | |
| (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | |
| (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); |
| u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | |
| DSI1_STAT_PHY_D0_ULPS | |
| (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | |
| (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | |
| (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); |
| u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | |
| DSI1_STAT_PHY_D0_STOP | |
| (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | |
| (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | |
| (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); |
| int ret; |
| bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & |
| DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); |
| |
| if (ulps == ulps_currently_enabled) |
| return; |
| |
| DSI_PORT_WRITE(STAT, stat_ulps); |
| DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); |
| ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); |
| if (ret) { |
| dev_warn(&dsi->pdev->dev, |
| "Timeout waiting for DSI ULPS entry: STAT 0x%08x", |
| DSI_PORT_READ(STAT)); |
| DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); |
| vc4_dsi_latch_ulps(dsi, false); |
| return; |
| } |
| |
| /* The DSI module can't be disabled while the module is |
| * generating ULPS state. So, to be able to disable the |
| * module, we have the AFE latch the ULPS state and continue |
| * on to having the module enter STOP. |
| */ |
| vc4_dsi_latch_ulps(dsi, ulps); |
| |
| DSI_PORT_WRITE(STAT, stat_stop); |
| DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); |
| ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); |
| if (ret) { |
| dev_warn(&dsi->pdev->dev, |
| "Timeout waiting for DSI STOP entry: STAT 0x%08x", |
| DSI_PORT_READ(STAT)); |
| DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); |
| return; |
| } |
| } |
| |
| static u32 |
| dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) |
| { |
| /* The HS timings have to be rounded up to a multiple of 8 |
| * because we're using the byte clock. |
| */ |
| return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); |
| } |
| |
| /* ESC always runs at 100Mhz. */ |
| #define ESC_TIME_NS 10 |
| |
| static u32 |
| dsi_esc_timing(u32 ns) |
| { |
| return DIV_ROUND_UP(ns, ESC_TIME_NS); |
| } |
| |
| static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) |
| { |
| struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); |
| struct vc4_dsi *dsi = vc4_encoder->dsi; |
| struct device *dev = &dsi->pdev->dev; |
| struct drm_bridge *iter; |
| |
| list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { |
| if (iter->funcs->disable) |
| iter->funcs->disable(iter); |
| } |
| |
| vc4_dsi_ulps(dsi, true); |
| |
| list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { |
| if (iter->funcs->post_disable) |
| iter->funcs->post_disable(iter); |
| } |
| |
| clk_disable_unprepare(dsi->pll_phy_clock); |
| clk_disable_unprepare(dsi->escape_clock); |
| clk_disable_unprepare(dsi->pixel_clock); |
| |
| pm_runtime_put(dev); |
| } |
| |
| /* Extends the mode's blank intervals to handle BCM2835's integer-only |
| * DSI PLL divider. |
| * |
| * On 2835, PLLD is set to 2Ghz, and may not be changed by the display |
| * driver since most peripherals are hanging off of the PLLD_PER |
| * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore |
| * the pixel clock), only has an integer divider off of DSI. |
| * |
| * To get our panel mode to refresh at the expected 60Hz, we need to |
| * extend the horizontal blank time. This means we drive a |
| * higher-than-expected clock rate to the panel, but that's what the |
| * firmware does too. |
| */ |
| static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, |
| const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); |
| struct vc4_dsi *dsi = vc4_encoder->dsi; |
| struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); |
| unsigned long parent_rate = clk_get_rate(phy_parent); |
| unsigned long pixel_clock_hz = mode->clock * 1000; |
| unsigned long pll_clock = pixel_clock_hz * dsi->divider; |
| int divider; |
| |
| /* Find what divider gets us a faster clock than the requested |
| * pixel clock. |
| */ |
| for (divider = 1; divider < 8; divider++) { |
| if (parent_rate / divider < pll_clock) { |
| divider--; |
| break; |
| } |
| } |
| |
| /* Now that we've picked a PLL divider, calculate back to its |
| * pixel clock. |
| */ |
| pll_clock = parent_rate / divider; |
| pixel_clock_hz = pll_clock / dsi->divider; |
| |
| adjusted_mode->clock = pixel_clock_hz / 1000; |
| |
| /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ |
| adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / |
| mode->clock; |
| adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; |
| adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; |
| |
| return true; |
| } |
| |
| static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) |
| { |
| struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; |
| struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); |
| struct vc4_dsi *dsi = vc4_encoder->dsi; |
| struct device *dev = &dsi->pdev->dev; |
| bool debug_dump_regs = false; |
| struct drm_bridge *iter; |
| unsigned long hs_clock; |
| u32 ui_ns; |
| /* Minimum LP state duration in escape clock cycles. */ |
| u32 lpx = dsi_esc_timing(60); |
| unsigned long pixel_clock_hz = mode->clock * 1000; |
| unsigned long dsip_clock; |
| unsigned long phy_clock; |
| int ret; |
| |
| ret = pm_runtime_get_sync(dev); |
| if (ret) { |
| DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); |
| return; |
| } |
| |
| if (debug_dump_regs) { |
| struct drm_printer p = drm_info_printer(&dsi->pdev->dev); |
| dev_info(&dsi->pdev->dev, "DSI regs before:\n"); |
| drm_print_regset32(&p, &dsi->regset); |
| } |
| |
| /* Round up the clk_set_rate() request slightly, since |
| * PLLD_DSI1 is an integer divider and its rate selection will |
| * never round up. |
| */ |
| phy_clock = (pixel_clock_hz + 1000) * dsi->divider; |
| ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); |
| if (ret) { |
| dev_err(&dsi->pdev->dev, |
| "Failed to set phy clock to %ld: %d\n", phy_clock, ret); |
| } |
| |
| /* Reset the DSI and all its fifos. */ |
| DSI_PORT_WRITE(CTRL, |
| DSI_CTRL_SOFT_RESET_CFG | |
| DSI_PORT_BIT(CTRL_RESET_FIFOS)); |
| |
| DSI_PORT_WRITE(CTRL, |
| DSI_CTRL_HSDT_EOT_DISABLE | |
| DSI_CTRL_RX_LPDT_EOT_DISABLE); |
| |
| /* Clear all stat bits so we see what has happened during enable. */ |
| DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); |
| |
| /* Set AFE CTR00/CTR1 to release powerdown of analog. */ |
| if (dsi->port == 0) { |
| u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | |
| VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); |
| |
| if (dsi->lanes < 2) |
| afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; |
| |
| if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) |
| afec0 |= DSI0_PHY_AFEC0_RESET; |
| |
| DSI_PORT_WRITE(PHY_AFEC0, afec0); |
| |
| DSI_PORT_WRITE(PHY_AFEC1, |
| VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | |
| VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | |
| VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); |
| } else { |
| u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | |
| VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | |
| VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | |
| VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | |
| VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | |
| VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | |
| VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); |
| |
| if (dsi->lanes < 4) |
| afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; |
| if (dsi->lanes < 3) |
| afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; |
| if (dsi->lanes < 2) |
| afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; |
| |
| afec0 |= DSI1_PHY_AFEC0_RESET; |
| |
| DSI_PORT_WRITE(PHY_AFEC0, afec0); |
| |
| DSI_PORT_WRITE(PHY_AFEC1, 0); |
| |
| /* AFEC reset hold time */ |
| mdelay(1); |
| } |
| |
| ret = clk_prepare_enable(dsi->escape_clock); |
| if (ret) { |
| DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); |
| return; |
| } |
| |
| ret = clk_prepare_enable(dsi->pll_phy_clock); |
| if (ret) { |
| DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); |
| return; |
| } |
| |
| hs_clock = clk_get_rate(dsi->pll_phy_clock); |
| |
| /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, |
| * not the pixel clock rate. DSIxP take from the APHY's byte, |
| * DDR2, or DDR4 clock (we use byte) and feed into the PV at |
| * that rate. Separately, a value derived from PIX_CLK_DIV |
| * and HS_CLKC is fed into the PV to divide down to the actual |
| * pixel clock for pushing pixels into DSI. |
| */ |
| dsip_clock = phy_clock / 8; |
| ret = clk_set_rate(dsi->pixel_clock, dsip_clock); |
| if (ret) { |
| dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", |
| dsip_clock, ret); |
| } |
| |
| ret = clk_prepare_enable(dsi->pixel_clock); |
| if (ret) { |
| DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); |
| return; |
| } |
| |
| /* How many ns one DSI unit interval is. Note that the clock |
| * is DDR, so there's an extra divide by 2. |
| */ |
| ui_ns = DIV_ROUND_UP(500000000, hs_clock); |
| |
| DSI_PORT_WRITE(HS_CLT0, |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), |
| DSI_HS_CLT0_CZERO) | |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), |
| DSI_HS_CLT0_CPRE) | |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), |
| DSI_HS_CLT0_CPREP)); |
| |
| DSI_PORT_WRITE(HS_CLT1, |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), |
| DSI_HS_CLT1_CTRAIL) | |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), |
| DSI_HS_CLT1_CPOST)); |
| |
| DSI_PORT_WRITE(HS_CLT2, |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), |
| DSI_HS_CLT2_WUP)); |
| |
| DSI_PORT_WRITE(HS_DLT3, |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), |
| DSI_HS_DLT3_EXIT) | |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), |
| DSI_HS_DLT3_ZERO) | |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), |
| DSI_HS_DLT3_PRE)); |
| |
| DSI_PORT_WRITE(HS_DLT4, |
| VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), |
| DSI_HS_DLT4_LPX) | |
| VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), |
| dsi_hs_timing(ui_ns, 60, 4)), |
| DSI_HS_DLT4_TRAIL) | |
| VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); |
| |
| /* T_INIT is how long STOP is driven after power-up to |
| * indicate to the slave (also coming out of power-up) that |
| * master init is complete, and should be greater than the |
| * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The |
| * D-PHY spec gives a minimum 100us for T_INIT,MASTER and |
| * T_INIT,SLAVE, while allowing protocols on top of it to give |
| * greater minimums. The vc4 firmware uses an extremely |
| * conservative 5ms, and we maintain that here. |
| */ |
| DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, |
| 5 * 1000 * 1000, 0), |
| DSI_HS_DLT5_INIT)); |
| |
| DSI_PORT_WRITE(HS_DLT6, |
| VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | |
| VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | |
| VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | |
| VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); |
| |
| DSI_PORT_WRITE(HS_DLT7, |
| VC4_SET_FIELD(dsi_esc_timing(1000000), |
| DSI_HS_DLT7_LP_WUP)); |
| |
| DSI_PORT_WRITE(PHYC, |
| DSI_PHYC_DLANE0_ENABLE | |
| (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | |
| (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | |
| (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | |
| DSI_PORT_BIT(PHYC_CLANE_ENABLE) | |
| ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? |
| 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | |
| (dsi->port == 0 ? |
| VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : |
| VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); |
| |
| DSI_PORT_WRITE(CTRL, |
| DSI_PORT_READ(CTRL) | |
| DSI_CTRL_CAL_BYTE); |
| |
| /* HS timeout in HS clock cycles: disabled. */ |
| DSI_PORT_WRITE(HSTX_TO_CNT, 0); |
| /* LP receive timeout in HS clocks. */ |
| DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); |
| /* Bus turnaround timeout */ |
| DSI_PORT_WRITE(TA_TO_CNT, 100000); |
| /* Display reset sequence timeout */ |
| DSI_PORT_WRITE(PR_TO_CNT, 100000); |
| |
| /* Set up DISP1 for transferring long command payloads through |
| * the pixfifo. |
| */ |
| DSI_PORT_WRITE(DISP1_CTRL, |
| VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, |
| DSI_DISP1_PFORMAT) | |
| DSI_DISP1_ENABLE); |
| |
| /* Ungate the block. */ |
| if (dsi->port == 0) |
| DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); |
| else |
| DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); |
| |
| /* Bring AFE out of reset. */ |
| if (dsi->port == 0) { |
| } else { |
| DSI_PORT_WRITE(PHY_AFEC0, |
| DSI_PORT_READ(PHY_AFEC0) & |
| ~DSI1_PHY_AFEC0_RESET); |
| } |
| |
| vc4_dsi_ulps(dsi, false); |
| |
| list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { |
| if (iter->funcs->pre_enable) |
| iter->funcs->pre_enable(iter); |
| } |
| |
| if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { |
| DSI_PORT_WRITE(DISP0_CTRL, |
| VC4_SET_FIELD(dsi->divider, |
| DSI_DISP0_PIX_CLK_DIV) | |
| VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | |
| VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, |
| DSI_DISP0_LP_STOP_CTRL) | |
| DSI_DISP0_ST_END | |
| DSI_DISP0_ENABLE); |
| } else { |
| DSI_PORT_WRITE(DISP0_CTRL, |
| DSI_DISP0_COMMAND_MODE | |
| DSI_DISP0_ENABLE); |
| } |
| |
| list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { |
| if (iter->funcs->enable) |
| iter->funcs->enable(iter); |
| } |
| |
| if (debug_dump_regs) { |
| struct drm_printer p = drm_info_printer(&dsi->pdev->dev); |
| dev_info(&dsi->pdev->dev, "DSI regs after:\n"); |
| drm_print_regset32(&p, &dsi->regset); |
| } |
| } |
| |
| static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, |
| const struct mipi_dsi_msg *msg) |
| { |
| struct vc4_dsi *dsi = host_to_dsi(host); |
| struct mipi_dsi_packet packet; |
| u32 pkth = 0, pktc = 0; |
| int i, ret; |
| bool is_long = mipi_dsi_packet_format_is_long(msg->type); |
| u32 cmd_fifo_len = 0, pix_fifo_len = 0; |
| |
| mipi_dsi_create_packet(&packet, msg); |
| |
| pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); |
| pkth |= VC4_SET_FIELD(packet.header[1] | |
| (packet.header[2] << 8), |
| DSI_TXPKT1H_BC_PARAM); |
| if (is_long) { |
| /* Divide data across the various FIFOs we have available. |
| * The command FIFO takes byte-oriented data, but is of |
| * limited size. The pixel FIFO (never actually used for |
| * pixel data in reality) is word oriented, and substantially |
| * larger. So, we use the pixel FIFO for most of the data, |
| * sending the residual bytes in the command FIFO at the start. |
| * |
| * With this arrangement, the command FIFO will never get full. |
| */ |
| if (packet.payload_length <= 16) { |
| cmd_fifo_len = packet.payload_length; |
| pix_fifo_len = 0; |
| } else { |
| cmd_fifo_len = (packet.payload_length % |
| DSI_PIX_FIFO_WIDTH); |
| pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / |
| DSI_PIX_FIFO_WIDTH); |
| } |
| |
| WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); |
| |
| pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); |
| } |
| |
| if (msg->rx_len) { |
| pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, |
| DSI_TXPKT1C_CMD_CTRL); |
| } else { |
| pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, |
| DSI_TXPKT1C_CMD_CTRL); |
| } |
| |
| for (i = 0; i < cmd_fifo_len; i++) |
| DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); |
| for (i = 0; i < pix_fifo_len; i++) { |
| const u8 *pix = packet.payload + cmd_fifo_len + i * 4; |
| |
| DSI_PORT_WRITE(TXPKT_PIX_FIFO, |
| pix[0] | |
| pix[1] << 8 | |
| pix[2] << 16 | |
| pix[3] << 24); |
| } |
| |
| if (msg->flags & MIPI_DSI_MSG_USE_LPM) |
| pktc |= DSI_TXPKT1C_CMD_MODE_LP; |
| if (is_long) |
| pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; |
| |
| /* Send one copy of the packet. Larger repeats are used for pixel |
| * data in command mode. |
| */ |
| pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); |
| |
| pktc |= DSI_TXPKT1C_CMD_EN; |
| if (pix_fifo_len) { |
| pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, |
| DSI_TXPKT1C_DISPLAY_NO); |
| } else { |
| pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, |
| DSI_TXPKT1C_DISPLAY_NO); |
| } |
| |
| /* Enable the appropriate interrupt for the transfer completion. */ |
| dsi->xfer_result = 0; |
| reinit_completion(&dsi->xfer_completion); |
| DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); |
| if (msg->rx_len) { |
| DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | |
| DSI1_INT_PHY_DIR_RTF)); |
| } else { |
| DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | |
| DSI1_INT_TXPKT1_DONE)); |
| } |
| |
| /* Send the packet. */ |
| DSI_PORT_WRITE(TXPKT1H, pkth); |
| DSI_PORT_WRITE(TXPKT1C, pktc); |
| |
| if (!wait_for_completion_timeout(&dsi->xfer_completion, |
| msecs_to_jiffies(1000))) { |
| dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); |
| dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", |
| DSI_PORT_READ(INT_STAT)); |
| ret = -ETIMEDOUT; |
| } else { |
| ret = dsi->xfer_result; |
| } |
| |
| DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); |
| |
| if (ret) |
| goto reset_fifo_and_return; |
| |
| if (ret == 0 && msg->rx_len) { |
| u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); |
| u8 *msg_rx = msg->rx_buf; |
| |
| if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { |
| u32 rxlen = VC4_GET_FIELD(rxpkt1h, |
| DSI_RXPKT1H_BC_PARAM); |
| |
| if (rxlen != msg->rx_len) { |
| DRM_ERROR("DSI returned %db, expecting %db\n", |
| rxlen, (int)msg->rx_len); |
| ret = -ENXIO; |
| goto reset_fifo_and_return; |
| } |
| |
| for (i = 0; i < msg->rx_len; i++) |
| msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); |
| } else { |
| /* FINISHME: Handle AWER */ |
| |
| msg_rx[0] = VC4_GET_FIELD(rxpkt1h, |
| DSI_RXPKT1H_SHORT_0); |
| if (msg->rx_len > 1) { |
| msg_rx[1] = VC4_GET_FIELD(rxpkt1h, |
| DSI_RXPKT1H_SHORT_1); |
| } |
| } |
| } |
| |
| return ret; |
| |
| reset_fifo_and_return: |
| DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); |
| |
| DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); |
| udelay(1); |
| DSI_PORT_WRITE(CTRL, |
| DSI_PORT_READ(CTRL) | |
| DSI_PORT_BIT(CTRL_RESET_FIFOS)); |
| |
| DSI_PORT_WRITE(TXPKT1C, 0); |
| DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); |
| return ret; |
| } |
| |
| static const struct component_ops vc4_dsi_ops; |
| static int vc4_dsi_host_attach(struct mipi_dsi_host *host, |
| struct mipi_dsi_device *device) |
| { |
| struct vc4_dsi *dsi = host_to_dsi(host); |
| int ret; |
| |
| dsi->lanes = device->lanes; |
| dsi->channel = device->channel; |
| dsi->mode_flags = device->mode_flags; |
| |
| switch (device->format) { |
| case MIPI_DSI_FMT_RGB888: |
| dsi->format = DSI_PFORMAT_RGB888; |
| dsi->divider = 24 / dsi->lanes; |
| break; |
| case MIPI_DSI_FMT_RGB666: |
| dsi->format = DSI_PFORMAT_RGB666; |
| dsi->divider = 24 / dsi->lanes; |
| break; |
| case MIPI_DSI_FMT_RGB666_PACKED: |
| dsi->format = DSI_PFORMAT_RGB666_PACKED; |
| dsi->divider = 18 / dsi->lanes; |
| break; |
| case MIPI_DSI_FMT_RGB565: |
| dsi->format = DSI_PFORMAT_RGB565; |
| dsi->divider = 16 / dsi->lanes; |
| break; |
| default: |
| dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", |
| dsi->format); |
| return 0; |
| } |
| |
| if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { |
| dev_err(&dsi->pdev->dev, |
| "Only VIDEO mode panels supported currently.\n"); |
| return 0; |
| } |
| |
| ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops); |
| if (ret) { |
| mipi_dsi_host_unregister(&dsi->dsi_host); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vc4_dsi_host_detach(struct mipi_dsi_host *host, |
| struct mipi_dsi_device *device) |
| { |
| return 0; |
| } |
| |
| static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { |
| .attach = vc4_dsi_host_attach, |
| .detach = vc4_dsi_host_detach, |
| .transfer = vc4_dsi_host_transfer, |
| }; |
| |
| static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { |
| .disable = vc4_dsi_encoder_disable, |
| .enable = vc4_dsi_encoder_enable, |
| .mode_fixup = vc4_dsi_encoder_mode_fixup, |
| }; |
| |
| static const struct of_device_id vc4_dsi_dt_match[] = { |
| { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, |
| {} |
| }; |
| |
| static void dsi_handle_error(struct vc4_dsi *dsi, |
| irqreturn_t *ret, u32 stat, u32 bit, |
| const char *type) |
| { |
| if (!(stat & bit)) |
| return; |
| |
| DRM_ERROR("DSI%d: %s error\n", dsi->port, type); |
| *ret = IRQ_HANDLED; |
| } |
| |
| /* |
| * Initial handler for port 1 where we need the reg_dma workaround. |
| * The register DMA writes sleep, so we can't do it in the top half. |
| * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the |
| * parent interrupt contrller until our interrupt thread is done. |
| */ |
| static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) |
| { |
| struct vc4_dsi *dsi = data; |
| u32 stat = DSI_PORT_READ(INT_STAT); |
| |
| if (!stat) |
| return IRQ_NONE; |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| /* |
| * Normal IRQ handler for port 0, or the threaded IRQ handler for port |
| * 1 where we need the reg_dma workaround. |
| */ |
| static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) |
| { |
| struct vc4_dsi *dsi = data; |
| u32 stat = DSI_PORT_READ(INT_STAT); |
| irqreturn_t ret = IRQ_NONE; |
| |
| DSI_PORT_WRITE(INT_STAT, stat); |
| |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_ERR_CONT_LP0, "LP0 contention"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_ERR_CONT_LP1, "LP1 contention"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_HSTX_TO, "HSTX timeout"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_LPRX_TO, "LPRX timeout"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_TA_TO, "turnaround timeout"); |
| dsi_handle_error(dsi, &ret, stat, |
| DSI1_INT_PR_TO, "peripheral reset timeout"); |
| |
| if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { |
| complete(&dsi->xfer_completion); |
| ret = IRQ_HANDLED; |
| } else if (stat & DSI1_INT_HSTX_TO) { |
| complete(&dsi->xfer_completion); |
| dsi->xfer_result = -ETIMEDOUT; |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog |
| * PHY that are consumed by CPRMAN (clk-bcm2835.c). |
| * @dsi: DSI encoder |
| */ |
| static int |
| vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) |
| { |
| struct device *dev = &dsi->pdev->dev; |
| const char *parent_name = __clk_get_name(dsi->pll_phy_clock); |
| static const struct { |
| const char *dsi0_name, *dsi1_name; |
| int div; |
| } phy_clocks[] = { |
| { "dsi0_byte", "dsi1_byte", 8 }, |
| { "dsi0_ddr2", "dsi1_ddr2", 4 }, |
| { "dsi0_ddr", "dsi1_ddr", 2 }, |
| }; |
| int i; |
| |
| dsi->clk_onecell = devm_kzalloc(dev, |
| sizeof(*dsi->clk_onecell) + |
| ARRAY_SIZE(phy_clocks) * |
| sizeof(struct clk_hw *), |
| GFP_KERNEL); |
| if (!dsi->clk_onecell) |
| return -ENOMEM; |
| dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); |
| |
| for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { |
| struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; |
| struct clk_init_data init; |
| int ret; |
| |
| /* We just use core fixed factor clock ops for the PHY |
| * clocks. The clocks are actually gated by the |
| * PHY_AFEC0_DDRCLK_EN bits, which we should be |
| * setting if we use the DDR/DDR2 clocks. However, |
| * vc4_dsi_encoder_enable() is setting up both AFEC0, |
| * setting both our parent DSI PLL's rate and this |
| * clock's rate, so it knows if DDR/DDR2 are going to |
| * be used and could enable the gates itself. |
| */ |
| fix->mult = 1; |
| fix->div = phy_clocks[i].div; |
| fix->hw.init = &init; |
| |
| memset(&init, 0, sizeof(init)); |
| init.parent_names = &parent_name; |
| init.num_parents = 1; |
| if (dsi->port == 1) |
| init.name = phy_clocks[i].dsi1_name; |
| else |
| init.name = phy_clocks[i].dsi0_name; |
| init.ops = &clk_fixed_factor_ops; |
| |
| ret = devm_clk_hw_register(dev, &fix->hw); |
| if (ret) |
| return ret; |
| |
| dsi->clk_onecell->hws[i] = &fix->hw; |
| } |
| |
| return of_clk_add_hw_provider(dev->of_node, |
| of_clk_hw_onecell_get, |
| dsi->clk_onecell); |
| } |
| |
| static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_dev *vc4 = to_vc4_dev(drm); |
| struct vc4_dsi *dsi = dev_get_drvdata(dev); |
| struct vc4_dsi_encoder *vc4_dsi_encoder; |
| struct drm_panel *panel; |
| const struct of_device_id *match; |
| dma_cap_mask_t dma_mask; |
| int ret; |
| |
| match = of_match_device(vc4_dsi_dt_match, dev); |
| if (!match) |
| return -ENODEV; |
| |
| dsi->port = (uintptr_t)match->data; |
| |
| vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), |
| GFP_KERNEL); |
| if (!vc4_dsi_encoder) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&dsi->bridge_chain); |
| vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; |
| vc4_dsi_encoder->dsi = dsi; |
| dsi->encoder = &vc4_dsi_encoder->base.base; |
| |
| dsi->regs = vc4_ioremap_regs(pdev, 0); |
| if (IS_ERR(dsi->regs)) |
| return PTR_ERR(dsi->regs); |
| |
| dsi->regset.base = dsi->regs; |
| if (dsi->port == 0) { |
| dsi->regset.regs = dsi0_regs; |
| dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); |
| } else { |
| dsi->regset.regs = dsi1_regs; |
| dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); |
| } |
| |
| if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { |
| dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", |
| DSI_PORT_READ(ID), DSI_ID_VALUE); |
| return -ENODEV; |
| } |
| |
| /* DSI1 has a broken AXI slave that doesn't respond to writes |
| * from the ARM. It does handle writes from the DMA engine, |
| * so set up a channel for talking to it. |
| */ |
| if (dsi->port == 1) { |
| dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, |
| &dsi->reg_dma_paddr, |
| GFP_KERNEL); |
| if (!dsi->reg_dma_mem) { |
| DRM_ERROR("Failed to get DMA memory\n"); |
| return -ENOMEM; |
| } |
| |
| dma_cap_zero(dma_mask); |
| dma_cap_set(DMA_MEMCPY, dma_mask); |
| dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); |
| if (IS_ERR(dsi->reg_dma_chan)) { |
| ret = PTR_ERR(dsi->reg_dma_chan); |
| if (ret != -EPROBE_DEFER) |
| DRM_ERROR("Failed to get DMA channel: %d\n", |
| ret); |
| return ret; |
| } |
| |
| /* Get the physical address of the device's registers. The |
| * struct resource for the regs gives us the bus address |
| * instead. |
| */ |
| dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, |
| 0, NULL, NULL)); |
| } |
| |
| init_completion(&dsi->xfer_completion); |
| /* At startup enable error-reporting interrupts and nothing else. */ |
| DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); |
| /* Clear any existing interrupt state. */ |
| DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); |
| |
| if (dsi->reg_dma_mem) |
| ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), |
| vc4_dsi_irq_defer_to_thread_handler, |
| vc4_dsi_irq_handler, |
| IRQF_ONESHOT, |
| "vc4 dsi", dsi); |
| else |
| ret = devm_request_irq(dev, platform_get_irq(pdev, 0), |
| vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); |
| if (ret) { |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get interrupt: %d\n", ret); |
| return ret; |
| } |
| |
| dsi->escape_clock = devm_clk_get(dev, "escape"); |
| if (IS_ERR(dsi->escape_clock)) { |
| ret = PTR_ERR(dsi->escape_clock); |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get escape clock: %d\n", ret); |
| return ret; |
| } |
| |
| dsi->pll_phy_clock = devm_clk_get(dev, "phy"); |
| if (IS_ERR(dsi->pll_phy_clock)) { |
| ret = PTR_ERR(dsi->pll_phy_clock); |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get phy clock: %d\n", ret); |
| return ret; |
| } |
| |
| dsi->pixel_clock = devm_clk_get(dev, "pixel"); |
| if (IS_ERR(dsi->pixel_clock)) { |
| ret = PTR_ERR(dsi->pixel_clock); |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get pixel clock: %d\n", ret); |
| return ret; |
| } |
| |
| ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, |
| &panel, &dsi->bridge); |
| if (ret) { |
| /* If the bridge or panel pointed by dev->of_node is not |
| * enabled, just return 0 here so that we don't prevent the DRM |
| * dev from being registered. Of course that means the DSI |
| * encoder won't be exposed, but that's not a problem since |
| * nothing is connected to it. |
| */ |
| if (ret == -ENODEV) |
| return 0; |
| |
| return ret; |
| } |
| |
| if (panel) { |
| dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, |
| DRM_MODE_CONNECTOR_DSI); |
| if (IS_ERR(dsi->bridge)) |
| return PTR_ERR(dsi->bridge); |
| } |
| |
| /* The esc clock rate is supposed to always be 100Mhz. */ |
| ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); |
| if (ret) { |
| dev_err(dev, "Failed to set esc clock: %d\n", ret); |
| return ret; |
| } |
| |
| ret = vc4_dsi_init_phy_clocks(dsi); |
| if (ret) |
| return ret; |
| |
| if (dsi->port == 1) |
| vc4->dsi1 = dsi; |
| |
| drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); |
| drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); |
| |
| ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); |
| if (ret) { |
| dev_err(dev, "bridge attach failed: %d\n", ret); |
| return ret; |
| } |
| /* Disable the atomic helper calls into the bridge. We |
| * manually call the bridge pre_enable / enable / etc. calls |
| * from our driver, since we need to sequence them within the |
| * encoder's enable/disable paths. |
| */ |
| list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); |
| |
| if (dsi->port == 0) |
| vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); |
| else |
| vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); |
| |
| pm_runtime_enable(dev); |
| |
| return 0; |
| } |
| |
| static void vc4_dsi_unbind(struct device *dev, struct device *master, |
| void *data) |
| { |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_dev *vc4 = to_vc4_dev(drm); |
| struct vc4_dsi *dsi = dev_get_drvdata(dev); |
| |
| if (dsi->bridge) |
| pm_runtime_disable(dev); |
| |
| /* |
| * Restore the bridge_chain so the bridge detach procedure can happen |
| * normally. |
| */ |
| list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); |
| drm_encoder_cleanup(dsi->encoder); |
| |
| if (dsi->port == 1) |
| vc4->dsi1 = NULL; |
| } |
| |
| static const struct component_ops vc4_dsi_ops = { |
| .bind = vc4_dsi_bind, |
| .unbind = vc4_dsi_unbind, |
| }; |
| |
| static int vc4_dsi_dev_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct vc4_dsi *dsi; |
| |
| dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); |
| if (!dsi) |
| return -ENOMEM; |
| dev_set_drvdata(dev, dsi); |
| |
| dsi->pdev = pdev; |
| dsi->dsi_host.ops = &vc4_dsi_host_ops; |
| dsi->dsi_host.dev = dev; |
| mipi_dsi_host_register(&dsi->dsi_host); |
| |
| return 0; |
| } |
| |
| static int vc4_dsi_dev_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct vc4_dsi *dsi = dev_get_drvdata(dev); |
| |
| component_del(&pdev->dev, &vc4_dsi_ops); |
| mipi_dsi_host_unregister(&dsi->dsi_host); |
| |
| return 0; |
| } |
| |
| struct platform_driver vc4_dsi_driver = { |
| .probe = vc4_dsi_dev_probe, |
| .remove = vc4_dsi_dev_remove, |
| .driver = { |
| .name = "vc4_dsi", |
| .of_match_table = vc4_dsi_dt_match, |
| }, |
| }; |