| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 Broadcom |
| */ |
| |
| /** |
| * DOC: VC4 plane module |
| * |
| * Each DRM plane is a layer of pixels being scanned out by the HVS. |
| * |
| * At atomic modeset check time, we compute the HVS display element |
| * state that would be necessary for displaying the plane (giving us a |
| * chance to figure out if a plane configuration is invalid), then at |
| * atomic flush time the CRTC will ask us to write our element state |
| * into the region of the HVS that it has allocated for us. |
| */ |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_atomic_uapi.h> |
| #include <drm/drm_fb_cma_helper.h> |
| #include <drm/drm_fourcc.h> |
| #include <drm/drm_gem_framebuffer_helper.h> |
| #include <drm/drm_plane_helper.h> |
| |
| #include "uapi/drm/vc4_drm.h" |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| static const struct hvs_format { |
| u32 drm; /* DRM_FORMAT_* */ |
| u32 hvs; /* HVS_FORMAT_* */ |
| u32 pixel_order; |
| u32 pixel_order_hvs5; |
| } hvs_formats[] = { |
| { |
| .drm = DRM_FORMAT_XRGB8888, |
| .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, |
| .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB, |
| }, |
| { |
| .drm = DRM_FORMAT_ARGB8888, |
| .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, |
| .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB, |
| }, |
| { |
| .drm = DRM_FORMAT_ABGR8888, |
| .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ARGB, |
| .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR, |
| }, |
| { |
| .drm = DRM_FORMAT_XBGR8888, |
| .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ARGB, |
| .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR, |
| }, |
| { |
| .drm = DRM_FORMAT_RGB565, |
| .hvs = HVS_PIXEL_FORMAT_RGB565, |
| .pixel_order = HVS_PIXEL_ORDER_XRGB, |
| }, |
| { |
| .drm = DRM_FORMAT_BGR565, |
| .hvs = HVS_PIXEL_FORMAT_RGB565, |
| .pixel_order = HVS_PIXEL_ORDER_XBGR, |
| }, |
| { |
| .drm = DRM_FORMAT_ARGB1555, |
| .hvs = HVS_PIXEL_FORMAT_RGBA5551, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, |
| }, |
| { |
| .drm = DRM_FORMAT_XRGB1555, |
| .hvs = HVS_PIXEL_FORMAT_RGBA5551, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, |
| }, |
| { |
| .drm = DRM_FORMAT_RGB888, |
| .hvs = HVS_PIXEL_FORMAT_RGB888, |
| .pixel_order = HVS_PIXEL_ORDER_XRGB, |
| }, |
| { |
| .drm = DRM_FORMAT_BGR888, |
| .hvs = HVS_PIXEL_FORMAT_RGB888, |
| .pixel_order = HVS_PIXEL_ORDER_XBGR, |
| }, |
| { |
| .drm = DRM_FORMAT_YUV422, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCBCR, |
| }, |
| { |
| .drm = DRM_FORMAT_YVU422, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCRCB, |
| }, |
| { |
| .drm = DRM_FORMAT_YUV420, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCBCR, |
| }, |
| { |
| .drm = DRM_FORMAT_YVU420, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCRCB, |
| }, |
| { |
| .drm = DRM_FORMAT_NV12, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCBCR, |
| }, |
| { |
| .drm = DRM_FORMAT_NV21, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCRCB, |
| }, |
| { |
| .drm = DRM_FORMAT_NV16, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCBCR, |
| }, |
| { |
| .drm = DRM_FORMAT_NV61, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, |
| .pixel_order = HVS_PIXEL_ORDER_XYCRCB, |
| }, |
| }; |
| |
| static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) |
| { |
| unsigned i; |
| |
| for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { |
| if (hvs_formats[i].drm == drm_format) |
| return &hvs_formats[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) |
| { |
| if (dst == src) |
| return VC4_SCALING_NONE; |
| if (3 * dst >= 2 * src) |
| return VC4_SCALING_PPF; |
| else |
| return VC4_SCALING_TPZ; |
| } |
| |
| static bool plane_enabled(struct drm_plane_state *state) |
| { |
| return state->fb && !WARN_ON(!state->crtc); |
| } |
| |
| static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) |
| { |
| struct vc4_plane_state *vc4_state; |
| |
| if (WARN_ON(!plane->state)) |
| return NULL; |
| |
| vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); |
| if (!vc4_state) |
| return NULL; |
| |
| memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); |
| vc4_state->dlist_initialized = 0; |
| |
| __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); |
| |
| if (vc4_state->dlist) { |
| vc4_state->dlist = kmemdup(vc4_state->dlist, |
| vc4_state->dlist_count * 4, |
| GFP_KERNEL); |
| if (!vc4_state->dlist) { |
| kfree(vc4_state); |
| return NULL; |
| } |
| vc4_state->dlist_size = vc4_state->dlist_count; |
| } |
| |
| return &vc4_state->base; |
| } |
| |
| static void vc4_plane_destroy_state(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(plane->dev); |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| if (drm_mm_node_allocated(&vc4_state->lbm)) { |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); |
| drm_mm_remove_node(&vc4_state->lbm); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); |
| } |
| |
| kfree(vc4_state->dlist); |
| __drm_atomic_helper_plane_destroy_state(&vc4_state->base); |
| kfree(state); |
| } |
| |
| /* Called during init to allocate the plane's atomic state. */ |
| static void vc4_plane_reset(struct drm_plane *plane) |
| { |
| struct vc4_plane_state *vc4_state; |
| |
| WARN_ON(plane->state); |
| |
| vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); |
| if (!vc4_state) |
| return; |
| |
| __drm_atomic_helper_plane_reset(plane, &vc4_state->base); |
| } |
| |
| static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) |
| { |
| if (vc4_state->dlist_count == vc4_state->dlist_size) { |
| u32 new_size = max(4u, vc4_state->dlist_count * 2); |
| u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL); |
| |
| if (!new_dlist) |
| return; |
| memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); |
| |
| kfree(vc4_state->dlist); |
| vc4_state->dlist = new_dlist; |
| vc4_state->dlist_size = new_size; |
| } |
| |
| vc4_state->dlist[vc4_state->dlist_count++] = val; |
| } |
| |
| /* Returns the scl0/scl1 field based on whether the dimensions need to |
| * be up/down/non-scaled. |
| * |
| * This is a replication of a table from the spec. |
| */ |
| static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_PPF_V_PPF; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_TPZ_V_PPF; |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_PPF_V_TPZ; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_TPZ_V_TPZ; |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: |
| return SCALER_CTL0_SCL_H_PPF_V_NONE; |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_NONE_V_PPF; |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_NONE_V_TPZ; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: |
| return SCALER_CTL0_SCL_H_TPZ_V_NONE; |
| default: |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: |
| /* The unity case is independently handled by |
| * SCALER_CTL0_UNITY. |
| */ |
| return 0; |
| } |
| } |
| |
| static int vc4_plane_margins_adj(struct drm_plane_state *pstate) |
| { |
| struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate); |
| unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay; |
| struct drm_crtc_state *crtc_state; |
| |
| crtc_state = drm_atomic_get_new_crtc_state(pstate->state, |
| pstate->crtc); |
| |
| vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom); |
| if (!left && !right && !top && !bottom) |
| return 0; |
| |
| if (left + right >= crtc_state->mode.hdisplay || |
| top + bottom >= crtc_state->mode.vdisplay) |
| return -EINVAL; |
| |
| adjhdisplay = crtc_state->mode.hdisplay - (left + right); |
| vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x * |
| adjhdisplay, |
| crtc_state->mode.hdisplay); |
| vc4_pstate->crtc_x += left; |
| if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left) |
| vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left; |
| |
| adjvdisplay = crtc_state->mode.vdisplay - (top + bottom); |
| vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y * |
| adjvdisplay, |
| crtc_state->mode.vdisplay); |
| vc4_pstate->crtc_y += top; |
| if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top) |
| vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top; |
| |
| vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w * |
| adjhdisplay, |
| crtc_state->mode.hdisplay); |
| vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h * |
| adjvdisplay, |
| crtc_state->mode.vdisplay); |
| |
| if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); |
| u32 subpixel_src_mask = (1 << 16) - 1; |
| int num_planes = fb->format->num_planes; |
| struct drm_crtc_state *crtc_state; |
| u32 h_subsample = fb->format->hsub; |
| u32 v_subsample = fb->format->vsub; |
| int i, ret; |
| |
| crtc_state = drm_atomic_get_existing_crtc_state(state->state, |
| state->crtc); |
| if (!crtc_state) { |
| DRM_DEBUG_KMS("Invalid crtc state\n"); |
| return -EINVAL; |
| } |
| |
| ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1, |
| INT_MAX, true, true); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < num_planes; i++) |
| vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; |
| |
| /* We don't support subpixel source positioning for scaling. */ |
| if ((state->src.x1 & subpixel_src_mask) || |
| (state->src.x2 & subpixel_src_mask) || |
| (state->src.y1 & subpixel_src_mask) || |
| (state->src.y2 & subpixel_src_mask)) { |
| return -EINVAL; |
| } |
| |
| vc4_state->src_x = state->src.x1 >> 16; |
| vc4_state->src_y = state->src.y1 >> 16; |
| vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16; |
| vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16; |
| |
| vc4_state->crtc_x = state->dst.x1; |
| vc4_state->crtc_y = state->dst.y1; |
| vc4_state->crtc_w = state->dst.x2 - state->dst.x1; |
| vc4_state->crtc_h = state->dst.y2 - state->dst.y1; |
| |
| ret = vc4_plane_margins_adj(state); |
| if (ret) |
| return ret; |
| |
| vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], |
| vc4_state->crtc_w); |
| vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], |
| vc4_state->crtc_h); |
| |
| vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && |
| vc4_state->y_scaling[0] == VC4_SCALING_NONE); |
| |
| if (num_planes > 1) { |
| vc4_state->is_yuv = true; |
| |
| vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; |
| vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; |
| |
| vc4_state->x_scaling[1] = |
| vc4_get_scaling_mode(vc4_state->src_w[1], |
| vc4_state->crtc_w); |
| vc4_state->y_scaling[1] = |
| vc4_get_scaling_mode(vc4_state->src_h[1], |
| vc4_state->crtc_h); |
| |
| /* YUV conversion requires that horizontal scaling be enabled |
| * on the UV plane even if vc4_get_scaling_mode() returned |
| * VC4_SCALING_NONE (which can happen when the down-scaling |
| * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this |
| * case. |
| */ |
| if (vc4_state->x_scaling[1] == VC4_SCALING_NONE) |
| vc4_state->x_scaling[1] = VC4_SCALING_PPF; |
| } else { |
| vc4_state->is_yuv = false; |
| vc4_state->x_scaling[1] = VC4_SCALING_NONE; |
| vc4_state->y_scaling[1] = VC4_SCALING_NONE; |
| } |
| |
| return 0; |
| } |
| |
| static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) |
| { |
| u32 scale, recip; |
| |
| scale = (1 << 16) * src / dst; |
| |
| /* The specs note that while the reciprocal would be defined |
| * as (1<<32)/scale, ~0 is close enough. |
| */ |
| recip = ~0 / scale; |
| |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | |
| VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); |
| } |
| |
| static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) |
| { |
| u32 scale = (1 << 16) * src / dst; |
| |
| vc4_dlist_write(vc4_state, |
| SCALER_PPF_AGC | |
| VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | |
| VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); |
| } |
| |
| static u32 vc4_lbm_size(struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev); |
| u32 pix_per_line; |
| u32 lbm; |
| |
| /* LBM is not needed when there's no vertical scaling. */ |
| if (vc4_state->y_scaling[0] == VC4_SCALING_NONE && |
| vc4_state->y_scaling[1] == VC4_SCALING_NONE) |
| return 0; |
| |
| /* |
| * This can be further optimized in the RGB/YUV444 case if the PPF |
| * decimation factor is between 0.5 and 1.0 by using crtc_w. |
| * |
| * It's not an issue though, since in that case since src_w[0] is going |
| * to be greater than or equal to crtc_w. |
| */ |
| if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ) |
| pix_per_line = vc4_state->crtc_w; |
| else |
| pix_per_line = vc4_state->src_w[0]; |
| |
| if (!vc4_state->is_yuv) { |
| if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) |
| lbm = pix_per_line * 8; |
| else { |
| /* In special cases, this multiplier might be 12. */ |
| lbm = pix_per_line * 16; |
| } |
| } else { |
| /* There are cases for this going down to a multiplier |
| * of 2, but according to the firmware source, the |
| * table in the docs is somewhat wrong. |
| */ |
| lbm = pix_per_line * 16; |
| } |
| |
| /* Align it to 64 or 128 (hvs5) bytes */ |
| lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64); |
| |
| /* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */ |
| lbm /= vc4->hvs->hvs5 ? 4 : 2; |
| |
| return lbm; |
| } |
| |
| static void vc4_write_scaling_parameters(struct drm_plane_state *state, |
| int channel) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| /* Ch0 H-PPF Word 0: Scaling Parameters */ |
| if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { |
| vc4_write_ppf(vc4_state, |
| vc4_state->src_w[channel], vc4_state->crtc_w); |
| } |
| |
| /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ |
| if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { |
| vc4_write_ppf(vc4_state, |
| vc4_state->src_h[channel], vc4_state->crtc_h); |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| } |
| |
| /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ |
| if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { |
| vc4_write_tpz(vc4_state, |
| vc4_state->src_w[channel], vc4_state->crtc_w); |
| } |
| |
| /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ |
| if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { |
| vc4_write_tpz(vc4_state, |
| vc4_state->src_h[channel], vc4_state->crtc_h); |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| } |
| } |
| |
| static void vc4_plane_calc_load(struct drm_plane_state *state) |
| { |
| unsigned int hvs_load_shift, vrefresh, i; |
| struct drm_framebuffer *fb = state->fb; |
| struct vc4_plane_state *vc4_state; |
| struct drm_crtc_state *crtc_state; |
| unsigned int vscale_factor; |
| struct vc4_dev *vc4; |
| |
| vc4 = to_vc4_dev(state->plane->dev); |
| if (!vc4->load_tracker_available) |
| return; |
| |
| vc4_state = to_vc4_plane_state(state); |
| crtc_state = drm_atomic_get_existing_crtc_state(state->state, |
| state->crtc); |
| vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode); |
| |
| /* The HVS is able to process 2 pixels/cycle when scaling the source, |
| * 4 pixels/cycle otherwise. |
| * Alpha blending step seems to be pipelined and it's always operating |
| * at 4 pixels/cycle, so the limiting aspect here seems to be the |
| * scaler block. |
| * HVS load is expressed in clk-cycles/sec (AKA Hz). |
| */ |
| if (vc4_state->x_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->x_scaling[1] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[1] != VC4_SCALING_NONE) |
| hvs_load_shift = 1; |
| else |
| hvs_load_shift = 2; |
| |
| vc4_state->membus_load = 0; |
| vc4_state->hvs_load = 0; |
| for (i = 0; i < fb->format->num_planes; i++) { |
| /* Even if the bandwidth/plane required for a single frame is |
| * |
| * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh |
| * |
| * when downscaling, we have to read more pixels per line in |
| * the time frame reserved for a single line, so the bandwidth |
| * demand can be punctually higher. To account for that, we |
| * calculate the down-scaling factor and multiply the plane |
| * load by this number. We're likely over-estimating the read |
| * demand, but that's better than under-estimating it. |
| */ |
| vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i], |
| vc4_state->crtc_h); |
| vc4_state->membus_load += vc4_state->src_w[i] * |
| vc4_state->src_h[i] * vscale_factor * |
| fb->format->cpp[i]; |
| vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w; |
| } |
| |
| vc4_state->hvs_load *= vrefresh; |
| vc4_state->hvs_load >>= hvs_load_shift; |
| vc4_state->membus_load *= vrefresh; |
| } |
| |
| static int vc4_plane_allocate_lbm(struct drm_plane_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev); |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| unsigned long irqflags; |
| u32 lbm_size; |
| |
| lbm_size = vc4_lbm_size(state); |
| if (!lbm_size) |
| return 0; |
| |
| if (WARN_ON(!vc4_state->lbm_offset)) |
| return -EINVAL; |
| |
| /* Allocate the LBM memory that the HVS will use for temporary |
| * storage due to our scaling/format conversion. |
| */ |
| if (!drm_mm_node_allocated(&vc4_state->lbm)) { |
| int ret; |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); |
| ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, |
| &vc4_state->lbm, |
| lbm_size, |
| vc4->hvs->hvs5 ? 64 : 32, |
| 0, 0); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); |
| |
| if (ret) |
| return ret; |
| } else { |
| WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); |
| } |
| |
| vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start; |
| |
| return 0; |
| } |
| |
| /* Writes out a full display list for an active plane to the plane's |
| * private dlist state. |
| */ |
| static int vc4_plane_mode_set(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(plane->dev); |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| struct drm_framebuffer *fb = state->fb; |
| u32 ctl0_offset = vc4_state->dlist_count; |
| const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); |
| u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier); |
| int num_planes = fb->format->num_planes; |
| u32 h_subsample = fb->format->hsub; |
| u32 v_subsample = fb->format->vsub; |
| bool mix_plane_alpha; |
| bool covers_screen; |
| u32 scl0, scl1, pitch0; |
| u32 tiling, src_y; |
| u32 hvs_format = format->hvs; |
| unsigned int rotation; |
| int ret, i; |
| |
| if (vc4_state->dlist_initialized) |
| return 0; |
| |
| ret = vc4_plane_setup_clipping_and_scaling(state); |
| if (ret) |
| return ret; |
| |
| /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB |
| * and 4:4:4, scl1 should be set to scl0 so both channels of |
| * the scaler do the same thing. For YUV, the Y plane needs |
| * to be put in channel 1 and Cb/Cr in channel 0, so we swap |
| * the scl fields here. |
| */ |
| if (num_planes == 1) { |
| scl0 = vc4_get_scl_field(state, 0); |
| scl1 = scl0; |
| } else { |
| scl0 = vc4_get_scl_field(state, 1); |
| scl1 = vc4_get_scl_field(state, 0); |
| } |
| |
| rotation = drm_rotation_simplify(state->rotation, |
| DRM_MODE_ROTATE_0 | |
| DRM_MODE_REFLECT_X | |
| DRM_MODE_REFLECT_Y); |
| |
| /* We must point to the last line when Y reflection is enabled. */ |
| src_y = vc4_state->src_y; |
| if (rotation & DRM_MODE_REFLECT_Y) |
| src_y += vc4_state->src_h[0] - 1; |
| |
| switch (base_format_mod) { |
| case DRM_FORMAT_MOD_LINEAR: |
| tiling = SCALER_CTL0_TILING_LINEAR; |
| pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH); |
| |
| /* Adjust the base pointer to the first pixel to be scanned |
| * out. |
| */ |
| for (i = 0; i < num_planes; i++) { |
| vc4_state->offsets[i] += src_y / |
| (i ? v_subsample : 1) * |
| fb->pitches[i]; |
| |
| vc4_state->offsets[i] += vc4_state->src_x / |
| (i ? h_subsample : 1) * |
| fb->format->cpp[i]; |
| } |
| |
| break; |
| |
| case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: { |
| u32 tile_size_shift = 12; /* T tiles are 4kb */ |
| /* Whole-tile offsets, mostly for setting the pitch. */ |
| u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5; |
| u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */ |
| u32 tile_w_mask = (1 << tile_w_shift) - 1; |
| /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice |
| * the height (in pixels) of a 4k tile. |
| */ |
| u32 tile_h_mask = (2 << tile_h_shift) - 1; |
| /* For T-tiled, the FB pitch is "how many bytes from one row to |
| * the next, such that |
| * |
| * pitch * tile_h == tile_size * tiles_per_row |
| */ |
| u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift); |
| u32 tiles_l = vc4_state->src_x >> tile_w_shift; |
| u32 tiles_r = tiles_w - tiles_l; |
| u32 tiles_t = src_y >> tile_h_shift; |
| /* Intra-tile offsets, which modify the base address (the |
| * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that |
| * base address). |
| */ |
| u32 tile_y = (src_y >> 4) & 1; |
| u32 subtile_y = (src_y >> 2) & 3; |
| u32 utile_y = src_y & 3; |
| u32 x_off = vc4_state->src_x & tile_w_mask; |
| u32 y_off = src_y & tile_h_mask; |
| |
| /* When Y reflection is requested we must set the |
| * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines |
| * after the initial one should be fetched in descending order, |
| * which makes sense since we start from the last line and go |
| * backward. |
| * Don't know why we need y_off = max_y_off - y_off, but it's |
| * definitely required (I guess it's also related to the "going |
| * backward" situation). |
| */ |
| if (rotation & DRM_MODE_REFLECT_Y) { |
| y_off = tile_h_mask - y_off; |
| pitch0 = SCALER_PITCH0_TILE_LINE_DIR; |
| } else { |
| pitch0 = 0; |
| } |
| |
| tiling = SCALER_CTL0_TILING_256B_OR_T; |
| pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) | |
| VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) | |
| VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) | |
| VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R)); |
| vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift); |
| vc4_state->offsets[0] += subtile_y << 8; |
| vc4_state->offsets[0] += utile_y << 4; |
| |
| /* Rows of tiles alternate left-to-right and right-to-left. */ |
| if (tiles_t & 1) { |
| pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR; |
| vc4_state->offsets[0] += (tiles_w - tiles_l) << |
| tile_size_shift; |
| vc4_state->offsets[0] -= (1 + !tile_y) << 10; |
| } else { |
| vc4_state->offsets[0] += tiles_l << tile_size_shift; |
| vc4_state->offsets[0] += tile_y << 10; |
| } |
| |
| break; |
| } |
| |
| case DRM_FORMAT_MOD_BROADCOM_SAND64: |
| case DRM_FORMAT_MOD_BROADCOM_SAND128: |
| case DRM_FORMAT_MOD_BROADCOM_SAND256: { |
| uint32_t param = fourcc_mod_broadcom_param(fb->modifier); |
| u32 tile_w, tile, x_off, pix_per_tile; |
| |
| hvs_format = HVS_PIXEL_FORMAT_H264; |
| |
| switch (base_format_mod) { |
| case DRM_FORMAT_MOD_BROADCOM_SAND64: |
| tiling = SCALER_CTL0_TILING_64B; |
| tile_w = 64; |
| break; |
| case DRM_FORMAT_MOD_BROADCOM_SAND128: |
| tiling = SCALER_CTL0_TILING_128B; |
| tile_w = 128; |
| break; |
| case DRM_FORMAT_MOD_BROADCOM_SAND256: |
| tiling = SCALER_CTL0_TILING_256B_OR_T; |
| tile_w = 256; |
| break; |
| default: |
| break; |
| } |
| |
| if (param > SCALER_TILE_HEIGHT_MASK) { |
| DRM_DEBUG_KMS("SAND height too large (%d)\n", param); |
| return -EINVAL; |
| } |
| |
| pix_per_tile = tile_w / fb->format->cpp[0]; |
| tile = vc4_state->src_x / pix_per_tile; |
| x_off = vc4_state->src_x % pix_per_tile; |
| |
| /* Adjust the base pointer to the first pixel to be scanned |
| * out. |
| */ |
| for (i = 0; i < num_planes; i++) { |
| vc4_state->offsets[i] += param * tile_w * tile; |
| vc4_state->offsets[i] += src_y / |
| (i ? v_subsample : 1) * |
| tile_w; |
| vc4_state->offsets[i] += x_off / |
| (i ? h_subsample : 1) * |
| fb->format->cpp[i]; |
| } |
| |
| pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT); |
| break; |
| } |
| |
| default: |
| DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx", |
| (long long)fb->modifier); |
| return -EINVAL; |
| } |
| |
| /* Don't waste cycles mixing with plane alpha if the set alpha |
| * is opaque or there is no per-pixel alpha information. |
| * In any case we use the alpha property value as the fixed alpha. |
| */ |
| mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE && |
| fb->format->has_alpha; |
| |
| if (!vc4->hvs->hvs5) { |
| /* Control word */ |
| vc4_dlist_write(vc4_state, |
| SCALER_CTL0_VALID | |
| (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) | |
| (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) | |
| VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) | |
| (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | |
| (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | |
| VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | |
| (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | |
| VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | |
| VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); |
| |
| /* Position Word 0: Image Positions and Alpha Value */ |
| vc4_state->pos0_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) | |
| VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | |
| VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); |
| |
| /* Position Word 1: Scaled Image Dimensions. */ |
| if (!vc4_state->is_unity) { |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(vc4_state->crtc_w, |
| SCALER_POS1_SCL_WIDTH) | |
| VC4_SET_FIELD(vc4_state->crtc_h, |
| SCALER_POS1_SCL_HEIGHT)); |
| } |
| |
| /* Position Word 2: Source Image Size, Alpha */ |
| vc4_state->pos2_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(fb->format->has_alpha ? |
| SCALER_POS2_ALPHA_MODE_PIPELINE : |
| SCALER_POS2_ALPHA_MODE_FIXED, |
| SCALER_POS2_ALPHA_MODE) | |
| (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) | |
| (fb->format->has_alpha ? |
| SCALER_POS2_ALPHA_PREMULT : 0) | |
| VC4_SET_FIELD(vc4_state->src_w[0], |
| SCALER_POS2_WIDTH) | |
| VC4_SET_FIELD(vc4_state->src_h[0], |
| SCALER_POS2_HEIGHT)); |
| |
| /* Position Word 3: Context. Written by the HVS. */ |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| |
| } else { |
| u32 hvs_pixel_order = format->pixel_order; |
| |
| if (format->pixel_order_hvs5) |
| hvs_pixel_order = format->pixel_order_hvs5; |
| |
| /* Control word */ |
| vc4_dlist_write(vc4_state, |
| SCALER_CTL0_VALID | |
| (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) | |
| (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | |
| VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | |
| (vc4_state->is_unity ? |
| SCALER5_CTL0_UNITY : 0) | |
| VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | |
| VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) | |
| SCALER5_CTL0_ALPHA_EXPAND | |
| SCALER5_CTL0_RGB_EXPAND); |
| |
| /* Position Word 0: Image Positions and Alpha Value */ |
| vc4_state->pos0_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| (rotation & DRM_MODE_REFLECT_Y ? |
| SCALER5_POS0_VFLIP : 0) | |
| VC4_SET_FIELD(vc4_state->crtc_x, |
| SCALER_POS0_START_X) | |
| (rotation & DRM_MODE_REFLECT_X ? |
| SCALER5_POS0_HFLIP : 0) | |
| VC4_SET_FIELD(vc4_state->crtc_y, |
| SCALER5_POS0_START_Y) |
| ); |
| |
| /* Control Word 2 */ |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(state->alpha >> 4, |
| SCALER5_CTL2_ALPHA) | |
| (fb->format->has_alpha ? |
| SCALER5_CTL2_ALPHA_PREMULT : 0) | |
| (mix_plane_alpha ? |
| SCALER5_CTL2_ALPHA_MIX : 0) | |
| VC4_SET_FIELD(fb->format->has_alpha ? |
| SCALER5_CTL2_ALPHA_MODE_PIPELINE : |
| SCALER5_CTL2_ALPHA_MODE_FIXED, |
| SCALER5_CTL2_ALPHA_MODE) |
| ); |
| |
| /* Position Word 1: Scaled Image Dimensions. */ |
| if (!vc4_state->is_unity) { |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(vc4_state->crtc_w, |
| SCALER5_POS1_SCL_WIDTH) | |
| VC4_SET_FIELD(vc4_state->crtc_h, |
| SCALER5_POS1_SCL_HEIGHT)); |
| } |
| |
| /* Position Word 2: Source Image Size */ |
| vc4_state->pos2_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(vc4_state->src_w[0], |
| SCALER5_POS2_WIDTH) | |
| VC4_SET_FIELD(vc4_state->src_h[0], |
| SCALER5_POS2_HEIGHT)); |
| |
| /* Position Word 3: Context. Written by the HVS. */ |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| } |
| |
| |
| /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers |
| * |
| * The pointers may be any byte address. |
| */ |
| vc4_state->ptr0_offset = vc4_state->dlist_count; |
| for (i = 0; i < num_planes; i++) |
| vc4_dlist_write(vc4_state, vc4_state->offsets[i]); |
| |
| /* Pointer Context Word 0/1/2: Written by the HVS */ |
| for (i = 0; i < num_planes; i++) |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| |
| /* Pitch word 0 */ |
| vc4_dlist_write(vc4_state, pitch0); |
| |
| /* Pitch word 1/2 */ |
| for (i = 1; i < num_planes; i++) { |
| if (hvs_format != HVS_PIXEL_FORMAT_H264) { |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(fb->pitches[i], |
| SCALER_SRC_PITCH)); |
| } else { |
| vc4_dlist_write(vc4_state, pitch0); |
| } |
| } |
| |
| /* Colorspace conversion words */ |
| if (vc4_state->is_yuv) { |
| vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); |
| vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); |
| vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); |
| } |
| |
| vc4_state->lbm_offset = 0; |
| |
| if (vc4_state->x_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->x_scaling[1] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[1] != VC4_SCALING_NONE) { |
| /* Reserve a slot for the LBM Base Address. The real value will |
| * be set when calling vc4_plane_allocate_lbm(). |
| */ |
| if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[1] != VC4_SCALING_NONE) |
| vc4_state->lbm_offset = vc4_state->dlist_count++; |
| |
| if (num_planes > 1) { |
| /* Emit Cb/Cr as channel 0 and Y as channel |
| * 1. This matches how we set up scl0/scl1 |
| * above. |
| */ |
| vc4_write_scaling_parameters(state, 1); |
| } |
| vc4_write_scaling_parameters(state, 0); |
| |
| /* If any PPF setup was done, then all the kernel |
| * pointers get uploaded. |
| */ |
| if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || |
| vc4_state->y_scaling[0] == VC4_SCALING_PPF || |
| vc4_state->x_scaling[1] == VC4_SCALING_PPF || |
| vc4_state->y_scaling[1] == VC4_SCALING_PPF) { |
| u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, |
| SCALER_PPF_KERNEL_OFFSET); |
| |
| /* HPPF plane 0 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* VPPF plane 0 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* HPPF plane 1 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* VPPF plane 1 */ |
| vc4_dlist_write(vc4_state, kernel); |
| } |
| } |
| |
| vc4_state->dlist[ctl0_offset] |= |
| VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); |
| |
| /* crtc_* are already clipped coordinates. */ |
| covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 && |
| vc4_state->crtc_w == state->crtc->mode.hdisplay && |
| vc4_state->crtc_h == state->crtc->mode.vdisplay; |
| /* Background fill might be necessary when the plane has per-pixel |
| * alpha content or a non-opaque plane alpha and could blend from the |
| * background or does not cover the entire screen. |
| */ |
| vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen || |
| state->alpha != DRM_BLEND_ALPHA_OPAQUE; |
| |
| /* Flag the dlist as initialized to avoid checking it twice in case |
| * the async update check already called vc4_plane_mode_set() and |
| * decided to fallback to sync update because async update was not |
| * possible. |
| */ |
| vc4_state->dlist_initialized = 1; |
| |
| vc4_plane_calc_load(state); |
| |
| return 0; |
| } |
| |
| /* If a modeset involves changing the setup of a plane, the atomic |
| * infrastructure will call this to validate a proposed plane setup. |
| * However, if a plane isn't getting updated, this (and the |
| * corresponding vc4_plane_atomic_update) won't get called. Thus, we |
| * compute the dlist here and have all active plane dlists get updated |
| * in the CRTC's flush. |
| */ |
| static int vc4_plane_atomic_check(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| int ret; |
| |
| vc4_state->dlist_count = 0; |
| |
| if (!plane_enabled(state)) |
| return 0; |
| |
| ret = vc4_plane_mode_set(plane, state); |
| if (ret) |
| return ret; |
| |
| return vc4_plane_allocate_lbm(state); |
| } |
| |
| static void vc4_plane_atomic_update(struct drm_plane *plane, |
| struct drm_plane_state *old_state) |
| { |
| /* No contents here. Since we don't know where in the CRTC's |
| * dlist we should be stored, our dlist is uploaded to the |
| * hardware with vc4_plane_write_dlist() at CRTC atomic_flush |
| * time. |
| */ |
| } |
| |
| u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); |
| int i; |
| |
| vc4_state->hw_dlist = dlist; |
| |
| /* Can't memcpy_toio() because it needs to be 32-bit writes. */ |
| for (i = 0; i < vc4_state->dlist_count; i++) |
| writel(vc4_state->dlist[i], &dlist[i]); |
| |
| return vc4_state->dlist_count; |
| } |
| |
| u32 vc4_plane_dlist_size(const struct drm_plane_state *state) |
| { |
| const struct vc4_plane_state *vc4_state = |
| container_of(state, typeof(*vc4_state), base); |
| |
| return vc4_state->dlist_count; |
| } |
| |
| /* Updates the plane to immediately (well, once the FIFO needs |
| * refilling) scan out from at a new framebuffer. |
| */ |
| void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); |
| struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); |
| uint32_t addr; |
| |
| /* We're skipping the address adjustment for negative origin, |
| * because this is only called on the primary plane. |
| */ |
| WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); |
| addr = bo->paddr + fb->offsets[0]; |
| |
| /* Write the new address into the hardware immediately. The |
| * scanout will start from this address as soon as the FIFO |
| * needs to refill with pixels. |
| */ |
| writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); |
| |
| /* Also update the CPU-side dlist copy, so that any later |
| * atomic updates that don't do a new modeset on our plane |
| * also use our updated address. |
| */ |
| vc4_state->dlist[vc4_state->ptr0_offset] = addr; |
| } |
| |
| static void vc4_plane_atomic_async_update(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state, *new_vc4_state; |
| |
| swap(plane->state->fb, state->fb); |
| plane->state->crtc_x = state->crtc_x; |
| plane->state->crtc_y = state->crtc_y; |
| plane->state->crtc_w = state->crtc_w; |
| plane->state->crtc_h = state->crtc_h; |
| plane->state->src_x = state->src_x; |
| plane->state->src_y = state->src_y; |
| plane->state->src_w = state->src_w; |
| plane->state->src_h = state->src_h; |
| plane->state->src_h = state->src_h; |
| plane->state->alpha = state->alpha; |
| plane->state->pixel_blend_mode = state->pixel_blend_mode; |
| plane->state->rotation = state->rotation; |
| plane->state->zpos = state->zpos; |
| plane->state->normalized_zpos = state->normalized_zpos; |
| plane->state->color_encoding = state->color_encoding; |
| plane->state->color_range = state->color_range; |
| plane->state->src = state->src; |
| plane->state->dst = state->dst; |
| plane->state->visible = state->visible; |
| |
| new_vc4_state = to_vc4_plane_state(state); |
| vc4_state = to_vc4_plane_state(plane->state); |
| |
| vc4_state->crtc_x = new_vc4_state->crtc_x; |
| vc4_state->crtc_y = new_vc4_state->crtc_y; |
| vc4_state->crtc_h = new_vc4_state->crtc_h; |
| vc4_state->crtc_w = new_vc4_state->crtc_w; |
| vc4_state->src_x = new_vc4_state->src_x; |
| vc4_state->src_y = new_vc4_state->src_y; |
| memcpy(vc4_state->src_w, new_vc4_state->src_w, |
| sizeof(vc4_state->src_w)); |
| memcpy(vc4_state->src_h, new_vc4_state->src_h, |
| sizeof(vc4_state->src_h)); |
| memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling, |
| sizeof(vc4_state->x_scaling)); |
| memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling, |
| sizeof(vc4_state->y_scaling)); |
| vc4_state->is_unity = new_vc4_state->is_unity; |
| vc4_state->is_yuv = new_vc4_state->is_yuv; |
| memcpy(vc4_state->offsets, new_vc4_state->offsets, |
| sizeof(vc4_state->offsets)); |
| vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill; |
| |
| /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */ |
| vc4_state->dlist[vc4_state->pos0_offset] = |
| new_vc4_state->dlist[vc4_state->pos0_offset]; |
| vc4_state->dlist[vc4_state->pos2_offset] = |
| new_vc4_state->dlist[vc4_state->pos2_offset]; |
| vc4_state->dlist[vc4_state->ptr0_offset] = |
| new_vc4_state->dlist[vc4_state->ptr0_offset]; |
| |
| /* Note that we can't just call vc4_plane_write_dlist() |
| * because that would smash the context data that the HVS is |
| * currently using. |
| */ |
| writel(vc4_state->dlist[vc4_state->pos0_offset], |
| &vc4_state->hw_dlist[vc4_state->pos0_offset]); |
| writel(vc4_state->dlist[vc4_state->pos2_offset], |
| &vc4_state->hw_dlist[vc4_state->pos2_offset]); |
| writel(vc4_state->dlist[vc4_state->ptr0_offset], |
| &vc4_state->hw_dlist[vc4_state->ptr0_offset]); |
| } |
| |
| static int vc4_plane_atomic_async_check(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *old_vc4_state, *new_vc4_state; |
| int ret; |
| u32 i; |
| |
| ret = vc4_plane_mode_set(plane, state); |
| if (ret) |
| return ret; |
| |
| old_vc4_state = to_vc4_plane_state(plane->state); |
| new_vc4_state = to_vc4_plane_state(state); |
| if (old_vc4_state->dlist_count != new_vc4_state->dlist_count || |
| old_vc4_state->pos0_offset != new_vc4_state->pos0_offset || |
| old_vc4_state->pos2_offset != new_vc4_state->pos2_offset || |
| old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset || |
| vc4_lbm_size(plane->state) != vc4_lbm_size(state)) |
| return -EINVAL; |
| |
| /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update |
| * if anything else has changed, fallback to a sync update. |
| */ |
| for (i = 0; i < new_vc4_state->dlist_count; i++) { |
| if (i == new_vc4_state->pos0_offset || |
| i == new_vc4_state->pos2_offset || |
| i == new_vc4_state->ptr0_offset || |
| (new_vc4_state->lbm_offset && |
| i == new_vc4_state->lbm_offset)) |
| continue; |
| |
| if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i]) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vc4_prepare_fb(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_bo *bo; |
| int ret; |
| |
| if (!state->fb) |
| return 0; |
| |
| bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); |
| |
| drm_gem_fb_prepare_fb(plane, state); |
| |
| if (plane->state->fb == state->fb) |
| return 0; |
| |
| ret = vc4_bo_inc_usecnt(bo); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void vc4_cleanup_fb(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_bo *bo; |
| |
| if (plane->state->fb == state->fb || !state->fb) |
| return; |
| |
| bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); |
| vc4_bo_dec_usecnt(bo); |
| } |
| |
| static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { |
| .atomic_check = vc4_plane_atomic_check, |
| .atomic_update = vc4_plane_atomic_update, |
| .prepare_fb = vc4_prepare_fb, |
| .cleanup_fb = vc4_cleanup_fb, |
| .atomic_async_check = vc4_plane_atomic_async_check, |
| .atomic_async_update = vc4_plane_atomic_async_update, |
| }; |
| |
| static void vc4_plane_destroy(struct drm_plane *plane) |
| { |
| drm_plane_cleanup(plane); |
| } |
| |
| static bool vc4_format_mod_supported(struct drm_plane *plane, |
| uint32_t format, |
| uint64_t modifier) |
| { |
| /* Support T_TILING for RGB formats only. */ |
| switch (format) { |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| case DRM_FORMAT_ABGR8888: |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_RGB565: |
| case DRM_FORMAT_BGR565: |
| case DRM_FORMAT_ARGB1555: |
| case DRM_FORMAT_XRGB1555: |
| switch (fourcc_mod_broadcom_mod(modifier)) { |
| case DRM_FORMAT_MOD_LINEAR: |
| case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: |
| return true; |
| default: |
| return false; |
| } |
| case DRM_FORMAT_NV12: |
| case DRM_FORMAT_NV21: |
| switch (fourcc_mod_broadcom_mod(modifier)) { |
| case DRM_FORMAT_MOD_LINEAR: |
| case DRM_FORMAT_MOD_BROADCOM_SAND64: |
| case DRM_FORMAT_MOD_BROADCOM_SAND128: |
| case DRM_FORMAT_MOD_BROADCOM_SAND256: |
| return true; |
| default: |
| return false; |
| } |
| case DRM_FORMAT_RGBX1010102: |
| case DRM_FORMAT_BGRX1010102: |
| case DRM_FORMAT_RGBA1010102: |
| case DRM_FORMAT_BGRA1010102: |
| case DRM_FORMAT_YUV422: |
| case DRM_FORMAT_YVU422: |
| case DRM_FORMAT_YUV420: |
| case DRM_FORMAT_YVU420: |
| case DRM_FORMAT_NV16: |
| case DRM_FORMAT_NV61: |
| default: |
| return (modifier == DRM_FORMAT_MOD_LINEAR); |
| } |
| } |
| |
| static const struct drm_plane_funcs vc4_plane_funcs = { |
| .update_plane = drm_atomic_helper_update_plane, |
| .disable_plane = drm_atomic_helper_disable_plane, |
| .destroy = vc4_plane_destroy, |
| .set_property = NULL, |
| .reset = vc4_plane_reset, |
| .atomic_duplicate_state = vc4_plane_duplicate_state, |
| .atomic_destroy_state = vc4_plane_destroy_state, |
| .format_mod_supported = vc4_format_mod_supported, |
| }; |
| |
| struct drm_plane *vc4_plane_init(struct drm_device *dev, |
| enum drm_plane_type type) |
| { |
| struct drm_plane *plane = NULL; |
| struct vc4_plane *vc4_plane; |
| u32 formats[ARRAY_SIZE(hvs_formats)]; |
| int ret = 0; |
| unsigned i; |
| static const uint64_t modifiers[] = { |
| DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED, |
| DRM_FORMAT_MOD_BROADCOM_SAND128, |
| DRM_FORMAT_MOD_BROADCOM_SAND64, |
| DRM_FORMAT_MOD_BROADCOM_SAND256, |
| DRM_FORMAT_MOD_LINEAR, |
| DRM_FORMAT_MOD_INVALID |
| }; |
| |
| vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), |
| GFP_KERNEL); |
| if (!vc4_plane) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) |
| formats[i] = hvs_formats[i].drm; |
| |
| plane = &vc4_plane->base; |
| ret = drm_universal_plane_init(dev, plane, 0, |
| &vc4_plane_funcs, |
| formats, ARRAY_SIZE(formats), |
| modifiers, type, NULL); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| drm_plane_helper_add(plane, &vc4_plane_helper_funcs); |
| |
| drm_plane_create_alpha_property(plane); |
| drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, |
| DRM_MODE_ROTATE_0 | |
| DRM_MODE_ROTATE_180 | |
| DRM_MODE_REFLECT_X | |
| DRM_MODE_REFLECT_Y); |
| |
| return plane; |
| } |
| |
| int vc4_plane_create_additional_planes(struct drm_device *drm) |
| { |
| struct drm_plane *cursor_plane; |
| struct drm_crtc *crtc; |
| unsigned int i; |
| |
| /* Set up some arbitrary number of planes. We're not limited |
| * by a set number of physical registers, just the space in |
| * the HVS (16k) and how small an plane can be (28 bytes). |
| * However, each plane we set up takes up some memory, and |
| * increases the cost of looping over planes, which atomic |
| * modesetting does quite a bit. As a result, we pick a |
| * modest number of planes to expose, that should hopefully |
| * still cover any sane usecase. |
| */ |
| for (i = 0; i < 16; i++) { |
| struct drm_plane *plane = |
| vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); |
| |
| if (IS_ERR(plane)) |
| continue; |
| |
| plane->possible_crtcs = |
| GENMASK(drm->mode_config.num_crtc - 1, 0); |
| } |
| |
| drm_for_each_crtc(crtc, drm) { |
| /* Set up the legacy cursor after overlay initialization, |
| * since we overlay planes on the CRTC in the order they were |
| * initialized. |
| */ |
| cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); |
| if (!IS_ERR(cursor_plane)) { |
| cursor_plane->possible_crtcs = drm_crtc_mask(crtc); |
| crtc->cursor = cursor_plane; |
| } |
| } |
| |
| return 0; |
| } |