blob: b6f656bcffb1788736b116bdf9c2eda042fda51f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sched.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <asm/unistd.h>
#include <as-layout.h>
#include <init.h>
#include <kern_util.h>
#include <mem.h>
#include <os.h>
#include <ptrace_user.h>
#include <registers.h>
#include <skas.h>
#include <sysdep/stub.h>
#include <linux/threads.h>
#include <timetravel.h>
#include "../internal.h"
int is_skas_winch(int pid, int fd, void *data)
{
return pid == getpgrp();
}
static const char *ptrace_reg_name(int idx)
{
#define R(n) case HOST_##n: return #n
switch (idx) {
#ifdef __x86_64__
R(BX);
R(CX);
R(DI);
R(SI);
R(DX);
R(BP);
R(AX);
R(R8);
R(R9);
R(R10);
R(R11);
R(R12);
R(R13);
R(R14);
R(R15);
R(ORIG_AX);
R(CS);
R(SS);
R(EFLAGS);
#elif defined(__i386__)
R(IP);
R(SP);
R(EFLAGS);
R(AX);
R(BX);
R(CX);
R(DX);
R(SI);
R(DI);
R(BP);
R(CS);
R(SS);
R(DS);
R(FS);
R(ES);
R(GS);
R(ORIG_AX);
#endif
}
return "";
}
static int ptrace_dump_regs(int pid)
{
unsigned long regs[MAX_REG_NR];
int i;
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
return -errno;
printk(UM_KERN_ERR "Stub registers -\n");
for (i = 0; i < ARRAY_SIZE(regs); i++) {
const char *regname = ptrace_reg_name(i);
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
}
return 0;
}
/*
* Signals that are OK to receive in the stub - we'll just continue it.
* SIGWINCH will happen when UML is inside a detached screen.
*/
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
/* Signals that the stub will finish with - anything else is an error */
#define STUB_DONE_MASK (1 << SIGTRAP)
void wait_stub_done(int pid)
{
int n, status, err;
while (1) {
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
if ((n < 0) || !WIFSTOPPED(status))
goto bad_wait;
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
break;
err = ptrace(PTRACE_CONT, pid, 0, 0);
if (err) {
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
}
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
return;
bad_wait:
err = ptrace_dump_regs(pid);
if (err)
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
-err);
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
__func__, pid, n, errno, status);
fatal_sigsegv();
}
extern unsigned long current_stub_stack(void);
static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
{
int err;
err = get_fp_registers(pid, aux_fp_regs);
if (err < 0) {
printk(UM_KERN_ERR "save_fp_registers returned %d\n",
err);
fatal_sigsegv();
}
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
if (err) {
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
"errno = %d\n", pid, errno);
fatal_sigsegv();
}
wait_stub_done(pid);
/*
* faultinfo is prepared by the stub_segv_handler at start of
* the stub stack page. We just have to copy it.
*/
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
err = put_fp_registers(pid, aux_fp_regs);
if (err < 0) {
printk(UM_KERN_ERR "put_fp_registers returned %d\n",
err);
fatal_sigsegv();
}
}
static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
{
get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
segv(regs->faultinfo, 0, 1, NULL);
}
static void handle_trap(int pid, struct uml_pt_regs *regs)
{
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
fatal_sigsegv();
handle_syscall(regs);
}
extern char __syscall_stub_start[];
/**
* userspace_tramp() - userspace trampoline
* @stack: pointer to the new userspace stack page
*
* The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
* This function will run on a temporary stack page.
* It ptrace()'es itself, then
* Two pages are mapped into the userspace address space:
* - STUB_CODE (with EXEC), which contains the skas stub code
* - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
* Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
* And last the process stops itself to give control to the UML kernel for this userspace process.
*
* Return: Always zero, otherwise the current userspace process is ended with non null exit() call
*/
static int userspace_tramp(void *stack)
{
struct sigaction sa;
void *addr;
int fd;
unsigned long long offset;
unsigned long segv_handler = STUB_CODE +
(unsigned long) stub_segv_handler -
(unsigned long) __syscall_stub_start;
ptrace(PTRACE_TRACEME, 0, 0, 0);
signal(SIGTERM, SIG_DFL);
signal(SIGWINCH, SIG_IGN);
fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
if (addr == MAP_FAILED) {
os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
STUB_CODE, errno);
exit(1);
}
fd = phys_mapping(uml_to_phys(stack), &offset);
addr = mmap((void *) STUB_DATA,
STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_SHARED, fd, offset);
if (addr == MAP_FAILED) {
os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
STUB_DATA, errno);
exit(1);
}
set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
sa.sa_sigaction = (void *) segv_handler;
sa.sa_restorer = NULL;
if (sigaction(SIGSEGV, &sa, NULL) < 0) {
os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
__func__, errno);
exit(1);
}
kill(os_getpid(), SIGSTOP);
return 0;
}
int userspace_pid[NR_CPUS];
/**
* start_userspace() - prepare a new userspace process
* @stub_stack: pointer to the stub stack.
*
* Setups a new temporary stack page that is used while userspace_tramp() runs
* Clones the kernel process into a new userspace process, with FDs only.
*
* Return: When positive: the process id of the new userspace process,
* when negative: an error number.
* FIXME: can PIDs become negative?!
*/
int start_userspace(unsigned long stub_stack)
{
void *stack;
unsigned long sp;
int pid, status, n, flags, err;
/* setup a temporary stack page */
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (stack == MAP_FAILED) {
err = -errno;
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
__func__, errno);
return err;
}
/* set stack pointer to the end of the stack page, so it can grow downwards */
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
flags = CLONE_FILES | SIGCHLD;
/* clone into new userspace process */
pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
if (pid < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
__func__, errno);
return err;
}
do {
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
if (n < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
err = -EINVAL;
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
__func__, status);
goto out_kill;
}
if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
return pid;
out_kill:
os_kill_ptraced_process(pid, 1);
return err;
}
void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
{
int err, status, op, pid = userspace_pid[0];
siginfo_t si;
/* Handle any immediate reschedules or signals */
interrupt_end();
while (1) {
time_travel_print_bc_msg();
current_mm_sync();
/* Flush out any pending syscalls */
err = syscall_stub_flush(current_mm_id());
if (err) {
if (err == -ENOMEM)
report_enomem();
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
__func__, -err);
fatal_sigsegv();
}
/*
* This can legitimately fail if the process loads a
* bogus value into a segment register. It will
* segfault and PTRACE_GETREGS will read that value
* out of the process. However, PTRACE_SETREGS will
* fail. In this case, there is nothing to do but
* just kill the process.
*/
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (put_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (singlestepping())
op = PTRACE_SYSEMU_SINGLESTEP;
else
op = PTRACE_SYSEMU;
if (ptrace(op, pid, 0, 0)) {
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
__func__, op, errno);
fatal_sigsegv();
}
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
if (err < 0) {
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
regs->is_user = 1;
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (get_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
if (WIFSTOPPED(status)) {
int sig = WSTOPSIG(status);
/* These signal handlers need the si argument.
* The SIGIO and SIGALARM handlers which constitute the
* majority of invocations, do not use it.
*/
switch (sig) {
case SIGSEGV:
case SIGTRAP:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
break;
}
switch (sig) {
case SIGSEGV:
if (PTRACE_FULL_FAULTINFO) {
get_skas_faultinfo(pid,
&regs->faultinfo, aux_fp_regs);
(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
regs);
}
else handle_segv(pid, regs, aux_fp_regs);
break;
case SIGTRAP + 0x80:
handle_trap(pid, regs);
break;
case SIGTRAP:
relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
break;
case SIGALRM:
break;
case SIGIO:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
block_signals_trace();
(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
unblock_signals_trace();
break;
default:
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
__func__, sig);
fatal_sigsegv();
}
pid = userspace_pid[0];
interrupt_end();
/* Avoid -ERESTARTSYS handling in host */
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
PT_SYSCALL_NR(regs->gp) = -1;
}
}
}
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
{
(*buf)[0].JB_IP = (unsigned long) handler;
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
sizeof(void *);
}
#define INIT_JMP_NEW_THREAD 0
#define INIT_JMP_CALLBACK 1
#define INIT_JMP_HALT 2
#define INIT_JMP_REBOOT 3
void switch_threads(jmp_buf *me, jmp_buf *you)
{
if (UML_SETJMP(me) == 0)
UML_LONGJMP(you, 1);
}
static jmp_buf initial_jmpbuf;
/* XXX Make these percpu */
static void (*cb_proc)(void *arg);
static void *cb_arg;
static jmp_buf *cb_back;
int start_idle_thread(void *stack, jmp_buf *switch_buf)
{
int n;
set_handler(SIGWINCH);
/*
* Can't use UML_SETJMP or UML_LONGJMP here because they save
* and restore signals, with the possible side-effect of
* trying to handle any signals which came when they were
* blocked, which can't be done on this stack.
* Signals must be blocked when jumping back here and restored
* after returning to the jumper.
*/
n = setjmp(initial_jmpbuf);
switch (n) {
case INIT_JMP_NEW_THREAD:
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
(*switch_buf)[0].JB_SP = (unsigned long) stack +
UM_THREAD_SIZE - sizeof(void *);
break;
case INIT_JMP_CALLBACK:
(*cb_proc)(cb_arg);
longjmp(*cb_back, 1);
break;
case INIT_JMP_HALT:
kmalloc_ok = 0;
return 0;
case INIT_JMP_REBOOT:
kmalloc_ok = 0;
return 1;
default:
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
__func__, n);
fatal_sigsegv();
}
longjmp(*switch_buf, 1);
/* unreachable */
printk(UM_KERN_ERR "impossible long jump!");
fatal_sigsegv();
return 0;
}
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
{
jmp_buf here;
cb_proc = proc;
cb_arg = arg;
cb_back = &here;
block_signals_trace();
if (UML_SETJMP(&here) == 0)
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
unblock_signals_trace();
cb_proc = NULL;
cb_arg = NULL;
cb_back = NULL;
}
void halt_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
}
static bool noreboot;
static int __init noreboot_cmd_param(char *str, int *add)
{
noreboot = true;
return 0;
}
__uml_setup("noreboot", noreboot_cmd_param,
"noreboot\n"
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
" crashes in CI\n");
void reboot_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
}
void __switch_mm(struct mm_id *mm_idp)
{
userspace_pid[0] = mm_idp->pid;
}