| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/gfp.h> |
| |
| #include "smumgr.h" |
| #include "tonga_smumgr.h" |
| #include "pp_debug.h" |
| #include "smu_ucode_xfer_vi.h" |
| #include "tonga_ppsmc.h" |
| #include "smu/smu_7_1_2_d.h" |
| #include "smu/smu_7_1_2_sh_mask.h" |
| #include "cgs_common.h" |
| |
| #define TONGA_SMC_SIZE 0x20000 |
| #define BUFFER_SIZE 80000 |
| #define MAX_STRING_SIZE 15 |
| #define BUFFER_SIZETWO 131072 /*128 *1024*/ |
| |
| /** |
| * Set the address for reading/writing the SMC SRAM space. |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param smcAddress the address in the SMC RAM to access. |
| */ |
| static int tonga_set_smc_sram_address(struct pp_smumgr *smumgr, |
| uint32_t smcAddress, uint32_t limit) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| PP_ASSERT_WITH_CODE((0 == (3 & smcAddress)), |
| "SMC address must be 4 byte aligned.", |
| return -1;); |
| |
| PP_ASSERT_WITH_CODE((limit > (smcAddress + 3)), |
| "SMC address is beyond the SMC RAM area.", |
| return -1;); |
| |
| cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, smcAddress); |
| SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * Copy bytes from an array into the SMC RAM space. |
| * |
| * @param smumgr the address of the powerplay SMU manager. |
| * @param smcStartAddress the start address in the SMC RAM to copy bytes to. |
| * @param src the byte array to copy the bytes from. |
| * @param byteCount the number of bytes to copy. |
| */ |
| int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr, |
| uint32_t smcStartAddress, const uint8_t *src, |
| uint32_t byteCount, uint32_t limit) |
| { |
| uint32_t addr; |
| uint32_t data, orig_data; |
| int result = 0; |
| uint32_t extra_shift; |
| |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| PP_ASSERT_WITH_CODE((0 == (3 & smcStartAddress)), |
| "SMC address must be 4 byte aligned.", |
| return 0;); |
| |
| PP_ASSERT_WITH_CODE((limit > (smcStartAddress + byteCount)), |
| "SMC address is beyond the SMC RAM area.", |
| return 0;); |
| |
| addr = smcStartAddress; |
| |
| while (byteCount >= 4) { |
| /* |
| * Bytes are written into the |
| * SMC address space with the MSB first |
| */ |
| data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3]; |
| |
| result = tonga_set_smc_sram_address(smumgr, addr, limit); |
| |
| if (result) |
| goto out; |
| |
| cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data); |
| |
| src += 4; |
| byteCount -= 4; |
| addr += 4; |
| } |
| |
| if (0 != byteCount) { |
| /* Now write odd bytes left, do a read modify write cycle */ |
| data = 0; |
| |
| result = tonga_set_smc_sram_address(smumgr, addr, limit); |
| if (result) |
| goto out; |
| |
| orig_data = cgs_read_register(smumgr->device, |
| mmSMC_IND_DATA_0); |
| extra_shift = 8 * (4 - byteCount); |
| |
| while (byteCount > 0) { |
| data = (data << 8) + *src++; |
| byteCount--; |
| } |
| |
| data <<= extra_shift; |
| data |= (orig_data & ~((~0UL) << extra_shift)); |
| |
| result = tonga_set_smc_sram_address(smumgr, addr, limit); |
| if (result) |
| goto out; |
| |
| cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data); |
| } |
| |
| out: |
| return result; |
| } |
| |
| |
| int tonga_program_jump_on_start(struct pp_smumgr *smumgr) |
| { |
| static const unsigned char pData[] = { 0xE0, 0x00, 0x80, 0x40 }; |
| |
| tonga_copy_bytes_to_smc(smumgr, 0x0, pData, 4, sizeof(pData)+1); |
| |
| return 0; |
| } |
| |
| /** |
| * Return if the SMC is currently running. |
| * |
| * @param smumgr the address of the powerplay hardware manager. |
| */ |
| static int tonga_is_smc_ram_running(struct pp_smumgr *smumgr) |
| { |
| return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, ck_disable)) |
| && (0x20100 <= cgs_read_ind_register(smumgr->device, |
| CGS_IND_REG__SMC, ixSMC_PC_C))); |
| } |
| |
| static int tonga_send_msg_to_smc_offset(struct pp_smumgr *smumgr) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| |
| cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000); |
| cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test); |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * Send a message to the SMC, and wait for its response. |
| * |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param msg the message to send. |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| if (!tonga_is_smc_ram_running(smumgr)) |
| return -1; |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| PP_ASSERT_WITH_CODE( |
| 1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP), |
| "Failed to send Previous Message.", |
| ); |
| |
| cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg); |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| PP_ASSERT_WITH_CODE( |
| 1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP), |
| "Failed to send Message.", |
| ); |
| |
| return 0; |
| } |
| |
| /* |
| * Send a message to the SMC, and do not wait for its response. |
| * |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param msg the message to send. |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_send_msg_to_smc_without_waiting |
| (struct pp_smumgr *smumgr, uint16_t msg) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| PP_ASSERT_WITH_CODE( |
| 1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP), |
| "Failed to send Previous Message.", |
| ); |
| cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg); |
| |
| return 0; |
| } |
| |
| /* |
| * Send a message to the SMC with parameter |
| * |
| * @param smumgr: the address of the powerplay hardware manager. |
| * @param msg: the message to send. |
| * @param parameter: the parameter to send |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr, |
| uint16_t msg, uint32_t parameter) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| if (!tonga_is_smc_ram_running(smumgr)) |
| return PPSMC_Result_Failed; |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter); |
| |
| return tonga_send_msg_to_smc(smumgr, msg); |
| } |
| |
| /* |
| * Send a message to the SMC with parameter, do not wait for response |
| * |
| * @param smumgr: the address of the powerplay hardware manager. |
| * @param msg: the message to send. |
| * @param parameter: the parameter to send |
| * @return The response that came from the SMC. |
| */ |
| static int tonga_send_msg_to_smc_with_parameter_without_waiting( |
| struct pp_smumgr *smumgr, |
| uint16_t msg, uint32_t parameter) |
| { |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0); |
| |
| cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter); |
| |
| return tonga_send_msg_to_smc_without_waiting(smumgr, msg); |
| } |
| |
| /* |
| * Read a 32bit value from the SMC SRAM space. |
| * ALL PARAMETERS ARE IN HOST BYTE ORDER. |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param smcAddress the address in the SMC RAM to access. |
| * @param value and output parameter for the data read from the SMC SRAM. |
| */ |
| int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr, |
| uint32_t smcAddress, uint32_t *value, |
| uint32_t limit) |
| { |
| int result; |
| |
| result = tonga_set_smc_sram_address(smumgr, smcAddress, limit); |
| |
| if (0 != result) |
| return result; |
| |
| *value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_0); |
| |
| return 0; |
| } |
| |
| /* |
| * Write a 32bit value to the SMC SRAM space. |
| * ALL PARAMETERS ARE IN HOST BYTE ORDER. |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param smcAddress the address in the SMC RAM to access. |
| * @param value to write to the SMC SRAM. |
| */ |
| int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr, |
| uint32_t smcAddress, uint32_t value, |
| uint32_t limit) |
| { |
| int result; |
| |
| result = tonga_set_smc_sram_address(smumgr, smcAddress, limit); |
| |
| if (0 != result) |
| return result; |
| |
| cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, value); |
| |
| return 0; |
| } |
| |
| static int tonga_smu_fini(struct pp_smumgr *smumgr) |
| { |
| if (smumgr->backend != NULL) { |
| kfree(smumgr->backend); |
| smumgr->backend = NULL; |
| } |
| return 0; |
| } |
| |
| static enum cgs_ucode_id tonga_convert_fw_type_to_cgs(uint32_t fw_type) |
| { |
| enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM; |
| |
| switch (fw_type) { |
| case UCODE_ID_SMU: |
| result = CGS_UCODE_ID_SMU; |
| break; |
| case UCODE_ID_SDMA0: |
| result = CGS_UCODE_ID_SDMA0; |
| break; |
| case UCODE_ID_SDMA1: |
| result = CGS_UCODE_ID_SDMA1; |
| break; |
| case UCODE_ID_CP_CE: |
| result = CGS_UCODE_ID_CP_CE; |
| break; |
| case UCODE_ID_CP_PFP: |
| result = CGS_UCODE_ID_CP_PFP; |
| break; |
| case UCODE_ID_CP_ME: |
| result = CGS_UCODE_ID_CP_ME; |
| break; |
| case UCODE_ID_CP_MEC: |
| result = CGS_UCODE_ID_CP_MEC; |
| break; |
| case UCODE_ID_CP_MEC_JT1: |
| result = CGS_UCODE_ID_CP_MEC_JT1; |
| break; |
| case UCODE_ID_CP_MEC_JT2: |
| result = CGS_UCODE_ID_CP_MEC_JT2; |
| break; |
| case UCODE_ID_RLC_G: |
| result = CGS_UCODE_ID_RLC_G; |
| break; |
| default: |
| break; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Convert the PPIRI firmware type to SMU type mask. |
| * For MEC, we need to check all MEC related type |
| */ |
| static uint16_t tonga_get_mask_for_firmware_type(uint16_t firmwareType) |
| { |
| uint16_t result = 0; |
| |
| switch (firmwareType) { |
| case UCODE_ID_SDMA0: |
| result = UCODE_ID_SDMA0_MASK; |
| break; |
| case UCODE_ID_SDMA1: |
| result = UCODE_ID_SDMA1_MASK; |
| break; |
| case UCODE_ID_CP_CE: |
| result = UCODE_ID_CP_CE_MASK; |
| break; |
| case UCODE_ID_CP_PFP: |
| result = UCODE_ID_CP_PFP_MASK; |
| break; |
| case UCODE_ID_CP_ME: |
| result = UCODE_ID_CP_ME_MASK; |
| break; |
| case UCODE_ID_CP_MEC: |
| case UCODE_ID_CP_MEC_JT1: |
| case UCODE_ID_CP_MEC_JT2: |
| result = UCODE_ID_CP_MEC_MASK; |
| break; |
| case UCODE_ID_RLC_G: |
| result = UCODE_ID_RLC_G_MASK; |
| break; |
| default: |
| break; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Check if the FW has been loaded, |
| * SMU will not return if loading has not finished. |
| */ |
| static int tonga_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fwType) |
| { |
| uint16_t fwMask = tonga_get_mask_for_firmware_type(fwType); |
| |
| if (0 != SMUM_WAIT_VFPF_INDIRECT_REGISTER(smumgr, SMC_IND, |
| SOFT_REGISTERS_TABLE_28, fwMask, fwMask)) { |
| printk(KERN_ERR "[ powerplay ] check firmware loading failed\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Populate one firmware image to the data structure */ |
| static int tonga_populate_single_firmware_entry(struct pp_smumgr *smumgr, |
| uint16_t firmware_type, |
| struct SMU_Entry *pentry) |
| { |
| int result; |
| struct cgs_firmware_info info = {0}; |
| |
| result = cgs_get_firmware_info( |
| smumgr->device, |
| tonga_convert_fw_type_to_cgs(firmware_type), |
| &info); |
| |
| if (result == 0) { |
| pentry->version = 0; |
| pentry->id = (uint16_t)firmware_type; |
| pentry->image_addr_high = smu_upper_32_bits(info.mc_addr); |
| pentry->image_addr_low = smu_lower_32_bits(info.mc_addr); |
| pentry->meta_data_addr_high = 0; |
| pentry->meta_data_addr_low = 0; |
| pentry->data_size_byte = info.image_size; |
| pentry->num_register_entries = 0; |
| |
| if (firmware_type == UCODE_ID_RLC_G) |
| pentry->flags = 1; |
| else |
| pentry->flags = 0; |
| } else { |
| return result; |
| } |
| |
| return result; |
| } |
| |
| static int tonga_request_smu_reload_fw(struct pp_smumgr *smumgr) |
| { |
| struct tonga_smumgr *tonga_smu = |
| (struct tonga_smumgr *)(smumgr->backend); |
| uint16_t fw_to_load; |
| int result = 0; |
| struct SMU_DRAMData_TOC *toc; |
| /** |
| * First time this gets called during SmuMgr init, |
| * we haven't processed SMU header file yet, |
| * so Soft Register Start offset is unknown. |
| * However, for this case, UcodeLoadStatus is already 0, |
| * so we can skip this if the Soft Registers Start offset is 0. |
| */ |
| cgs_write_ind_register(smumgr->device, |
| CGS_IND_REG__SMC, ixSOFT_REGISTERS_TABLE_28, 0); |
| |
| tonga_send_msg_to_smc_with_parameter(smumgr, |
| PPSMC_MSG_SMU_DRAM_ADDR_HI, |
| tonga_smu->smu_buffer.mc_addr_high); |
| tonga_send_msg_to_smc_with_parameter(smumgr, |
| PPSMC_MSG_SMU_DRAM_ADDR_LO, |
| tonga_smu->smu_buffer.mc_addr_low); |
| |
| toc = (struct SMU_DRAMData_TOC *)tonga_smu->pHeader; |
| toc->num_entries = 0; |
| toc->structure_version = 1; |
| |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry(smumgr, |
| UCODE_ID_RLC_G, |
| &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", |
| return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry(smumgr, |
| UCODE_ID_CP_CE, |
| &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", |
| return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_populate_single_firmware_entry |
| (smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]), |
| "Failed to Get Firmware Entry.\n", return -1); |
| |
| tonga_send_msg_to_smc_with_parameter(smumgr, |
| PPSMC_MSG_DRV_DRAM_ADDR_HI, |
| tonga_smu->header_buffer.mc_addr_high); |
| tonga_send_msg_to_smc_with_parameter(smumgr, |
| PPSMC_MSG_DRV_DRAM_ADDR_LO, |
| tonga_smu->header_buffer.mc_addr_low); |
| |
| fw_to_load = UCODE_ID_RLC_G_MASK |
| + UCODE_ID_SDMA0_MASK |
| + UCODE_ID_SDMA1_MASK |
| + UCODE_ID_CP_CE_MASK |
| + UCODE_ID_CP_ME_MASK |
| + UCODE_ID_CP_PFP_MASK |
| + UCODE_ID_CP_MEC_MASK; |
| |
| PP_ASSERT_WITH_CODE( |
| 0 == tonga_send_msg_to_smc_with_parameter_without_waiting( |
| smumgr, PPSMC_MSG_LoadUcodes, fw_to_load), |
| "Fail to Request SMU Load uCode", return 0); |
| |
| return result; |
| } |
| |
| static int tonga_request_smu_load_specific_fw(struct pp_smumgr *smumgr, |
| uint32_t firmwareType) |
| { |
| return 0; |
| } |
| |
| /** |
| * Upload the SMC firmware to the SMC microcontroller. |
| * |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param pFirmware the data structure containing the various sections of the firmware. |
| */ |
| static int tonga_smu_upload_firmware_image(struct pp_smumgr *smumgr) |
| { |
| const uint8_t *src; |
| uint32_t byte_count; |
| uint32_t *data; |
| struct cgs_firmware_info info = {0}; |
| |
| if (smumgr == NULL || smumgr->device == NULL) |
| return -EINVAL; |
| |
| cgs_get_firmware_info(smumgr->device, |
| tonga_convert_fw_type_to_cgs(UCODE_ID_SMU), &info); |
| |
| if (info.image_size & 3) { |
| printk(KERN_ERR "[ powerplay ] SMC ucode is not 4 bytes aligned\n"); |
| return -EINVAL; |
| } |
| |
| if (info.image_size > TONGA_SMC_SIZE) { |
| printk(KERN_ERR "[ powerplay ] SMC address is beyond the SMC RAM area\n"); |
| return -EINVAL; |
| } |
| |
| cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, 0x20000); |
| SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); |
| |
| byte_count = info.image_size; |
| src = (const uint8_t *)info.kptr; |
| |
| data = (uint32_t *)src; |
| for (; byte_count >= 4; data++, byte_count -= 4) |
| cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data[0]); |
| |
| SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); |
| |
| return 0; |
| } |
| |
| static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr) |
| { |
| int result; |
| |
| /* Assert reset */ |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
| |
| result = tonga_smu_upload_firmware_image(smumgr); |
| if (result) |
| return result; |
| |
| /* Clear status */ |
| cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, |
| ixSMU_STATUS, 0); |
| |
| /* Enable clock */ |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
| |
| /* De-assert reset */ |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| /* Set SMU Auto Start */ |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMU_INPUT_DATA, AUTO_START, 1); |
| |
| /* Clear firmware interrupt enable flag */ |
| cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, |
| ixFIRMWARE_FLAGS, 0); |
| |
| SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, |
| RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); |
| |
| /** |
| * Call Test SMU message with 0x20000 offset to trigger SMU start |
| */ |
| tonga_send_msg_to_smc_offset(smumgr); |
| |
| /* Wait for done bit to be set */ |
| SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, |
| SMU_STATUS, SMU_DONE, 0); |
| |
| /* Check pass/failed indicator */ |
| if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, |
| CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) { |
| printk(KERN_ERR "[ powerplay ] SMU Firmware start failed\n"); |
| return -EINVAL; |
| } |
| |
| /* Wait for firmware to initialize */ |
| SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, |
| FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
| |
| return 0; |
| } |
| |
| |
| static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr) |
| { |
| int result = 0; |
| |
| /* wait for smc boot up */ |
| SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, |
| RCU_UC_EVENTS, boot_seq_done, 0); |
| |
| /*Clear firmware interrupt enable flag*/ |
| cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC, |
| ixFIRMWARE_FLAGS, 0); |
| |
| |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
| |
| result = tonga_smu_upload_firmware_image(smumgr); |
| |
| if (result != 0) |
| return result; |
| |
| /* Set smc instruct start point at 0x0 */ |
| tonga_program_jump_on_start(smumgr); |
| |
| |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
| |
| /*De-assert reset*/ |
| SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| /* Wait for firmware to initialize */ |
| SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND, |
| FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
| |
| return result; |
| } |
| |
| static int tonga_start_smu(struct pp_smumgr *smumgr) |
| { |
| int result; |
| |
| /* Only start SMC if SMC RAM is not running */ |
| if (!tonga_is_smc_ram_running(smumgr)) { |
| /*Check if SMU is running in protected mode*/ |
| if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC, |
| SMU_FIRMWARE, SMU_MODE)) { |
| result = tonga_start_in_non_protection_mode(smumgr); |
| if (result) |
| return result; |
| } else { |
| result = tonga_start_in_protection_mode(smumgr); |
| if (result) |
| return result; |
| } |
| } |
| |
| result = tonga_request_smu_reload_fw(smumgr); |
| |
| return result; |
| } |
| |
| /** |
| * Write a 32bit value to the SMC SRAM space. |
| * ALL PARAMETERS ARE IN HOST BYTE ORDER. |
| * @param smumgr the address of the powerplay hardware manager. |
| * @param smcAddress the address in the SMC RAM to access. |
| * @param value to write to the SMC SRAM. |
| */ |
| static int tonga_smu_init(struct pp_smumgr *smumgr) |
| { |
| struct tonga_smumgr *tonga_smu; |
| uint8_t *internal_buf; |
| uint64_t mc_addr = 0; |
| /* Allocate memory for backend private data */ |
| tonga_smu = (struct tonga_smumgr *)(smumgr->backend); |
| tonga_smu->header_buffer.data_size = |
| ((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096; |
| tonga_smu->smu_buffer.data_size = 200*4096; |
| |
| smu_allocate_memory(smumgr->device, |
| tonga_smu->header_buffer.data_size, |
| CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB, |
| PAGE_SIZE, |
| &mc_addr, |
| &tonga_smu->header_buffer.kaddr, |
| &tonga_smu->header_buffer.handle); |
| |
| tonga_smu->pHeader = tonga_smu->header_buffer.kaddr; |
| tonga_smu->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); |
| tonga_smu->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); |
| |
| PP_ASSERT_WITH_CODE((NULL != tonga_smu->pHeader), |
| "Out of memory.", |
| kfree(smumgr->backend); |
| cgs_free_gpu_mem(smumgr->device, |
| (cgs_handle_t)tonga_smu->header_buffer.handle); |
| return -1); |
| |
| smu_allocate_memory(smumgr->device, |
| tonga_smu->smu_buffer.data_size, |
| CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB, |
| PAGE_SIZE, |
| &mc_addr, |
| &tonga_smu->smu_buffer.kaddr, |
| &tonga_smu->smu_buffer.handle); |
| |
| internal_buf = tonga_smu->smu_buffer.kaddr; |
| tonga_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr); |
| tonga_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr); |
| |
| PP_ASSERT_WITH_CODE((NULL != internal_buf), |
| "Out of memory.", |
| kfree(smumgr->backend); |
| cgs_free_gpu_mem(smumgr->device, |
| (cgs_handle_t)tonga_smu->smu_buffer.handle); |
| return -1;); |
| |
| return 0; |
| } |
| |
| static const struct pp_smumgr_func tonga_smu_funcs = { |
| .smu_init = &tonga_smu_init, |
| .smu_fini = &tonga_smu_fini, |
| .start_smu = &tonga_start_smu, |
| .check_fw_load_finish = &tonga_check_fw_load_finish, |
| .request_smu_load_fw = &tonga_request_smu_reload_fw, |
| .request_smu_load_specific_fw = &tonga_request_smu_load_specific_fw, |
| .send_msg_to_smc = &tonga_send_msg_to_smc, |
| .send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter, |
| .download_pptable_settings = NULL, |
| .upload_pptable_settings = NULL, |
| }; |
| |
| int tonga_smum_init(struct pp_smumgr *smumgr) |
| { |
| struct tonga_smumgr *tonga_smu = NULL; |
| |
| tonga_smu = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL); |
| |
| if (tonga_smu == NULL) |
| return -ENOMEM; |
| |
| smumgr->backend = tonga_smu; |
| smumgr->smumgr_funcs = &tonga_smu_funcs; |
| |
| return 0; |
| } |