| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/net.h> |
| #include <rdma/ib_smi.h> |
| |
| #include "hfi.h" |
| #include "mad.h" |
| #include "verbs_txreq.h" |
| #include "qp.h" |
| |
| /** |
| * ud_loopback - handle send on loopback QPs |
| * @sqp: the sending QP |
| * @swqe: the send work request |
| * |
| * This is called from hfi1_make_ud_req() to forward a WQE addressed |
| * to the same HFI. |
| * Note that the receive interrupt handler may be calling hfi1_ud_rcv() |
| * while this is being called. |
| */ |
| static void ud_loopback(struct rvt_qp *sqp, struct rvt_swqe *swqe) |
| { |
| struct hfi1_ibport *ibp = to_iport(sqp->ibqp.device, sqp->port_num); |
| struct hfi1_pportdata *ppd; |
| struct rvt_qp *qp; |
| struct rdma_ah_attr *ah_attr; |
| unsigned long flags; |
| struct rvt_sge_state ssge; |
| struct rvt_sge *sge; |
| struct ib_wc wc; |
| u32 length; |
| enum ib_qp_type sqptype, dqptype; |
| |
| rcu_read_lock(); |
| |
| qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), &ibp->rvp, |
| swqe->ud_wr.remote_qpn); |
| if (!qp) { |
| ibp->rvp.n_pkt_drops++; |
| rcu_read_unlock(); |
| return; |
| } |
| |
| sqptype = sqp->ibqp.qp_type == IB_QPT_GSI ? |
| IB_QPT_UD : sqp->ibqp.qp_type; |
| dqptype = qp->ibqp.qp_type == IB_QPT_GSI ? |
| IB_QPT_UD : qp->ibqp.qp_type; |
| |
| if (dqptype != sqptype || |
| !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { |
| ibp->rvp.n_pkt_drops++; |
| goto drop; |
| } |
| |
| ah_attr = &ibah_to_rvtah(swqe->ud_wr.ah)->attr; |
| ppd = ppd_from_ibp(ibp); |
| |
| if (qp->ibqp.qp_num > 1) { |
| u16 pkey; |
| u16 slid; |
| u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)]; |
| |
| pkey = hfi1_get_pkey(ibp, sqp->s_pkey_index); |
| slid = ppd->lid | (rdma_ah_get_path_bits(ah_attr) & |
| ((1 << ppd->lmc) - 1)); |
| if (unlikely(ingress_pkey_check(ppd, pkey, sc5, |
| qp->s_pkey_index, slid))) { |
| hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY, pkey, |
| rdma_ah_get_sl(ah_attr), |
| sqp->ibqp.qp_num, qp->ibqp.qp_num, |
| slid, rdma_ah_get_dlid(ah_attr)); |
| goto drop; |
| } |
| } |
| |
| /* |
| * Check that the qkey matches (except for QP0, see 9.6.1.4.1). |
| * Qkeys with the high order bit set mean use the |
| * qkey from the QP context instead of the WR (see 10.2.5). |
| */ |
| if (qp->ibqp.qp_num) { |
| u32 qkey; |
| |
| qkey = (int)swqe->ud_wr.remote_qkey < 0 ? |
| sqp->qkey : swqe->ud_wr.remote_qkey; |
| if (unlikely(qkey != qp->qkey)) { |
| u16 lid; |
| |
| lid = ppd->lid | (rdma_ah_get_path_bits(ah_attr) & |
| ((1 << ppd->lmc) - 1)); |
| hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_Q_KEY, qkey, |
| rdma_ah_get_sl(ah_attr), |
| sqp->ibqp.qp_num, qp->ibqp.qp_num, |
| lid, |
| rdma_ah_get_dlid(ah_attr)); |
| goto drop; |
| } |
| } |
| |
| /* |
| * A GRH is expected to precede the data even if not |
| * present on the wire. |
| */ |
| length = swqe->length; |
| memset(&wc, 0, sizeof(wc)); |
| wc.byte_len = length + sizeof(struct ib_grh); |
| |
| if (swqe->wr.opcode == IB_WR_SEND_WITH_IMM) { |
| wc.wc_flags = IB_WC_WITH_IMM; |
| wc.ex.imm_data = swqe->wr.ex.imm_data; |
| } |
| |
| spin_lock_irqsave(&qp->r_lock, flags); |
| |
| /* |
| * Get the next work request entry to find where to put the data. |
| */ |
| if (qp->r_flags & RVT_R_REUSE_SGE) { |
| qp->r_flags &= ~RVT_R_REUSE_SGE; |
| } else { |
| int ret; |
| |
| ret = hfi1_rvt_get_rwqe(qp, 0); |
| if (ret < 0) { |
| rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); |
| goto bail_unlock; |
| } |
| if (!ret) { |
| if (qp->ibqp.qp_num == 0) |
| ibp->rvp.n_vl15_dropped++; |
| goto bail_unlock; |
| } |
| } |
| /* Silently drop packets which are too big. */ |
| if (unlikely(wc.byte_len > qp->r_len)) { |
| qp->r_flags |= RVT_R_REUSE_SGE; |
| ibp->rvp.n_pkt_drops++; |
| goto bail_unlock; |
| } |
| |
| if (rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH) { |
| struct ib_grh grh; |
| const struct ib_global_route *grd = rdma_ah_read_grh(ah_attr); |
| |
| hfi1_make_grh(ibp, &grh, grd, 0, 0); |
| hfi1_copy_sge(&qp->r_sge, &grh, |
| sizeof(grh), true, false); |
| wc.wc_flags |= IB_WC_GRH; |
| } else { |
| rvt_skip_sge(&qp->r_sge, sizeof(struct ib_grh), true); |
| } |
| ssge.sg_list = swqe->sg_list + 1; |
| ssge.sge = *swqe->sg_list; |
| ssge.num_sge = swqe->wr.num_sge; |
| sge = &ssge.sge; |
| while (length) { |
| u32 len = sge->length; |
| |
| if (len > length) |
| len = length; |
| if (len > sge->sge_length) |
| len = sge->sge_length; |
| WARN_ON_ONCE(len == 0); |
| hfi1_copy_sge(&qp->r_sge, sge->vaddr, len, true, false); |
| sge->vaddr += len; |
| sge->length -= len; |
| sge->sge_length -= len; |
| if (sge->sge_length == 0) { |
| if (--ssge.num_sge) |
| *sge = *ssge.sg_list++; |
| } else if (sge->length == 0 && sge->mr->lkey) { |
| if (++sge->n >= RVT_SEGSZ) { |
| if (++sge->m >= sge->mr->mapsz) |
| break; |
| sge->n = 0; |
| } |
| sge->vaddr = |
| sge->mr->map[sge->m]->segs[sge->n].vaddr; |
| sge->length = |
| sge->mr->map[sge->m]->segs[sge->n].length; |
| } |
| length -= len; |
| } |
| rvt_put_ss(&qp->r_sge); |
| if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) |
| goto bail_unlock; |
| wc.wr_id = qp->r_wr_id; |
| wc.status = IB_WC_SUCCESS; |
| wc.opcode = IB_WC_RECV; |
| wc.qp = &qp->ibqp; |
| wc.src_qp = sqp->ibqp.qp_num; |
| if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) { |
| if (sqp->ibqp.qp_type == IB_QPT_GSI || |
| sqp->ibqp.qp_type == IB_QPT_SMI) |
| wc.pkey_index = swqe->ud_wr.pkey_index; |
| else |
| wc.pkey_index = sqp->s_pkey_index; |
| } else { |
| wc.pkey_index = 0; |
| } |
| wc.slid = ppd->lid | (rdma_ah_get_path_bits(ah_attr) & |
| ((1 << ppd->lmc) - 1)); |
| /* Check for loopback when the port lid is not set */ |
| if (wc.slid == 0 && sqp->ibqp.qp_type == IB_QPT_GSI) |
| wc.slid = be16_to_cpu(IB_LID_PERMISSIVE); |
| wc.sl = rdma_ah_get_sl(ah_attr); |
| wc.dlid_path_bits = rdma_ah_get_dlid(ah_attr) & ((1 << ppd->lmc) - 1); |
| wc.port_num = qp->port_num; |
| /* Signal completion event if the solicited bit is set. */ |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, |
| swqe->wr.send_flags & IB_SEND_SOLICITED); |
| ibp->rvp.n_loop_pkts++; |
| bail_unlock: |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| drop: |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * hfi1_make_ud_req - construct a UD request packet |
| * @qp: the QP |
| * |
| * Assume s_lock is held. |
| * |
| * Return 1 if constructed; otherwise, return 0. |
| */ |
| int hfi1_make_ud_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct ib_other_headers *ohdr; |
| struct rdma_ah_attr *ah_attr; |
| struct hfi1_pportdata *ppd; |
| struct hfi1_ibport *ibp; |
| struct rvt_swqe *wqe; |
| u32 nwords; |
| u32 extra_bytes; |
| u32 bth0; |
| u16 lrh0; |
| u16 lid; |
| int next_cur; |
| u8 sc5; |
| |
| ps->s_txreq = get_txreq(ps->dev, qp); |
| if (IS_ERR(ps->s_txreq)) |
| goto bail_no_tx; |
| |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK)) { |
| if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND)) |
| goto bail; |
| /* We are in the error state, flush the work request. */ |
| smp_read_barrier_depends(); /* see post_one_send */ |
| if (qp->s_last == ACCESS_ONCE(qp->s_head)) |
| goto bail; |
| /* If DMAs are in progress, we can't flush immediately. */ |
| if (iowait_sdma_pending(&priv->s_iowait)) { |
| qp->s_flags |= RVT_S_WAIT_DMA; |
| goto bail; |
| } |
| wqe = rvt_get_swqe_ptr(qp, qp->s_last); |
| hfi1_send_complete(qp, wqe, IB_WC_WR_FLUSH_ERR); |
| goto done_free_tx; |
| } |
| |
| /* see post_one_send() */ |
| smp_read_barrier_depends(); |
| if (qp->s_cur == ACCESS_ONCE(qp->s_head)) |
| goto bail; |
| |
| wqe = rvt_get_swqe_ptr(qp, qp->s_cur); |
| next_cur = qp->s_cur + 1; |
| if (next_cur >= qp->s_size) |
| next_cur = 0; |
| |
| /* Construct the header. */ |
| ibp = to_iport(qp->ibqp.device, qp->port_num); |
| ppd = ppd_from_ibp(ibp); |
| ah_attr = &ibah_to_rvtah(wqe->ud_wr.ah)->attr; |
| if (rdma_ah_get_dlid(ah_attr) < be16_to_cpu(IB_MULTICAST_LID_BASE) || |
| rdma_ah_get_dlid(ah_attr) == be16_to_cpu(IB_LID_PERMISSIVE)) { |
| lid = rdma_ah_get_dlid(ah_attr) & ~((1 << ppd->lmc) - 1); |
| if (unlikely(!loopback && |
| (lid == ppd->lid || |
| (lid == be16_to_cpu(IB_LID_PERMISSIVE) && |
| qp->ibqp.qp_type == IB_QPT_GSI)))) { |
| unsigned long tflags = ps->flags; |
| /* |
| * If DMAs are in progress, we can't generate |
| * a completion for the loopback packet since |
| * it would be out of order. |
| * Instead of waiting, we could queue a |
| * zero length descriptor so we get a callback. |
| */ |
| if (iowait_sdma_pending(&priv->s_iowait)) { |
| qp->s_flags |= RVT_S_WAIT_DMA; |
| goto bail; |
| } |
| qp->s_cur = next_cur; |
| spin_unlock_irqrestore(&qp->s_lock, tflags); |
| ud_loopback(qp, wqe); |
| spin_lock_irqsave(&qp->s_lock, tflags); |
| ps->flags = tflags; |
| hfi1_send_complete(qp, wqe, IB_WC_SUCCESS); |
| goto done_free_tx; |
| } |
| } |
| |
| qp->s_cur = next_cur; |
| extra_bytes = -wqe->length & 3; |
| nwords = (wqe->length + extra_bytes) >> 2; |
| |
| /* header size in 32-bit words LRH+BTH+DETH = (8+12+8)/4. */ |
| qp->s_hdrwords = 7; |
| ps->s_txreq->s_cur_size = wqe->length; |
| ps->s_txreq->ss = &qp->s_sge; |
| qp->s_srate = rdma_ah_get_static_rate(ah_attr); |
| qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); |
| qp->s_wqe = wqe; |
| qp->s_sge.sge = wqe->sg_list[0]; |
| qp->s_sge.sg_list = wqe->sg_list + 1; |
| qp->s_sge.num_sge = wqe->wr.num_sge; |
| qp->s_sge.total_len = wqe->length; |
| |
| if (rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH) { |
| /* Header size in 32-bit words. */ |
| qp->s_hdrwords += hfi1_make_grh(ibp, |
| &ps->s_txreq->phdr.hdr.u.l.grh, |
| rdma_ah_read_grh(ah_attr), |
| qp->s_hdrwords, nwords); |
| lrh0 = HFI1_LRH_GRH; |
| ohdr = &ps->s_txreq->phdr.hdr.u.l.oth; |
| /* |
| * Don't worry about sending to locally attached multicast |
| * QPs. It is unspecified by the spec. what happens. |
| */ |
| } else { |
| /* Header size in 32-bit words. */ |
| lrh0 = HFI1_LRH_BTH; |
| ohdr = &ps->s_txreq->phdr.hdr.u.oth; |
| } |
| if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { |
| qp->s_hdrwords++; |
| ohdr->u.ud.imm_data = wqe->wr.ex.imm_data; |
| bth0 = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE << 24; |
| } else { |
| bth0 = IB_OPCODE_UD_SEND_ONLY << 24; |
| } |
| sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)]; |
| lrh0 |= (rdma_ah_get_sl(ah_attr) & 0xf) << 4; |
| if (qp->ibqp.qp_type == IB_QPT_SMI) { |
| lrh0 |= 0xF000; /* Set VL (see ch. 13.5.3.1) */ |
| priv->s_sc = 0xf; |
| } else { |
| lrh0 |= (sc5 & 0xf) << 12; |
| priv->s_sc = sc5; |
| } |
| priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc); |
| ps->s_txreq->sde = priv->s_sde; |
| priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc); |
| ps->s_txreq->psc = priv->s_sendcontext; |
| ps->s_txreq->phdr.hdr.lrh[0] = cpu_to_be16(lrh0); |
| ps->s_txreq->phdr.hdr.lrh[1] = |
| cpu_to_be16(rdma_ah_get_dlid(ah_attr)); |
| ps->s_txreq->phdr.hdr.lrh[2] = |
| cpu_to_be16(qp->s_hdrwords + nwords + SIZE_OF_CRC); |
| if (rdma_ah_get_dlid(ah_attr) == be16_to_cpu(IB_LID_PERMISSIVE)) { |
| ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE; |
| } else { |
| lid = ppd->lid; |
| if (lid) { |
| lid |= rdma_ah_get_path_bits(ah_attr) & |
| ((1 << ppd->lmc) - 1); |
| ps->s_txreq->phdr.hdr.lrh[3] = cpu_to_be16(lid); |
| } else { |
| ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE; |
| } |
| } |
| if (wqe->wr.send_flags & IB_SEND_SOLICITED) |
| bth0 |= IB_BTH_SOLICITED; |
| bth0 |= extra_bytes << 20; |
| if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) |
| bth0 |= hfi1_get_pkey(ibp, wqe->ud_wr.pkey_index); |
| else |
| bth0 |= hfi1_get_pkey(ibp, qp->s_pkey_index); |
| ohdr->bth[0] = cpu_to_be32(bth0); |
| ohdr->bth[1] = cpu_to_be32(wqe->ud_wr.remote_qpn); |
| ohdr->bth[2] = cpu_to_be32(mask_psn(wqe->psn)); |
| /* |
| * Qkeys with the high order bit set mean use the |
| * qkey from the QP context instead of the WR (see 10.2.5). |
| */ |
| ohdr->u.ud.deth[0] = cpu_to_be32((int)wqe->ud_wr.remote_qkey < 0 ? |
| qp->qkey : wqe->ud_wr.remote_qkey); |
| ohdr->u.ud.deth[1] = cpu_to_be32(qp->ibqp.qp_num); |
| /* disarm any ahg */ |
| priv->s_ahg->ahgcount = 0; |
| priv->s_ahg->ahgidx = 0; |
| priv->s_ahg->tx_flags = 0; |
| /* pbc */ |
| ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2; |
| |
| return 1; |
| |
| done_free_tx: |
| hfi1_put_txreq(ps->s_txreq); |
| ps->s_txreq = NULL; |
| return 1; |
| |
| bail: |
| hfi1_put_txreq(ps->s_txreq); |
| |
| bail_no_tx: |
| ps->s_txreq = NULL; |
| qp->s_flags &= ~RVT_S_BUSY; |
| qp->s_hdrwords = 0; |
| return 0; |
| } |
| |
| /* |
| * Hardware can't check this so we do it here. |
| * |
| * This is a slightly different algorithm than the standard pkey check. It |
| * special cases the management keys and allows for 0x7fff and 0xffff to be in |
| * the table at the same time. |
| * |
| * @returns the index found or -1 if not found |
| */ |
| int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey) |
| { |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| unsigned i; |
| |
| if (pkey == FULL_MGMT_P_KEY || pkey == LIM_MGMT_P_KEY) { |
| unsigned lim_idx = -1; |
| |
| for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i) { |
| /* here we look for an exact match */ |
| if (ppd->pkeys[i] == pkey) |
| return i; |
| if (ppd->pkeys[i] == LIM_MGMT_P_KEY) |
| lim_idx = i; |
| } |
| |
| /* did not find 0xffff return 0x7fff idx if found */ |
| if (pkey == FULL_MGMT_P_KEY) |
| return lim_idx; |
| |
| /* no match... */ |
| return -1; |
| } |
| |
| pkey &= 0x7fff; /* remove limited/full membership bit */ |
| |
| for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i) |
| if ((ppd->pkeys[i] & 0x7fff) == pkey) |
| return i; |
| |
| /* |
| * Should not get here, this means hardware failed to validate pkeys. |
| */ |
| return -1; |
| } |
| |
| void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, |
| u32 pkey, u32 slid, u32 dlid, u8 sc5, |
| const struct ib_grh *old_grh) |
| { |
| u64 pbc, pbc_flags = 0; |
| u32 bth0, plen, vl, hwords = 5; |
| u16 lrh0; |
| u8 sl = ibp->sc_to_sl[sc5]; |
| struct ib_header hdr; |
| struct ib_other_headers *ohdr; |
| struct pio_buf *pbuf; |
| struct send_context *ctxt = qp_to_send_context(qp, sc5); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| |
| if (old_grh) { |
| struct ib_grh *grh = &hdr.u.l.grh; |
| |
| grh->version_tclass_flow = old_grh->version_tclass_flow; |
| grh->paylen = cpu_to_be16((hwords - 2 + SIZE_OF_CRC) << 2); |
| grh->hop_limit = 0xff; |
| grh->sgid = old_grh->dgid; |
| grh->dgid = old_grh->sgid; |
| ohdr = &hdr.u.l.oth; |
| lrh0 = HFI1_LRH_GRH; |
| hwords += sizeof(struct ib_grh) / sizeof(u32); |
| } else { |
| ohdr = &hdr.u.oth; |
| lrh0 = HFI1_LRH_BTH; |
| } |
| |
| lrh0 |= (sc5 & 0xf) << 12 | sl << 4; |
| |
| bth0 = pkey | (IB_OPCODE_CNP << 24); |
| ohdr->bth[0] = cpu_to_be32(bth0); |
| |
| ohdr->bth[1] = cpu_to_be32(remote_qpn | (1 << IB_BECN_SHIFT)); |
| ohdr->bth[2] = 0; /* PSN 0 */ |
| |
| hdr.lrh[0] = cpu_to_be16(lrh0); |
| hdr.lrh[1] = cpu_to_be16(dlid); |
| hdr.lrh[2] = cpu_to_be16(hwords + SIZE_OF_CRC); |
| hdr.lrh[3] = cpu_to_be16(slid); |
| |
| plen = 2 /* PBC */ + hwords; |
| pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; |
| vl = sc_to_vlt(ppd->dd, sc5); |
| pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); |
| if (ctxt) { |
| pbuf = sc_buffer_alloc(ctxt, plen, NULL, NULL); |
| if (pbuf) |
| ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc, |
| &hdr, hwords); |
| } |
| } |
| |
| /* |
| * opa_smp_check() - Do the regular pkey checking, and the additional |
| * checks for SMPs specified in OPAv1 rev 1.0, 9/19/2016 update, section |
| * 9.10.25 ("SMA Packet Checks"). |
| * |
| * Note that: |
| * - Checks are done using the pkey directly from the packet's BTH, |
| * and specifically _not_ the pkey that we attach to the completion, |
| * which may be different. |
| * - These checks are specifically for "non-local" SMPs (i.e., SMPs |
| * which originated on another node). SMPs which are sent from, and |
| * destined to this node are checked in opa_local_smp_check(). |
| * |
| * At the point where opa_smp_check() is called, we know: |
| * - destination QP is QP0 |
| * |
| * opa_smp_check() returns 0 if all checks succeed, 1 otherwise. |
| */ |
| static int opa_smp_check(struct hfi1_ibport *ibp, u16 pkey, u8 sc5, |
| struct rvt_qp *qp, u16 slid, struct opa_smp *smp) |
| { |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| |
| /* |
| * I don't think it's possible for us to get here with sc != 0xf, |
| * but check it to be certain. |
| */ |
| if (sc5 != 0xf) |
| return 1; |
| |
| if (rcv_pkey_check(ppd, pkey, sc5, slid)) |
| return 1; |
| |
| /* |
| * At this point we know (and so don't need to check again) that |
| * the pkey is either LIM_MGMT_P_KEY, or FULL_MGMT_P_KEY |
| * (see ingress_pkey_check). |
| */ |
| if (smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE && |
| smp->mgmt_class != IB_MGMT_CLASS_SUBN_LID_ROUTED) { |
| ingress_pkey_table_fail(ppd, pkey, slid); |
| return 1; |
| } |
| |
| /* |
| * SMPs fall into one of four (disjoint) categories: |
| * SMA request, SMA response, SMA trap, or SMA trap repress. |
| * Our response depends, in part, on which type of SMP we're |
| * processing. |
| * |
| * If this is an SMA response, skip the check here. |
| * |
| * If this is an SMA request or SMA trap repress: |
| * - pkey != FULL_MGMT_P_KEY => |
| * increment port recv constraint errors, drop MAD |
| * |
| * Otherwise: |
| * - accept if the port is running an SM |
| * - drop MAD if it's an SMA trap |
| * - pkey == FULL_MGMT_P_KEY => |
| * reply with unsupported method |
| * - pkey != FULL_MGMT_P_KEY => |
| * increment port recv constraint errors, drop MAD |
| */ |
| switch (smp->method) { |
| case IB_MGMT_METHOD_GET_RESP: |
| case IB_MGMT_METHOD_REPORT_RESP: |
| break; |
| case IB_MGMT_METHOD_GET: |
| case IB_MGMT_METHOD_SET: |
| case IB_MGMT_METHOD_REPORT: |
| case IB_MGMT_METHOD_TRAP_REPRESS: |
| if (pkey != FULL_MGMT_P_KEY) { |
| ingress_pkey_table_fail(ppd, pkey, slid); |
| return 1; |
| } |
| break; |
| default: |
| if (ibp->rvp.port_cap_flags & IB_PORT_SM) |
| return 0; |
| if (smp->method == IB_MGMT_METHOD_TRAP) |
| return 1; |
| if (pkey == FULL_MGMT_P_KEY) { |
| smp->status |= IB_SMP_UNSUP_METHOD; |
| return 0; |
| } |
| ingress_pkey_table_fail(ppd, pkey, slid); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * hfi1_ud_rcv - receive an incoming UD packet |
| * @ibp: the port the packet came in on |
| * @hdr: the packet header |
| * @rcv_flags: flags relevant to rcv processing |
| * @data: the packet data |
| * @tlen: the packet length |
| * @qp: the QP the packet came on |
| * |
| * This is called from qp_rcv() to process an incoming UD packet |
| * for the given QP. |
| * Called at interrupt level. |
| */ |
| void hfi1_ud_rcv(struct hfi1_packet *packet) |
| { |
| struct ib_other_headers *ohdr = packet->ohdr; |
| int opcode; |
| u32 hdrsize = packet->hlen; |
| struct ib_wc wc; |
| u32 qkey; |
| u32 src_qp; |
| u16 dlid, pkey; |
| int mgmt_pkey_idx = -1; |
| struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| struct ib_header *hdr = packet->hdr; |
| u32 rcv_flags = packet->rcv_flags; |
| void *data = packet->ebuf; |
| u32 tlen = packet->tlen; |
| struct rvt_qp *qp = packet->qp; |
| bool has_grh = rcv_flags & HFI1_HAS_GRH; |
| u8 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); |
| u32 bth1; |
| u8 sl_from_sc, sl; |
| u16 slid; |
| u8 extra_bytes; |
| |
| qkey = be32_to_cpu(ohdr->u.ud.deth[0]); |
| src_qp = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK; |
| dlid = ib_get_dlid(hdr); |
| bth1 = be32_to_cpu(ohdr->bth[1]); |
| slid = ib_get_slid(hdr); |
| pkey = ib_bth_get_pkey(ohdr); |
| opcode = ib_bth_get_opcode(ohdr); |
| sl = ib_get_sl(hdr); |
| extra_bytes = ib_bth_get_pad(ohdr); |
| extra_bytes += (SIZE_OF_CRC << 2); |
| sl_from_sc = ibp->sc_to_sl[sc5]; |
| |
| process_ecn(qp, packet, (opcode != IB_OPCODE_CNP)); |
| /* |
| * Get the number of bytes the message was padded by |
| * and drop incomplete packets. |
| */ |
| if (unlikely(tlen < (hdrsize + extra_bytes))) |
| goto drop; |
| |
| tlen -= hdrsize + extra_bytes; |
| |
| /* |
| * Check that the permissive LID is only used on QP0 |
| * and the QKEY matches (see 9.6.1.4.1 and 9.6.1.5.1). |
| */ |
| if (qp->ibqp.qp_num) { |
| if (unlikely(hdr->lrh[1] == IB_LID_PERMISSIVE || |
| hdr->lrh[3] == IB_LID_PERMISSIVE)) |
| goto drop; |
| if (qp->ibqp.qp_num > 1) { |
| if (unlikely(rcv_pkey_check(ppd, pkey, sc5, slid))) { |
| /* |
| * Traps will not be sent for packets dropped |
| * by the HW. This is fine, as sending trap |
| * for invalid pkeys is optional according to |
| * IB spec (release 1.3, section 10.9.4) |
| */ |
| hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY, |
| pkey, sl, |
| src_qp, qp->ibqp.qp_num, |
| slid, dlid); |
| return; |
| } |
| } else { |
| /* GSI packet */ |
| mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey); |
| if (mgmt_pkey_idx < 0) |
| goto drop; |
| } |
| if (unlikely(qkey != qp->qkey)) { |
| hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_Q_KEY, qkey, sl, |
| src_qp, qp->ibqp.qp_num, |
| slid, dlid); |
| return; |
| } |
| /* Drop invalid MAD packets (see 13.5.3.1). */ |
| if (unlikely(qp->ibqp.qp_num == 1 && |
| (tlen > 2048 || (sc5 == 0xF)))) |
| goto drop; |
| } else { |
| /* Received on QP0, and so by definition, this is an SMP */ |
| struct opa_smp *smp = (struct opa_smp *)data; |
| |
| if (opa_smp_check(ibp, pkey, sc5, qp, slid, smp)) |
| goto drop; |
| |
| if (tlen > 2048) |
| goto drop; |
| if ((hdr->lrh[1] == IB_LID_PERMISSIVE || |
| hdr->lrh[3] == IB_LID_PERMISSIVE) && |
| smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) |
| goto drop; |
| |
| /* look up SMI pkey */ |
| mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey); |
| if (mgmt_pkey_idx < 0) |
| goto drop; |
| } |
| |
| if (qp->ibqp.qp_num > 1 && |
| opcode == IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE) { |
| wc.ex.imm_data = ohdr->u.ud.imm_data; |
| wc.wc_flags = IB_WC_WITH_IMM; |
| tlen -= sizeof(u32); |
| } else if (opcode == IB_OPCODE_UD_SEND_ONLY) { |
| wc.ex.imm_data = 0; |
| wc.wc_flags = 0; |
| } else { |
| goto drop; |
| } |
| |
| /* |
| * A GRH is expected to precede the data even if not |
| * present on the wire. |
| */ |
| wc.byte_len = tlen + sizeof(struct ib_grh); |
| |
| /* |
| * Get the next work request entry to find where to put the data. |
| */ |
| if (qp->r_flags & RVT_R_REUSE_SGE) { |
| qp->r_flags &= ~RVT_R_REUSE_SGE; |
| } else { |
| int ret; |
| |
| ret = hfi1_rvt_get_rwqe(qp, 0); |
| if (ret < 0) { |
| rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); |
| return; |
| } |
| if (!ret) { |
| if (qp->ibqp.qp_num == 0) |
| ibp->rvp.n_vl15_dropped++; |
| return; |
| } |
| } |
| /* Silently drop packets which are too big. */ |
| if (unlikely(wc.byte_len > qp->r_len)) { |
| qp->r_flags |= RVT_R_REUSE_SGE; |
| goto drop; |
| } |
| if (has_grh) { |
| hfi1_copy_sge(&qp->r_sge, &hdr->u.l.grh, |
| sizeof(struct ib_grh), true, false); |
| wc.wc_flags |= IB_WC_GRH; |
| } else { |
| rvt_skip_sge(&qp->r_sge, sizeof(struct ib_grh), true); |
| } |
| hfi1_copy_sge(&qp->r_sge, data, wc.byte_len - sizeof(struct ib_grh), |
| true, false); |
| rvt_put_ss(&qp->r_sge); |
| if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) |
| return; |
| wc.wr_id = qp->r_wr_id; |
| wc.status = IB_WC_SUCCESS; |
| wc.opcode = IB_WC_RECV; |
| wc.vendor_err = 0; |
| wc.qp = &qp->ibqp; |
| wc.src_qp = src_qp; |
| |
| if (qp->ibqp.qp_type == IB_QPT_GSI || |
| qp->ibqp.qp_type == IB_QPT_SMI) { |
| if (mgmt_pkey_idx < 0) { |
| if (net_ratelimit()) { |
| struct hfi1_devdata *dd = ppd->dd; |
| |
| dd_dev_err(dd, "QP type %d mgmt_pkey_idx < 0 and packet not dropped???\n", |
| qp->ibqp.qp_type); |
| mgmt_pkey_idx = 0; |
| } |
| } |
| wc.pkey_index = (unsigned)mgmt_pkey_idx; |
| } else { |
| wc.pkey_index = 0; |
| } |
| |
| wc.slid = slid; |
| wc.sl = sl_from_sc; |
| |
| /* |
| * Save the LMC lower bits if the destination LID is a unicast LID. |
| */ |
| wc.dlid_path_bits = dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE) ? 0 : |
| dlid & ((1 << ppd_from_ibp(ibp)->lmc) - 1); |
| wc.port_num = qp->port_num; |
| /* Signal completion event if the solicited bit is set. */ |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, |
| (ohdr->bth[0] & |
| cpu_to_be32(IB_BTH_SOLICITED)) != 0); |
| return; |
| |
| drop: |
| ibp->rvp.n_pkt_drops++; |
| } |