| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * HCTR2 length-preserving encryption mode |
| * |
| * Copyright 2021 Google LLC |
| */ |
| |
| |
| /* |
| * HCTR2 is a length-preserving encryption mode that is efficient on |
| * processors with instructions to accelerate AES and carryless |
| * multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM |
| * processors with the ARMv8 crypto extensions. |
| * |
| * For more details, see the paper: "Length-preserving encryption with HCTR2" |
| * (https://eprint.iacr.org/2021/1441.pdf) |
| */ |
| |
| #include <crypto/internal/cipher.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/polyval.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/module.h> |
| |
| #define BLOCKCIPHER_BLOCK_SIZE 16 |
| |
| /* |
| * The specification allows variable-length tweaks, but Linux's crypto API |
| * currently only allows algorithms to support a single length. The "natural" |
| * tweak length for HCTR2 is 16, since that fits into one POLYVAL block for |
| * the best performance. But longer tweaks are useful for fscrypt, to avoid |
| * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. |
| */ |
| #define TWEAK_SIZE 32 |
| |
| struct hctr2_instance_ctx { |
| struct crypto_cipher_spawn blockcipher_spawn; |
| struct crypto_skcipher_spawn xctr_spawn; |
| struct crypto_shash_spawn polyval_spawn; |
| }; |
| |
| struct hctr2_tfm_ctx { |
| struct crypto_cipher *blockcipher; |
| struct crypto_skcipher *xctr; |
| struct crypto_shash *polyval; |
| u8 L[BLOCKCIPHER_BLOCK_SIZE]; |
| int hashed_tweak_offset; |
| /* |
| * This struct is allocated with extra space for two exported hash |
| * states. Since the hash state size is not known at compile-time, we |
| * can't add these to the struct directly. |
| * |
| * hashed_tweaklen_divisible; |
| * hashed_tweaklen_remainder; |
| */ |
| }; |
| |
| struct hctr2_request_ctx { |
| u8 first_block[BLOCKCIPHER_BLOCK_SIZE]; |
| u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE]; |
| struct scatterlist *bulk_part_dst; |
| struct scatterlist *bulk_part_src; |
| struct scatterlist sg_src[2]; |
| struct scatterlist sg_dst[2]; |
| /* |
| * Sub-request sizes are unknown at compile-time, so they need to go |
| * after the members with known sizes. |
| */ |
| union { |
| struct shash_desc hash_desc; |
| struct skcipher_request xctr_req; |
| } u; |
| /* |
| * This struct is allocated with extra space for one exported hash |
| * state. Since the hash state size is not known at compile-time, we |
| * can't add it to the struct directly. |
| * |
| * hashed_tweak; |
| */ |
| }; |
| |
| static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx, |
| bool has_remainder) |
| { |
| u8 *p = (u8 *)tctx + sizeof(*tctx); |
| |
| if (has_remainder) /* For messages not a multiple of block length */ |
| p += crypto_shash_statesize(tctx->polyval); |
| return p; |
| } |
| |
| static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx, |
| struct hctr2_request_ctx *rctx) |
| { |
| return (u8 *)rctx + tctx->hashed_tweak_offset; |
| } |
| |
| /* |
| * The input data for each HCTR2 hash step begins with a 16-byte block that |
| * contains the tweak length and a flag that indicates whether the input is evenly |
| * divisible into blocks. Since this implementation only supports one tweak |
| * length, we precompute the two hash states resulting from hashing the two |
| * possible values of this initial block. This reduces by one block the amount of |
| * data that needs to be hashed for each encryption/decryption |
| * |
| * These precomputed hashes are stored in hctr2_tfm_ctx. |
| */ |
| static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder) |
| { |
| SHASH_DESC_ON_STACK(shash, tfm->polyval); |
| __le64 tweak_length_block[2]; |
| int err; |
| |
| shash->tfm = tctx->polyval; |
| memset(tweak_length_block, 0, sizeof(tweak_length_block)); |
| |
| tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder); |
| err = crypto_shash_init(shash); |
| if (err) |
| return err; |
| err = crypto_shash_update(shash, (u8 *)tweak_length_block, |
| POLYVAL_BLOCK_SIZE); |
| if (err) |
| return err; |
| return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder)); |
| } |
| |
| static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| u8 hbar[BLOCKCIPHER_BLOCK_SIZE]; |
| int err; |
| |
| crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(tctx->blockcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(tctx->blockcipher, key, keylen); |
| if (err) |
| return err; |
| |
| crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(tctx->xctr, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_skcipher_setkey(tctx->xctr, key, keylen); |
| if (err) |
| return err; |
| |
| memset(hbar, 0, sizeof(hbar)); |
| crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar); |
| |
| memset(tctx->L, 0, sizeof(tctx->L)); |
| tctx->L[0] = 0x01; |
| crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L); |
| |
| crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK); |
| crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE); |
| if (err) |
| return err; |
| memzero_explicit(hbar, sizeof(hbar)); |
| |
| return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false); |
| } |
| |
| static int hctr2_hash_tweak(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); |
| struct shash_desc *hash_desc = &rctx->u.hash_desc; |
| int err; |
| bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE; |
| |
| hash_desc->tfm = tctx->polyval; |
| err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder)); |
| if (err) |
| return err; |
| err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE); |
| if (err) |
| return err; |
| |
| // Store the hashed tweak, since we need it when computing both |
| // H(T || N) and H(T || V). |
| return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx)); |
| } |
| |
| static int hctr2_hash_message(struct skcipher_request *req, |
| struct scatterlist *sgl, |
| u8 digest[POLYVAL_DIGEST_SIZE]) |
| { |
| static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 }; |
| struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); |
| struct shash_desc *hash_desc = &rctx->u.hash_desc; |
| const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| struct sg_mapping_iter miter; |
| unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE; |
| int i; |
| int err = 0; |
| int n = 0; |
| |
| sg_miter_start(&miter, sgl, sg_nents(sgl), |
| SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| for (i = 0; i < bulk_len; i += n) { |
| sg_miter_next(&miter); |
| n = min_t(unsigned int, miter.length, bulk_len - i); |
| err = crypto_shash_update(hash_desc, miter.addr, n); |
| if (err) |
| break; |
| } |
| sg_miter_stop(&miter); |
| |
| if (err) |
| return err; |
| |
| if (remainder) { |
| err = crypto_shash_update(hash_desc, padding, |
| BLOCKCIPHER_BLOCK_SIZE - remainder); |
| if (err) |
| return err; |
| } |
| return crypto_shash_final(hash_desc, digest); |
| } |
| |
| static int hctr2_finish(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); |
| u8 digest[POLYVAL_DIGEST_SIZE]; |
| struct shash_desc *hash_desc = &rctx->u.hash_desc; |
| int err; |
| |
| // U = UU ^ H(T || V) |
| // or M = MM ^ H(T || N) |
| hash_desc->tfm = tctx->polyval; |
| err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx)); |
| if (err) |
| return err; |
| err = hctr2_hash_message(req, rctx->bulk_part_dst, digest); |
| if (err) |
| return err; |
| crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE); |
| |
| // Copy U (or M) into dst scatterlist |
| scatterwalk_map_and_copy(rctx->first_block, req->dst, |
| 0, BLOCKCIPHER_BLOCK_SIZE, 1); |
| return 0; |
| } |
| |
| static void hctr2_xctr_done(void *data, int err) |
| { |
| struct skcipher_request *req = data; |
| |
| if (!err) |
| err = hctr2_finish(req); |
| |
| skcipher_request_complete(req, err); |
| } |
| |
| static int hctr2_crypt(struct skcipher_request *req, bool enc) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); |
| u8 digest[POLYVAL_DIGEST_SIZE]; |
| int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| int err; |
| |
| // Requests must be at least one block |
| if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) |
| return -EINVAL; |
| |
| // Copy M (or U) into a temporary buffer |
| scatterwalk_map_and_copy(rctx->first_block, req->src, |
| 0, BLOCKCIPHER_BLOCK_SIZE, 0); |
| |
| // Create scatterlists for N and V |
| rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src, |
| BLOCKCIPHER_BLOCK_SIZE); |
| rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst, |
| BLOCKCIPHER_BLOCK_SIZE); |
| |
| // MM = M ^ H(T || N) |
| // or UU = U ^ H(T || V) |
| err = hctr2_hash_tweak(req); |
| if (err) |
| return err; |
| err = hctr2_hash_message(req, rctx->bulk_part_src, digest); |
| if (err) |
| return err; |
| crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); |
| |
| // UU = E(MM) |
| // or MM = D(UU) |
| if (enc) |
| crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block, |
| digest); |
| else |
| crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block, |
| digest); |
| |
| // S = MM ^ UU ^ L |
| crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); |
| crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE); |
| |
| // V = XCTR(S, N) |
| // or N = XCTR(S, V) |
| skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr); |
| skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src, |
| rctx->bulk_part_dst, bulk_len, |
| rctx->xctr_iv); |
| skcipher_request_set_callback(&rctx->u.xctr_req, |
| req->base.flags, |
| hctr2_xctr_done, req); |
| return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?: |
| hctr2_finish(req); |
| } |
| |
| static int hctr2_encrypt(struct skcipher_request *req) |
| { |
| return hctr2_crypt(req, true); |
| } |
| |
| static int hctr2_decrypt(struct skcipher_request *req) |
| { |
| return hctr2_crypt(req, false); |
| } |
| |
| static int hctr2_init_tfm(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct crypto_skcipher *xctr; |
| struct crypto_cipher *blockcipher; |
| struct crypto_shash *polyval; |
| unsigned int subreq_size; |
| int err; |
| |
| xctr = crypto_spawn_skcipher(&ictx->xctr_spawn); |
| if (IS_ERR(xctr)) |
| return PTR_ERR(xctr); |
| |
| blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); |
| if (IS_ERR(blockcipher)) { |
| err = PTR_ERR(blockcipher); |
| goto err_free_xctr; |
| } |
| |
| polyval = crypto_spawn_shash(&ictx->polyval_spawn); |
| if (IS_ERR(polyval)) { |
| err = PTR_ERR(polyval); |
| goto err_free_blockcipher; |
| } |
| |
| tctx->xctr = xctr; |
| tctx->blockcipher = blockcipher; |
| tctx->polyval = polyval; |
| |
| BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) != |
| sizeof(struct hctr2_request_ctx)); |
| subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) + |
| crypto_shash_descsize(polyval), |
| sizeof_field(struct hctr2_request_ctx, u.xctr_req) + |
| crypto_skcipher_reqsize(xctr)); |
| |
| tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) + |
| subreq_size; |
| crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset + |
| crypto_shash_statesize(polyval)); |
| return 0; |
| |
| err_free_blockcipher: |
| crypto_free_cipher(blockcipher); |
| err_free_xctr: |
| crypto_free_skcipher(xctr); |
| return err; |
| } |
| |
| static void hctr2_exit_tfm(struct crypto_skcipher *tfm) |
| { |
| struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_cipher(tctx->blockcipher); |
| crypto_free_skcipher(tctx->xctr); |
| crypto_free_shash(tctx->polyval); |
| } |
| |
| static void hctr2_free_instance(struct skcipher_instance *inst) |
| { |
| struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| |
| crypto_drop_cipher(&ictx->blockcipher_spawn); |
| crypto_drop_skcipher(&ictx->xctr_spawn); |
| crypto_drop_shash(&ictx->polyval_spawn); |
| kfree(inst); |
| } |
| |
| static int hctr2_create_common(struct crypto_template *tmpl, |
| struct rtattr **tb, |
| const char *xctr_name, |
| const char *polyval_name) |
| { |
| struct skcipher_alg_common *xctr_alg; |
| u32 mask; |
| struct skcipher_instance *inst; |
| struct hctr2_instance_ctx *ictx; |
| struct crypto_alg *blockcipher_alg; |
| struct shash_alg *polyval_alg; |
| char blockcipher_name[CRYPTO_MAX_ALG_NAME]; |
| int len; |
| int err; |
| |
| err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); |
| if (err) |
| return err; |
| |
| inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); |
| if (!inst) |
| return -ENOMEM; |
| ictx = skcipher_instance_ctx(inst); |
| |
| /* Stream cipher, xctr(block_cipher) */ |
| err = crypto_grab_skcipher(&ictx->xctr_spawn, |
| skcipher_crypto_instance(inst), |
| xctr_name, 0, mask); |
| if (err) |
| goto err_free_inst; |
| xctr_alg = crypto_spawn_skcipher_alg_common(&ictx->xctr_spawn); |
| |
| err = -EINVAL; |
| if (strncmp(xctr_alg->base.cra_name, "xctr(", 5)) |
| goto err_free_inst; |
| len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5, |
| sizeof(blockcipher_name)); |
| if (len < 1) |
| goto err_free_inst; |
| if (blockcipher_name[len - 1] != ')') |
| goto err_free_inst; |
| blockcipher_name[len - 1] = 0; |
| |
| /* Block cipher, e.g. "aes" */ |
| err = crypto_grab_cipher(&ictx->blockcipher_spawn, |
| skcipher_crypto_instance(inst), |
| blockcipher_name, 0, mask); |
| if (err) |
| goto err_free_inst; |
| blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); |
| |
| /* Require blocksize of 16 bytes */ |
| err = -EINVAL; |
| if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) |
| goto err_free_inst; |
| |
| /* Polyval ε-∆U hash function */ |
| err = crypto_grab_shash(&ictx->polyval_spawn, |
| skcipher_crypto_instance(inst), |
| polyval_name, 0, mask); |
| if (err) |
| goto err_free_inst; |
| polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn); |
| |
| /* Ensure Polyval is being used */ |
| err = -EINVAL; |
| if (strcmp(polyval_alg->base.cra_name, "polyval") != 0) |
| goto err_free_inst; |
| |
| /* Instance fields */ |
| |
| err = -ENAMETOOLONG; |
| if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)", |
| blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_free_inst; |
| if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "hctr2_base(%s,%s)", |
| xctr_alg->base.cra_driver_name, |
| polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_free_inst; |
| |
| inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; |
| inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) + |
| polyval_alg->statesize * 2; |
| inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask; |
| /* |
| * The hash function is called twice, so it is weighted higher than the |
| * xctr and blockcipher. |
| */ |
| inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority + |
| 4 * polyval_alg->base.cra_priority + |
| blockcipher_alg->cra_priority) / 7; |
| |
| inst->alg.setkey = hctr2_setkey; |
| inst->alg.encrypt = hctr2_encrypt; |
| inst->alg.decrypt = hctr2_decrypt; |
| inst->alg.init = hctr2_init_tfm; |
| inst->alg.exit = hctr2_exit_tfm; |
| inst->alg.min_keysize = xctr_alg->min_keysize; |
| inst->alg.max_keysize = xctr_alg->max_keysize; |
| inst->alg.ivsize = TWEAK_SIZE; |
| |
| inst->free = hctr2_free_instance; |
| |
| err = skcipher_register_instance(tmpl, inst); |
| if (err) { |
| err_free_inst: |
| hctr2_free_instance(inst); |
| } |
| return err; |
| } |
| |
| static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| const char *xctr_name; |
| const char *polyval_name; |
| |
| xctr_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(xctr_name)) |
| return PTR_ERR(xctr_name); |
| |
| polyval_name = crypto_attr_alg_name(tb[2]); |
| if (IS_ERR(polyval_name)) |
| return PTR_ERR(polyval_name); |
| |
| return hctr2_create_common(tmpl, tb, xctr_name, polyval_name); |
| } |
| |
| static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| const char *blockcipher_name; |
| char xctr_name[CRYPTO_MAX_ALG_NAME]; |
| |
| blockcipher_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(blockcipher_name)) |
| return PTR_ERR(blockcipher_name); |
| |
| if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)", |
| blockcipher_name) >= CRYPTO_MAX_ALG_NAME) |
| return -ENAMETOOLONG; |
| |
| return hctr2_create_common(tmpl, tb, xctr_name, "polyval"); |
| } |
| |
| static struct crypto_template hctr2_tmpls[] = { |
| { |
| /* hctr2_base(xctr_name, polyval_name) */ |
| .name = "hctr2_base", |
| .create = hctr2_create_base, |
| .module = THIS_MODULE, |
| }, { |
| /* hctr2(blockcipher_name) */ |
| .name = "hctr2", |
| .create = hctr2_create, |
| .module = THIS_MODULE, |
| } |
| }; |
| |
| static int __init hctr2_module_init(void) |
| { |
| return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls)); |
| } |
| |
| static void __exit hctr2_module_exit(void) |
| { |
| return crypto_unregister_templates(hctr2_tmpls, |
| ARRAY_SIZE(hctr2_tmpls)); |
| } |
| |
| subsys_initcall(hctr2_module_init); |
| module_exit(hctr2_module_exit); |
| |
| MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS_CRYPTO("hctr2"); |
| MODULE_IMPORT_NS(CRYPTO_INTERNAL); |