| /* |
| Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> |
| Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> |
| Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> |
| Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> |
| Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> |
| Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> |
| Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2800pci |
| Abstract: rt2800pci device specific routines. |
| Supported chipsets: RT2800E & RT2800ED. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/platform_device.h> |
| #include <linux/eeprom_93cx6.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00pci.h" |
| #include "rt2x00soc.h" |
| #include "rt2800lib.h" |
| #include "rt2800.h" |
| #include "rt2800pci.h" |
| |
| /* |
| * Allow hardware encryption to be disabled. |
| */ |
| static bool modparam_nohwcrypt = false; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); |
| |
| static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * SOC devices don't support MCU requests. |
| */ |
| if (rt2x00_is_soc(rt2x00dev)) |
| return; |
| |
| for (i = 0; i < 200; i++) { |
| rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); |
| |
| if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || |
| (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) |
| break; |
| |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| if (i == 200) |
| ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); |
| |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); |
| } |
| |
| #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) |
| static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) |
| { |
| void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE); |
| |
| memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); |
| |
| iounmap(base_addr); |
| } |
| #else |
| static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ |
| |
| #ifdef CONFIG_PCI |
| static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); |
| eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); |
| eeprom->reg_data_clock = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); |
| eeprom->reg_chip_select = |
| !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); |
| } |
| |
| static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| { |
| struct rt2x00_dev *rt2x00dev = eeprom->data; |
| u32 reg = 0; |
| |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, |
| !!eeprom->reg_data_clock); |
| rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, |
| !!eeprom->reg_chip_select); |
| |
| rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); |
| } |
| |
| static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) |
| { |
| struct eeprom_93cx6 eeprom; |
| u32 reg; |
| |
| rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); |
| |
| eeprom.data = rt2x00dev; |
| eeprom.register_read = rt2800pci_eepromregister_read; |
| eeprom.register_write = rt2800pci_eepromregister_write; |
| switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE)) |
| { |
| case 0: |
| eeprom.width = PCI_EEPROM_WIDTH_93C46; |
| break; |
| case 1: |
| eeprom.width = PCI_EEPROM_WIDTH_93C66; |
| break; |
| default: |
| eeprom.width = PCI_EEPROM_WIDTH_93C86; |
| break; |
| } |
| eeprom.reg_data_in = 0; |
| eeprom.reg_data_out = 0; |
| eeprom.reg_data_clock = 0; |
| eeprom.reg_chip_select = 0; |
| |
| eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| EEPROM_SIZE / sizeof(u16)); |
| } |
| |
| static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| return rt2800_efuse_detect(rt2x00dev); |
| } |
| |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2800_read_eeprom_efuse(rt2x00dev); |
| } |
| #else |
| static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| |
| static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| return 0; |
| } |
| |
| static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| } |
| #endif /* CONFIG_PCI */ |
| |
| /* |
| * Queue handlers. |
| */ |
| static void rt2800pci_start_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| break; |
| case QID_BEACON: |
| rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); |
| rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); |
| rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); |
| rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt2800pci_kick_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| struct queue_entry *entry; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), |
| entry->entry_idx); |
| break; |
| case QID_MGMT: |
| entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5), |
| entry->entry_idx); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt2800pci_stop_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); |
| rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| break; |
| case QID_BEACON: |
| rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); |
| rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); |
| rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); |
| |
| /* |
| * Wait for current invocation to finish. The tasklet |
| * won't be scheduled anymore afterwards since we disabled |
| * the TBTT and PRE TBTT timer. |
| */ |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Firmware functions |
| */ |
| static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) |
| { |
| return FIRMWARE_RT2860; |
| } |
| |
| static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| u32 reg; |
| |
| /* |
| * enable Host program ram write selection |
| */ |
| reg = 0; |
| rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); |
| rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg); |
| |
| /* |
| * Write firmware to device. |
| */ |
| rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, |
| data, len); |
| |
| rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); |
| rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); |
| |
| rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0); |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static bool rt2800pci_get_entry_state(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); |
| } |
| } |
| |
| static void rt2800pci_clear_entry(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| |
| /* |
| * Set RX IDX in register to inform hardware that we have |
| * handled this entry and it is available for reuse again. |
| */ |
| rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, |
| entry->entry_idx); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| } |
| } |
| |
| static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct queue_entry_priv_pci *entry_priv; |
| u32 reg; |
| |
| /* |
| * Initialize registers. |
| */ |
| entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0, |
| rt2x00dev->tx[0].limit); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0); |
| rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0); |
| |
| entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1, |
| rt2x00dev->tx[1].limit); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0); |
| rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0); |
| |
| entry_priv = rt2x00dev->tx[2].entries[0].priv_data; |
| rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2, |
| rt2x00dev->tx[2].limit); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0); |
| rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0); |
| |
| entry_priv = rt2x00dev->tx[3].entries[0].priv_data; |
| rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3, |
| rt2x00dev->tx[3].limit); |
| rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0); |
| rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0); |
| |
| entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); |
| rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT, |
| rt2x00dev->rx[0].limit); |
| rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, |
| rt2x00dev->rx[0].limit - 1); |
| rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0); |
| |
| /* |
| * Enable global DMA configuration |
| */ |
| rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| unsigned long flags; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| } |
| |
| spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); |
| reg = 0; |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); |
| } |
| rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); |
| |
| if (state == STATE_RADIO_IRQ_OFF) { |
| /* |
| * Wait for possibly running tasklets to finish. |
| */ |
| tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| tasklet_kill(&rt2x00dev->autowake_tasklet); |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| } |
| } |
| |
| static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| /* |
| * Reset DMA indexes |
| */ |
| rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, ®); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); |
| rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); |
| rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); |
| |
| if (rt2x00_is_pcie(rt2x00dev) && |
| (rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390))) { |
| rt2x00pci_register_read(rt2x00dev, AUX_CTRL, ®); |
| rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); |
| rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); |
| rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg); |
| } |
| |
| rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); |
| |
| rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); |
| rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); |
| |
| return 0; |
| } |
| |
| static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || |
| rt2800pci_init_queues(rt2x00dev))) |
| return -EIO; |
| |
| return rt2800_enable_radio(rt2x00dev); |
| } |
| |
| static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| if (rt2x00_is_soc(rt2x00dev)) { |
| rt2800_disable_radio(rt2x00dev); |
| rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0); |
| rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0); |
| } |
| } |
| |
| static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| if (state == STATE_AWAKE) { |
| rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02); |
| rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP); |
| } else if (state == STATE_SLEEP) { |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, |
| 0xffffffff); |
| rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, |
| 0xffffffff); |
| rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01); |
| } |
| |
| return 0; |
| } |
| |
| static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| /* |
| * Before the radio can be enabled, the device first has |
| * to be woken up. After that it needs a bit of time |
| * to be fully awake and then the radio can be enabled. |
| */ |
| rt2800pci_set_state(rt2x00dev, STATE_AWAKE); |
| msleep(1); |
| retval = rt2800pci_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| /* |
| * After the radio has been disabled, the device should |
| * be put to sleep for powersaving. |
| */ |
| rt2800pci_disable_radio(rt2x00dev); |
| rt2800pci_set_state(rt2x00dev, STATE_SLEEP); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| rt2800pci_toggle_irq(rt2x00dev, state); |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt2800pci_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static __le32 *rt2800pci_get_txwi(struct queue_entry *entry) |
| { |
| return (__le32 *) entry->skb->data; |
| } |
| |
| static void rt2800pci_write_tx_desc(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| __le32 *txd = entry_priv->desc; |
| u32 word; |
| |
| /* |
| * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 |
| * must contains a TXWI structure + 802.11 header + padding + 802.11 |
| * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and |
| * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 |
| * data. It means that LAST_SEC0 is always 0. |
| */ |
| |
| /* |
| * Initialize TX descriptor |
| */ |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); |
| rt2x00_desc_write(txd, 0, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, |
| !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_BURST, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(txd, 1, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W2_SD_PTR1, |
| skbdesc->skb_dma + TXWI_DESC_SIZE); |
| rt2x00_desc_write(txd, 2, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W3_WIV, |
| !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W3_QSEL, 2); |
| rt2x00_desc_write(txd, 3, word); |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->desc = txd; |
| skbdesc->desc_len = TXD_DESC_SIZE; |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static void rt2800pci_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct queue_entry_priv_pci *entry_priv = entry->priv_data; |
| __le32 *rxd = entry_priv->desc; |
| u32 word; |
| |
| rt2x00_desc_read(rxd, 3, &word); |
| |
| if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| |
| /* |
| * Unfortunately we don't know the cipher type used during |
| * decryption. This prevents us from correct providing |
| * correct statistics through debugfs. |
| */ |
| rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); |
| |
| if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { |
| /* |
| * Hardware has stripped IV/EIV data from 802.11 frame during |
| * decryption. Unfortunately the descriptor doesn't contain |
| * any fields with the EIV/IV data either, so they can't |
| * be restored by rt2x00lib. |
| */ |
| rxdesc->flags |= RX_FLAG_IV_STRIPPED; |
| |
| /* |
| * The hardware has already checked the Michael Mic and has |
| * stripped it from the frame. Signal this to mac80211. |
| */ |
| rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; |
| |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| |
| if (rt2x00_get_field32(word, RXD_W3_L2PAD)) |
| rxdesc->dev_flags |= RXDONE_L2PAD; |
| |
| /* |
| * Process the RXWI structure that is at the start of the buffer. |
| */ |
| rt2800_process_rxwi(entry, rxdesc); |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev) |
| { |
| struct ieee80211_conf conf = { .flags = 0 }; |
| struct rt2x00lib_conf libconf = { .conf = &conf }; |
| |
| rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); |
| } |
| |
| static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| struct queue_entry *entry; |
| u32 status; |
| u8 qid; |
| int max_tx_done = 16; |
| |
| while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { |
| qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); |
| if (unlikely(qid >= QID_RX)) { |
| /* |
| * Unknown queue, this shouldn't happen. Just drop |
| * this tx status. |
| */ |
| WARNING(rt2x00dev, "Got TX status report with " |
| "unexpected pid %u, dropping\n", qid); |
| break; |
| } |
| |
| queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); |
| if (unlikely(queue == NULL)) { |
| /* |
| * The queue is NULL, this shouldn't happen. Stop |
| * processing here and drop the tx status |
| */ |
| WARNING(rt2x00dev, "Got TX status for an unavailable " |
| "queue %u, dropping\n", qid); |
| break; |
| } |
| |
| if (unlikely(rt2x00queue_empty(queue))) { |
| /* |
| * The queue is empty. Stop processing here |
| * and drop the tx status. |
| */ |
| WARNING(rt2x00dev, "Got TX status for an empty " |
| "queue %u, dropping\n", qid); |
| break; |
| } |
| |
| entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry)); |
| |
| if (--max_tx_done == 0) |
| break; |
| } |
| |
| return !max_tx_done; |
| } |
| |
| static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_field32 irq_field) |
| { |
| u32 reg; |
| |
| /* |
| * Enable a single interrupt. The interrupt mask register |
| * access needs locking. |
| */ |
| spin_lock_irq(&rt2x00dev->irqmask_lock); |
| rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| rt2x00_set_field32(®, irq_field, 1); |
| rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| } |
| |
| static void rt2800pci_txstatus_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| if (rt2800pci_txdone(rt2x00dev)) |
| tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| |
| /* |
| * No need to enable the tx status interrupt here as we always |
| * leave it enabled to minimize the possibility of a tx status |
| * register overflow. See comment in interrupt handler. |
| */ |
| } |
| |
| static void rt2800pci_pretbtt_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| rt2x00lib_pretbtt(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); |
| } |
| |
| static void rt2800pci_tbtt_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| rt2x00lib_beacondone(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); |
| } |
| |
| static void rt2800pci_rxdone_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| if (rt2x00pci_rxdone(rt2x00dev)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); |
| } |
| |
| static void rt2800pci_autowake_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| rt2800pci_wakeup(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP); |
| } |
| |
| static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 status; |
| int i; |
| |
| /* |
| * The TX_FIFO_STATUS interrupt needs special care. We should |
| * read TX_STA_FIFO but we should do it immediately as otherwise |
| * the register can overflow and we would lose status reports. |
| * |
| * Hence, read the TX_STA_FIFO register and copy all tx status |
| * reports into a kernel FIFO which is handled in the txstatus |
| * tasklet. We use a tasklet to process the tx status reports |
| * because we can schedule the tasklet multiple times (when the |
| * interrupt fires again during tx status processing). |
| * |
| * Furthermore we don't disable the TX_FIFO_STATUS |
| * interrupt here but leave it enabled so that the TX_STA_FIFO |
| * can also be read while the tx status tasklet gets executed. |
| * |
| * Since we have only one producer and one consumer we don't |
| * need to lock the kfifo. |
| */ |
| for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) { |
| rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status); |
| |
| if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) |
| break; |
| |
| if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) { |
| WARNING(rt2x00dev, "TX status FIFO overrun," |
| "drop tx status report.\n"); |
| break; |
| } |
| } |
| |
| /* Schedule the tasklet for processing the tx status. */ |
| tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| } |
| |
| static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg, mask; |
| |
| /* Read status and ACK all interrupts */ |
| rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| |
| if (!reg) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| /* |
| * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits |
| * for interrupts and interrupt masks we can just use the value of |
| * INT_SOURCE_CSR to create the interrupt mask. |
| */ |
| mask = ~reg; |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { |
| rt2800pci_txstatus_interrupt(rt2x00dev); |
| /* |
| * Never disable the TX_FIFO_STATUS interrupt. |
| */ |
| rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); |
| } |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) |
| tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) |
| tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) |
| tasklet_schedule(&rt2x00dev->autowake_tasklet); |
| |
| /* |
| * Disable all interrupts for which a tasklet was scheduled right now, |
| * the tasklet will reenable the appropriate interrupts. |
| */ |
| spin_lock(&rt2x00dev->irqmask_lock); |
| rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| reg &= mask; |
| rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock(&rt2x00dev->irqmask_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Read EEPROM into buffer |
| */ |
| if (rt2x00_is_soc(rt2x00dev)) |
| rt2800pci_read_eeprom_soc(rt2x00dev); |
| else if (rt2800pci_efuse_detect(rt2x00dev)) |
| rt2800pci_read_eeprom_efuse(rt2x00dev); |
| else |
| rt2800pci_read_eeprom_pci(rt2x00dev); |
| |
| return rt2800_validate_eeprom(rt2x00dev); |
| } |
| |
| static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt2800pci_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt2800_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt2800_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device has multiple filters for control frames |
| * and has a separate filter for PS Poll frames. |
| */ |
| __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); |
| __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags); |
| |
| /* |
| * This device has a pre tbtt interrupt and thus fetches |
| * a new beacon directly prior to transmission. |
| */ |
| __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags); |
| |
| /* |
| * This device requires firmware. |
| */ |
| if (!rt2x00_is_soc(rt2x00dev)) |
| __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags); |
| if (!modparam_nohwcrypt) |
| __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); |
| __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| static const struct ieee80211_ops rt2800pci_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .set_key = rt2x00mac_set_key, |
| .sw_scan_start = rt2x00mac_sw_scan_start, |
| .sw_scan_complete = rt2x00mac_sw_scan_complete, |
| .get_stats = rt2x00mac_get_stats, |
| .get_tkip_seq = rt2800_get_tkip_seq, |
| .set_rts_threshold = rt2800_set_rts_threshold, |
| .sta_add = rt2x00mac_sta_add, |
| .sta_remove = rt2x00mac_sta_remove, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt2800_conf_tx, |
| .get_tsf = rt2800_get_tsf, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| .ampdu_action = rt2800_ampdu_action, |
| .flush = rt2x00mac_flush, |
| .get_survey = rt2800_get_survey, |
| .get_ringparam = rt2x00mac_get_ringparam, |
| .tx_frames_pending = rt2x00mac_tx_frames_pending, |
| }; |
| |
| static const struct rt2800_ops rt2800pci_rt2800_ops = { |
| .register_read = rt2x00pci_register_read, |
| .register_read_lock = rt2x00pci_register_read, /* same for PCI */ |
| .register_write = rt2x00pci_register_write, |
| .register_write_lock = rt2x00pci_register_write, /* same for PCI */ |
| .register_multiread = rt2x00pci_register_multiread, |
| .register_multiwrite = rt2x00pci_register_multiwrite, |
| .regbusy_read = rt2x00pci_regbusy_read, |
| .drv_write_firmware = rt2800pci_write_firmware, |
| .drv_init_registers = rt2800pci_init_registers, |
| .drv_get_txwi = rt2800pci_get_txwi, |
| }; |
| |
| static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { |
| .irq_handler = rt2800pci_interrupt, |
| .txstatus_tasklet = rt2800pci_txstatus_tasklet, |
| .pretbtt_tasklet = rt2800pci_pretbtt_tasklet, |
| .tbtt_tasklet = rt2800pci_tbtt_tasklet, |
| .rxdone_tasklet = rt2800pci_rxdone_tasklet, |
| .autowake_tasklet = rt2800pci_autowake_tasklet, |
| .probe_hw = rt2800pci_probe_hw, |
| .get_firmware_name = rt2800pci_get_firmware_name, |
| .check_firmware = rt2800_check_firmware, |
| .load_firmware = rt2800_load_firmware, |
| .initialize = rt2x00pci_initialize, |
| .uninitialize = rt2x00pci_uninitialize, |
| .get_entry_state = rt2800pci_get_entry_state, |
| .clear_entry = rt2800pci_clear_entry, |
| .set_device_state = rt2800pci_set_device_state, |
| .rfkill_poll = rt2800_rfkill_poll, |
| .link_stats = rt2800_link_stats, |
| .reset_tuner = rt2800_reset_tuner, |
| .link_tuner = rt2800_link_tuner, |
| .gain_calibration = rt2800_gain_calibration, |
| .start_queue = rt2800pci_start_queue, |
| .kick_queue = rt2800pci_kick_queue, |
| .stop_queue = rt2800pci_stop_queue, |
| .flush_queue = rt2x00pci_flush_queue, |
| .write_tx_desc = rt2800pci_write_tx_desc, |
| .write_tx_data = rt2800_write_tx_data, |
| .write_beacon = rt2800_write_beacon, |
| .clear_beacon = rt2800_clear_beacon, |
| .fill_rxdone = rt2800pci_fill_rxdone, |
| .config_shared_key = rt2800_config_shared_key, |
| .config_pairwise_key = rt2800_config_pairwise_key, |
| .config_filter = rt2800_config_filter, |
| .config_intf = rt2800_config_intf, |
| .config_erp = rt2800_config_erp, |
| .config_ant = rt2800_config_ant, |
| .config = rt2800_config, |
| .sta_add = rt2800_sta_add, |
| .sta_remove = rt2800_sta_remove, |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_rx = { |
| .entry_num = 128, |
| .data_size = AGGREGATION_SIZE, |
| .desc_size = RXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_tx = { |
| .entry_num = 64, |
| .data_size = AGGREGATION_SIZE, |
| .desc_size = TXD_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct data_queue_desc rt2800pci_queue_bcn = { |
| .entry_num = 8, |
| .data_size = 0, /* No DMA required for beacons */ |
| .desc_size = TXWI_DESC_SIZE, |
| .priv_size = sizeof(struct queue_entry_priv_pci), |
| }; |
| |
| static const struct rt2x00_ops rt2800pci_ops = { |
| .name = KBUILD_MODNAME, |
| .max_sta_intf = 1, |
| .max_ap_intf = 8, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .extra_tx_headroom = TXWI_DESC_SIZE, |
| .rx = &rt2800pci_queue_rx, |
| .tx = &rt2800pci_queue_tx, |
| .bcn = &rt2800pci_queue_bcn, |
| .lib = &rt2800pci_rt2x00_ops, |
| .drv = &rt2800pci_rt2800_ops, |
| .hw = &rt2800pci_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt2800_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * RT2800pci module information. |
| */ |
| #ifdef CONFIG_PCI |
| static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = { |
| { PCI_DEVICE(0x1814, 0x0601) }, |
| { PCI_DEVICE(0x1814, 0x0681) }, |
| { PCI_DEVICE(0x1814, 0x0701) }, |
| { PCI_DEVICE(0x1814, 0x0781) }, |
| { PCI_DEVICE(0x1814, 0x3090) }, |
| { PCI_DEVICE(0x1814, 0x3091) }, |
| { PCI_DEVICE(0x1814, 0x3092) }, |
| { PCI_DEVICE(0x1432, 0x7708) }, |
| { PCI_DEVICE(0x1432, 0x7727) }, |
| { PCI_DEVICE(0x1432, 0x7728) }, |
| { PCI_DEVICE(0x1432, 0x7738) }, |
| { PCI_DEVICE(0x1432, 0x7748) }, |
| { PCI_DEVICE(0x1432, 0x7758) }, |
| { PCI_DEVICE(0x1432, 0x7768) }, |
| { PCI_DEVICE(0x1462, 0x891a) }, |
| { PCI_DEVICE(0x1a3b, 0x1059) }, |
| #ifdef CONFIG_RT2800PCI_RT33XX |
| { PCI_DEVICE(0x1814, 0x3390) }, |
| #endif |
| #ifdef CONFIG_RT2800PCI_RT35XX |
| { PCI_DEVICE(0x1432, 0x7711) }, |
| { PCI_DEVICE(0x1432, 0x7722) }, |
| { PCI_DEVICE(0x1814, 0x3060) }, |
| { PCI_DEVICE(0x1814, 0x3062) }, |
| { PCI_DEVICE(0x1814, 0x3562) }, |
| { PCI_DEVICE(0x1814, 0x3592) }, |
| { PCI_DEVICE(0x1814, 0x3593) }, |
| #endif |
| #ifdef CONFIG_RT2800PCI_RT53XX |
| { PCI_DEVICE(0x1814, 0x5390) }, |
| { PCI_DEVICE(0x1814, 0x539a) }, |
| { PCI_DEVICE(0x1814, 0x539f) }, |
| #endif |
| { 0, } |
| }; |
| #endif /* CONFIG_PCI */ |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); |
| MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); |
| #ifdef CONFIG_PCI |
| MODULE_FIRMWARE(FIRMWARE_RT2860); |
| MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); |
| #endif /* CONFIG_PCI */ |
| MODULE_LICENSE("GPL"); |
| |
| #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) |
| static int rt2800soc_probe(struct platform_device *pdev) |
| { |
| return rt2x00soc_probe(pdev, &rt2800pci_ops); |
| } |
| |
| static struct platform_driver rt2800soc_driver = { |
| .driver = { |
| .name = "rt2800_wmac", |
| .owner = THIS_MODULE, |
| .mod_name = KBUILD_MODNAME, |
| }, |
| .probe = rt2800soc_probe, |
| .remove = __devexit_p(rt2x00soc_remove), |
| .suspend = rt2x00soc_suspend, |
| .resume = rt2x00soc_resume, |
| }; |
| #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ |
| |
| #ifdef CONFIG_PCI |
| static int rt2800pci_probe(struct pci_dev *pci_dev, |
| const struct pci_device_id *id) |
| { |
| return rt2x00pci_probe(pci_dev, &rt2800pci_ops); |
| } |
| |
| static struct pci_driver rt2800pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt2800pci_device_table, |
| .probe = rt2800pci_probe, |
| .remove = __devexit_p(rt2x00pci_remove), |
| .suspend = rt2x00pci_suspend, |
| .resume = rt2x00pci_resume, |
| }; |
| #endif /* CONFIG_PCI */ |
| |
| static int __init rt2800pci_init(void) |
| { |
| int ret = 0; |
| |
| #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) |
| ret = platform_driver_register(&rt2800soc_driver); |
| if (ret) |
| return ret; |
| #endif |
| #ifdef CONFIG_PCI |
| ret = pci_register_driver(&rt2800pci_driver); |
| if (ret) { |
| #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) |
| platform_driver_unregister(&rt2800soc_driver); |
| #endif |
| return ret; |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| static void __exit rt2800pci_exit(void) |
| { |
| #ifdef CONFIG_PCI |
| pci_unregister_driver(&rt2800pci_driver); |
| #endif |
| #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) |
| platform_driver_unregister(&rt2800soc_driver); |
| #endif |
| } |
| |
| module_init(rt2800pci_init); |
| module_exit(rt2800pci_exit); |