blob: 0b5d09c8475d00bf35ee70c52cd9ae9483a56823 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright (C) 2014 Datera Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "bkey_methods.h"
#include "bkey_buf.h"
#include "btree_journal_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "recovery.h"
#include "reflink.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
#define DROP_THIS_NODE 10
#define DROP_PREV_NODE 11
static bool should_restart_for_topology_repair(struct bch_fs *c)
{
return c->opts.fix_errors != FSCK_FIX_no &&
!(c->recovery_passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology));
}
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
preempt_disable();
write_seqcount_begin(&c->gc_pos_lock);
c->gc_pos = new_pos;
write_seqcount_end(&c->gc_pos_lock);
preempt_enable();
}
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
__gc_pos_set(c, new_pos);
}
/*
* Missing: if an interior btree node is empty, we need to do something -
* perhaps just kill it
*/
static int bch2_gc_check_topology(struct bch_fs *c,
struct btree *b,
struct bkey_buf *prev,
struct bkey_buf cur,
bool is_last)
{
struct bpos node_start = b->data->min_key;
struct bpos node_end = b->data->max_key;
struct bpos expected_start = bkey_deleted(&prev->k->k)
? node_start
: bpos_successor(prev->k->k.p);
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
int ret = 0;
if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) {
struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k);
if (!bpos_eq(expected_start, bp->v.min_key)) {
bch2_topology_error(c);
if (bkey_deleted(&prev->k->k)) {
prt_printf(&buf1, "start of node: ");
bch2_bpos_to_text(&buf1, node_start);
} else {
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(prev->k));
}
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(cur.k));
if (__fsck_err(c,
FSCK_CAN_FIX|
FSCK_CAN_IGNORE|
FSCK_NO_RATELIMIT,
btree_node_topology_bad_min_key,
"btree node with incorrect min_key at btree %s level %u:\n"
" prev %s\n"
" cur %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf) && should_restart_for_topology_repair(c)) {
bch_info(c, "Halting mark and sweep to start topology repair pass");
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
goto err;
} else {
set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags);
}
}
}
if (is_last && !bpos_eq(cur.k->k.p, node_end)) {
bch2_topology_error(c);
printbuf_reset(&buf1);
printbuf_reset(&buf2);
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(cur.k));
bch2_bpos_to_text(&buf2, node_end);
if (__fsck_err(c, FSCK_CAN_FIX|FSCK_CAN_IGNORE|FSCK_NO_RATELIMIT,
btree_node_topology_bad_max_key,
"btree node with incorrect max_key at btree %s level %u:\n"
" %s\n"
" expected %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf) &&
should_restart_for_topology_repair(c)) {
bch_info(c, "Halting mark and sweep to start topology repair pass");
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
goto err;
} else {
set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags);
}
}
bch2_bkey_buf_copy(prev, c, cur.k);
err:
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst)
{
switch (b->key.k.type) {
case KEY_TYPE_btree_ptr: {
struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key);
dst->k.p = src->k.p;
dst->v.mem_ptr = 0;
dst->v.seq = b->data->keys.seq;
dst->v.sectors_written = 0;
dst->v.flags = 0;
dst->v.min_key = b->data->min_key;
set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k));
memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k));
break;
}
case KEY_TYPE_btree_ptr_v2:
bkey_copy(&dst->k_i, &b->key);
break;
default:
BUG();
}
}
static void bch2_btree_node_update_key_early(struct btree_trans *trans,
enum btree_id btree, unsigned level,
struct bkey_s_c old, struct bkey_i *new)
{
struct bch_fs *c = trans->c;
struct btree *b;
struct bkey_buf tmp;
int ret;
bch2_bkey_buf_init(&tmp);
bch2_bkey_buf_reassemble(&tmp, c, old);
b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true);
if (!IS_ERR_OR_NULL(b)) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, new);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
six_unlock_read(&b->c.lock);
}
bch2_bkey_buf_exit(&tmp, c);
}
static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min)
{
struct bkey_i_btree_ptr_v2 *new;
int ret;
new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL);
if (!new)
return -BCH_ERR_ENOMEM_gc_repair_key;
btree_ptr_to_v2(b, new);
b->data->min_key = new_min;
new->v.min_key = new_min;
SET_BTREE_PTR_RANGE_UPDATED(&new->v, true);
ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i);
if (ret) {
kfree(new);
return ret;
}
bch2_btree_node_drop_keys_outside_node(b);
bkey_copy(&b->key, &new->k_i);
return 0;
}
static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max)
{
struct bkey_i_btree_ptr_v2 *new;
int ret;
ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p);
if (ret)
return ret;
new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL);
if (!new)
return -BCH_ERR_ENOMEM_gc_repair_key;
btree_ptr_to_v2(b, new);
b->data->max_key = new_max;
new->k.p = new_max;
SET_BTREE_PTR_RANGE_UPDATED(&new->v, true);
ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i);
if (ret) {
kfree(new);
return ret;
}
bch2_btree_node_drop_keys_outside_node(b);
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, &new->k_i);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
return 0;
}
static int btree_repair_node_boundaries(struct bch_fs *c, struct btree *b,
struct btree *prev, struct btree *cur)
{
struct bpos expected_start = !prev
? b->data->min_key
: bpos_successor(prev->key.k.p);
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
int ret = 0;
if (!prev) {
prt_printf(&buf1, "start of node: ");
bch2_bpos_to_text(&buf1, b->data->min_key);
} else {
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&prev->key));
}
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(&cur->key));
if (prev &&
bpos_gt(expected_start, cur->data->min_key) &&
BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) {
/* cur overwrites prev: */
if (mustfix_fsck_err_on(bpos_ge(prev->data->min_key,
cur->data->min_key), c,
btree_node_topology_overwritten_by_next_node,
"btree node overwritten by next node at btree %s level %u:\n"
" node %s\n"
" next %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf)) {
ret = DROP_PREV_NODE;
goto out;
}
if (mustfix_fsck_err_on(!bpos_eq(prev->key.k.p,
bpos_predecessor(cur->data->min_key)), c,
btree_node_topology_bad_max_key,
"btree node with incorrect max_key at btree %s level %u:\n"
" node %s\n"
" next %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf))
ret = set_node_max(c, prev,
bpos_predecessor(cur->data->min_key));
} else {
/* prev overwrites cur: */
if (mustfix_fsck_err_on(bpos_ge(expected_start,
cur->data->max_key), c,
btree_node_topology_overwritten_by_prev_node,
"btree node overwritten by prev node at btree %s level %u:\n"
" prev %s\n"
" node %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf)) {
ret = DROP_THIS_NODE;
goto out;
}
if (mustfix_fsck_err_on(!bpos_eq(expected_start, cur->data->min_key), c,
btree_node_topology_bad_min_key,
"btree node with incorrect min_key at btree %s level %u:\n"
" prev %s\n"
" node %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf))
ret = set_node_min(c, cur, expected_start);
}
out:
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static int btree_repair_node_end(struct bch_fs *c, struct btree *b,
struct btree *child)
{
struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
int ret = 0;
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&child->key));
bch2_bpos_to_text(&buf2, b->key.k.p);
if (mustfix_fsck_err_on(!bpos_eq(child->key.k.p, b->key.k.p), c,
btree_node_topology_bad_max_key,
"btree node with incorrect max_key at btree %s level %u:\n"
" %s\n"
" expected %s",
bch2_btree_id_str(b->c.btree_id), b->c.level,
buf1.buf, buf2.buf)) {
ret = set_node_max(c, child, b->key.k.p);
if (ret)
goto err;
}
err:
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b)
{
struct bch_fs *c = trans->c;
struct btree_and_journal_iter iter;
struct bkey_s_c k;
struct bkey_buf prev_k, cur_k;
struct btree *prev = NULL, *cur = NULL;
bool have_child, dropped_children = false;
struct printbuf buf = PRINTBUF;
int ret = 0;
if (!b->c.level)
return 0;
again:
prev = NULL;
have_child = dropped_children = false;
bch2_bkey_buf_init(&prev_k);
bch2_bkey_buf_init(&cur_k);
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
bch2_btree_and_journal_iter_advance(&iter);
bch2_bkey_buf_reassemble(&cur_k, c, k);
cur = bch2_btree_node_get_noiter(trans, cur_k.k,
b->c.btree_id, b->c.level - 1,
false);
ret = PTR_ERR_OR_ZERO(cur);
printbuf_reset(&buf);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k));
if (mustfix_fsck_err_on(ret == -EIO, c,
btree_node_unreadable,
"Topology repair: unreadable btree node at btree %s level %u:\n"
" %s",
bch2_btree_id_str(b->c.btree_id),
b->c.level - 1,
buf.buf)) {
bch2_btree_node_evict(trans, cur_k.k);
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, cur_k.k->k.p);
cur = NULL;
if (ret)
break;
continue;
}
if (ret) {
bch_err_msg(c, ret, "getting btree node");
break;
}
ret = btree_repair_node_boundaries(c, b, prev, cur);
if (ret == DROP_THIS_NODE) {
six_unlock_read(&cur->c.lock);
bch2_btree_node_evict(trans, cur_k.k);
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, cur_k.k->k.p);
cur = NULL;
if (ret)
break;
continue;
}
if (prev)
six_unlock_read(&prev->c.lock);
prev = NULL;
if (ret == DROP_PREV_NODE) {
bch2_btree_node_evict(trans, prev_k.k);
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, prev_k.k->k.p);
if (ret)
break;
bch2_btree_and_journal_iter_exit(&iter);
bch2_bkey_buf_exit(&prev_k, c);
bch2_bkey_buf_exit(&cur_k, c);
goto again;
} else if (ret)
break;
prev = cur;
cur = NULL;
bch2_bkey_buf_copy(&prev_k, c, cur_k.k);
}
if (!ret && !IS_ERR_OR_NULL(prev)) {
BUG_ON(cur);
ret = btree_repair_node_end(c, b, prev);
}
if (!IS_ERR_OR_NULL(prev))
six_unlock_read(&prev->c.lock);
prev = NULL;
if (!IS_ERR_OR_NULL(cur))
six_unlock_read(&cur->c.lock);
cur = NULL;
if (ret)
goto err;
bch2_btree_and_journal_iter_exit(&iter);
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
bch2_bkey_buf_reassemble(&cur_k, c, k);
bch2_btree_and_journal_iter_advance(&iter);
cur = bch2_btree_node_get_noiter(trans, cur_k.k,
b->c.btree_id, b->c.level - 1,
false);
ret = PTR_ERR_OR_ZERO(cur);
if (ret) {
bch_err_msg(c, ret, "getting btree node");
goto err;
}
ret = bch2_btree_repair_topology_recurse(trans, cur);
six_unlock_read(&cur->c.lock);
cur = NULL;
if (ret == DROP_THIS_NODE) {
bch2_btree_node_evict(trans, cur_k.k);
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, cur_k.k->k.p);
dropped_children = true;
}
if (ret)
goto err;
have_child = true;
}
printbuf_reset(&buf);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
if (mustfix_fsck_err_on(!have_child, c,
btree_node_topology_interior_node_empty,
"empty interior btree node at btree %s level %u\n"
" %s",
bch2_btree_id_str(b->c.btree_id),
b->c.level, buf.buf))
ret = DROP_THIS_NODE;
err:
fsck_err:
if (!IS_ERR_OR_NULL(prev))
six_unlock_read(&prev->c.lock);
if (!IS_ERR_OR_NULL(cur))
six_unlock_read(&cur->c.lock);
bch2_btree_and_journal_iter_exit(&iter);
bch2_bkey_buf_exit(&prev_k, c);
bch2_bkey_buf_exit(&cur_k, c);
if (!ret && dropped_children)
goto again;
printbuf_exit(&buf);
return ret;
}
int bch2_check_topology(struct bch_fs *c)
{
struct btree_trans *trans = bch2_trans_get(c);
struct btree *b;
unsigned i;
int ret = 0;
for (i = 0; i < btree_id_nr_alive(c) && !ret; i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (!r->alive)
continue;
b = r->b;
if (btree_node_fake(b))
continue;
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
ret = bch2_btree_repair_topology_recurse(trans, b);
six_unlock_read(&b->c.lock);
if (ret == DROP_THIS_NODE) {
bch_err(c, "empty btree root - repair unimplemented");
ret = -BCH_ERR_fsck_repair_unimplemented;
}
}
bch2_trans_put(trans);
return ret;
}
static int bch2_check_fix_ptrs(struct btree_trans *trans, enum btree_id btree_id,
unsigned level, bool is_root,
struct bkey_s_c *k)
{
struct bch_fs *c = trans->c;
struct bkey_ptrs_c ptrs_c = bch2_bkey_ptrs_c(*k);
const union bch_extent_entry *entry_c;
struct extent_ptr_decoded p = { 0 };
bool do_update = false;
struct printbuf buf = PRINTBUF;
int ret = 0;
/*
* XXX
* use check_bucket_ref here
*/
bkey_for_each_ptr_decode(k->k, ptrs_c, p, entry_c) {
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct bucket *g = PTR_GC_BUCKET(ca, &p.ptr);
enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, &entry_c->ptr);
if (!g->gen_valid &&
(c->opts.reconstruct_alloc ||
fsck_err(c, ptr_to_missing_alloc_key,
"bucket %u:%zu data type %s ptr gen %u missing in alloc btree\n"
"while marking %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) {
if (!p.ptr.cached) {
g->gen_valid = true;
g->gen = p.ptr.gen;
} else {
do_update = true;
}
}
if (gen_cmp(p.ptr.gen, g->gen) > 0 &&
(c->opts.reconstruct_alloc ||
fsck_err(c, ptr_gen_newer_than_bucket_gen,
"bucket %u:%zu data type %s ptr gen in the future: %u > %u\n"
"while marking %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen, g->gen,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) {
if (!p.ptr.cached) {
g->gen_valid = true;
g->gen = p.ptr.gen;
g->data_type = 0;
g->dirty_sectors = 0;
g->cached_sectors = 0;
set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
} else {
do_update = true;
}
}
if (gen_cmp(g->gen, p.ptr.gen) > BUCKET_GC_GEN_MAX &&
(c->opts.reconstruct_alloc ||
fsck_err(c, ptr_gen_newer_than_bucket_gen,
"bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n"
"while marking %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), g->gen,
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))))
do_update = true;
if (!p.ptr.cached && gen_cmp(p.ptr.gen, g->gen) < 0 &&
(c->opts.reconstruct_alloc ||
fsck_err(c, stale_dirty_ptr,
"bucket %u:%zu data type %s stale dirty ptr: %u < %u\n"
"while marking %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen, g->gen,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))))
do_update = true;
if (data_type != BCH_DATA_btree && p.ptr.gen != g->gen)
continue;
if (fsck_err_on(bucket_data_type(g->data_type) &&
bucket_data_type(g->data_type) != data_type, c,
ptr_bucket_data_type_mismatch,
"bucket %u:%zu different types of data in same bucket: %s, %s\n"
"while marking %s",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[g->data_type],
bch2_data_types[data_type],
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) {
if (data_type == BCH_DATA_btree) {
g->data_type = data_type;
set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
} else {
do_update = true;
}
}
if (p.has_ec) {
struct gc_stripe *m = genradix_ptr(&c->gc_stripes, p.ec.idx);
if (fsck_err_on(!m || !m->alive, c,
ptr_to_missing_stripe,
"pointer to nonexistent stripe %llu\n"
"while marking %s",
(u64) p.ec.idx,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))
do_update = true;
if (fsck_err_on(m && m->alive && !bch2_ptr_matches_stripe_m(m, p), c,
ptr_to_incorrect_stripe,
"pointer does not match stripe %llu\n"
"while marking %s",
(u64) p.ec.idx,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))
do_update = true;
}
}
if (do_update) {
struct bkey_ptrs ptrs;
union bch_extent_entry *entry;
struct bch_extent_ptr *ptr;
struct bkey_i *new;
if (is_root) {
bch_err(c, "cannot update btree roots yet");
ret = -EINVAL;
goto err;
}
new = kmalloc(bkey_bytes(k->k), GFP_KERNEL);
if (!new) {
bch_err_msg(c, ret, "allocating new key");
ret = -BCH_ERR_ENOMEM_gc_repair_key;
goto err;
}
bkey_reassemble(new, *k);
if (level) {
/*
* We don't want to drop btree node pointers - if the
* btree node isn't there anymore, the read path will
* sort it out:
*/
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_GC_BUCKET(ca, ptr);
ptr->gen = g->gen;
}
} else {
bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_GC_BUCKET(ca, ptr);
enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, ptr);
(ptr->cached &&
(!g->gen_valid || gen_cmp(ptr->gen, g->gen) > 0)) ||
(!ptr->cached &&
gen_cmp(ptr->gen, g->gen) < 0) ||
gen_cmp(g->gen, ptr->gen) > BUCKET_GC_GEN_MAX ||
(g->data_type &&
g->data_type != data_type);
}));
again:
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
bkey_extent_entry_for_each(ptrs, entry) {
if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) {
struct gc_stripe *m = genradix_ptr(&c->gc_stripes,
entry->stripe_ptr.idx);
union bch_extent_entry *next_ptr;
bkey_extent_entry_for_each_from(ptrs, next_ptr, entry)
if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr)
goto found;
next_ptr = NULL;
found:
if (!next_ptr) {
bch_err(c, "aieee, found stripe ptr with no data ptr");
continue;
}
if (!m || !m->alive ||
!__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block],
&next_ptr->ptr,
m->sectors)) {
bch2_bkey_extent_entry_drop(new, entry);
goto again;
}
}
}
}
ret = bch2_journal_key_insert_take(c, btree_id, level, new);
if (ret) {
kfree(new);
goto err;
}
if (level)
bch2_btree_node_update_key_early(trans, btree_id, level - 1, *k, new);
if (0) {
printbuf_reset(&buf);
bch2_bkey_val_to_text(&buf, c, *k);
bch_info(c, "updated %s", buf.buf);
printbuf_reset(&buf);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(new));
bch_info(c, "new key %s", buf.buf);
}
*k = bkey_i_to_s_c(new);
}
err:
fsck_err:
printbuf_exit(&buf);
return ret;
}
/* marking of btree keys/nodes: */
static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id,
unsigned level, bool is_root,
struct bkey_s_c *k,
bool initial)
{
struct bch_fs *c = trans->c;
struct bkey deleted = KEY(0, 0, 0);
struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL };
unsigned flags =
BTREE_TRIGGER_GC|
(initial ? BTREE_TRIGGER_NOATOMIC : 0);
int ret = 0;
deleted.p = k->k->p;
if (initial) {
BUG_ON(bch2_journal_seq_verify &&
k->k->version.lo > atomic64_read(&c->journal.seq));
ret = bch2_check_fix_ptrs(trans, btree_id, level, is_root, k);
if (ret)
goto err;
if (fsck_err_on(k->k->version.lo > atomic64_read(&c->key_version), c,
bkey_version_in_future,
"key version number higher than recorded: %llu > %llu",
k->k->version.lo,
atomic64_read(&c->key_version)))
atomic64_set(&c->key_version, k->k->version.lo);
}
ret = commit_do(trans, NULL, NULL, 0,
bch2_mark_key(trans, btree_id, level, old, *k, flags));
fsck_err:
err:
if (ret)
bch_err_fn(c, ret);
return ret;
}
static int btree_gc_mark_node(struct btree_trans *trans, struct btree *b, bool initial)
{
struct bch_fs *c = trans->c;
struct btree_node_iter iter;
struct bkey unpacked;
struct bkey_s_c k;
struct bkey_buf prev, cur;
int ret = 0;
if (!btree_node_type_needs_gc(btree_node_type(b)))
return 0;
bch2_btree_node_iter_init_from_start(&iter, b);
bch2_bkey_buf_init(&prev);
bch2_bkey_buf_init(&cur);
bkey_init(&prev.k->k);
while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false,
&k, initial);
if (ret)
break;
bch2_btree_node_iter_advance(&iter, b);
if (b->c.level) {
bch2_bkey_buf_reassemble(&cur, c, k);
ret = bch2_gc_check_topology(c, b, &prev, cur,
bch2_btree_node_iter_end(&iter));
if (ret)
break;
}
}
bch2_bkey_buf_exit(&cur, c);
bch2_bkey_buf_exit(&prev, c);
return ret;
}
static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree_id,
bool initial, bool metadata_only)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct btree *b;
unsigned depth = metadata_only ? 1 : 0;
int ret = 0;
gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
__for_each_btree_node(trans, iter, btree_id, POS_MIN,
0, depth, BTREE_ITER_PREFETCH, b, ret) {
bch2_verify_btree_nr_keys(b);
gc_pos_set(c, gc_pos_btree_node(b));
ret = btree_gc_mark_node(trans, b, initial);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &iter);
if (ret)
return ret;
mutex_lock(&c->btree_root_lock);
b = bch2_btree_id_root(c, btree_id)->b;
if (!btree_node_fake(b)) {
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1,
true, &k, initial);
}
gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
mutex_unlock(&c->btree_root_lock);
return ret;
}
static int bch2_gc_btree_init_recurse(struct btree_trans *trans, struct btree *b,
unsigned target_depth)
{
struct bch_fs *c = trans->c;
struct btree_and_journal_iter iter;
struct bkey_s_c k;
struct bkey_buf cur, prev;
struct printbuf buf = PRINTBUF;
int ret = 0;
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
bch2_bkey_buf_init(&prev);
bch2_bkey_buf_init(&cur);
bkey_init(&prev.k->k);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level,
false, &k, true);
if (ret)
goto fsck_err;
if (b->c.level) {
bch2_bkey_buf_reassemble(&cur, c, k);
k = bkey_i_to_s_c(cur.k);
bch2_btree_and_journal_iter_advance(&iter);
ret = bch2_gc_check_topology(c, b,
&prev, cur,
!bch2_btree_and_journal_iter_peek(&iter).k);
if (ret)
goto fsck_err;
} else {
bch2_btree_and_journal_iter_advance(&iter);
}
}
if (b->c.level > target_depth) {
bch2_btree_and_journal_iter_exit(&iter);
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
struct btree *child;
bch2_bkey_buf_reassemble(&cur, c, k);
bch2_btree_and_journal_iter_advance(&iter);
child = bch2_btree_node_get_noiter(trans, cur.k,
b->c.btree_id, b->c.level - 1,
false);
ret = PTR_ERR_OR_ZERO(child);
if (ret == -EIO) {
bch2_topology_error(c);
if (__fsck_err(c,
FSCK_CAN_FIX|
FSCK_CAN_IGNORE|
FSCK_NO_RATELIMIT,
btree_node_read_error,
"Unreadable btree node at btree %s level %u:\n"
" %s",
bch2_btree_id_str(b->c.btree_id),
b->c.level - 1,
(printbuf_reset(&buf),
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur.k)), buf.buf)) &&
should_restart_for_topology_repair(c)) {
bch_info(c, "Halting mark and sweep to start topology repair pass");
ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
goto fsck_err;
} else {
/* Continue marking when opted to not
* fix the error: */
ret = 0;
set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags);
continue;
}
} else if (ret) {
bch_err_msg(c, ret, "getting btree node");
break;
}
ret = bch2_gc_btree_init_recurse(trans, child,
target_depth);
six_unlock_read(&child->c.lock);
if (ret)
break;
}
}
fsck_err:
bch2_bkey_buf_exit(&cur, c);
bch2_bkey_buf_exit(&prev, c);
bch2_btree_and_journal_iter_exit(&iter);
printbuf_exit(&buf);
return ret;
}
static int bch2_gc_btree_init(struct btree_trans *trans,
enum btree_id btree_id,
bool metadata_only)
{
struct bch_fs *c = trans->c;
struct btree *b;
unsigned target_depth = metadata_only ? 1 : 0;
struct printbuf buf = PRINTBUF;
int ret = 0;
b = bch2_btree_id_root(c, btree_id)->b;
if (btree_node_fake(b))
return 0;
six_lock_read(&b->c.lock, NULL, NULL);
printbuf_reset(&buf);
bch2_bpos_to_text(&buf, b->data->min_key);
if (mustfix_fsck_err_on(!bpos_eq(b->data->min_key, POS_MIN), c,
btree_root_bad_min_key,
"btree root with incorrect min_key: %s", buf.buf)) {
bch_err(c, "repair unimplemented");
ret = -BCH_ERR_fsck_repair_unimplemented;
goto fsck_err;
}
printbuf_reset(&buf);
bch2_bpos_to_text(&buf, b->data->max_key);
if (mustfix_fsck_err_on(!bpos_eq(b->data->max_key, SPOS_MAX), c,
btree_root_bad_max_key,
"btree root with incorrect max_key: %s", buf.buf)) {
bch_err(c, "repair unimplemented");
ret = -BCH_ERR_fsck_repair_unimplemented;
goto fsck_err;
}
if (b->c.level >= target_depth)
ret = bch2_gc_btree_init_recurse(trans, b, target_depth);
if (!ret) {
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, true,
&k, true);
}
fsck_err:
six_unlock_read(&b->c.lock);
if (ret < 0)
bch_err_fn(c, ret);
printbuf_exit(&buf);
return ret;
}
static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
{
return (int) btree_id_to_gc_phase(l) -
(int) btree_id_to_gc_phase(r);
}
static int bch2_gc_btrees(struct bch_fs *c, bool initial, bool metadata_only)
{
struct btree_trans *trans = bch2_trans_get(c);
enum btree_id ids[BTREE_ID_NR];
unsigned i;
int ret = 0;
for (i = 0; i < BTREE_ID_NR; i++)
ids[i] = i;
bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
for (i = 0; i < BTREE_ID_NR && !ret; i++)
ret = initial
? bch2_gc_btree_init(trans, ids[i], metadata_only)
: bch2_gc_btree(trans, ids[i], initial, metadata_only);
for (i = BTREE_ID_NR; i < btree_id_nr_alive(c) && !ret; i++) {
if (!bch2_btree_id_root(c, i)->alive)
continue;
ret = initial
? bch2_gc_btree_init(trans, i, metadata_only)
: bch2_gc_btree(trans, i, initial, metadata_only);
}
if (ret < 0)
bch_err_fn(c, ret);
bch2_trans_put(trans);
return ret;
}
static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
u64 start, u64 end,
enum bch_data_type type,
unsigned flags)
{
u64 b = sector_to_bucket(ca, start);
do {
unsigned sectors =
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
bch2_mark_metadata_bucket(c, ca, b, type, sectors,
gc_phase(GC_PHASE_SB), flags);
b++;
start += sectors;
} while (start < end);
}
static void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
unsigned flags)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
unsigned i;
u64 b;
for (i = 0; i < layout->nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout->sb_offset[i]);
if (offset == BCH_SB_SECTOR)
mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
BCH_DATA_sb, flags);
mark_metadata_sectors(c, ca, offset,
offset + (1 << layout->sb_max_size_bits),
BCH_DATA_sb, flags);
}
for (i = 0; i < ca->journal.nr; i++) {
b = ca->journal.buckets[i];
bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
ca->mi.bucket_size,
gc_phase(GC_PHASE_SB), flags);
}
}
static void bch2_mark_superblocks(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
mutex_lock(&c->sb_lock);
gc_pos_set(c, gc_phase(GC_PHASE_SB));
for_each_online_member(ca, c, i)
bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
mutex_unlock(&c->sb_lock);
}
#if 0
/* Also see bch2_pending_btree_node_free_insert_done() */
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
{
struct btree_update *as;
struct pending_btree_node_free *d;
mutex_lock(&c->btree_interior_update_lock);
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
for_each_pending_btree_node_free(c, as, d)
if (d->index_update_done)
bch2_mark_key(c, bkey_i_to_s_c(&d->key), BTREE_TRIGGER_GC);
mutex_unlock(&c->btree_interior_update_lock);
}
#endif
static void bch2_gc_free(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
genradix_free(&c->reflink_gc_table);
genradix_free(&c->gc_stripes);
for_each_member_device(ca, c, i) {
kvpfree(rcu_dereference_protected(ca->buckets_gc, 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
ca->buckets_gc = NULL;
free_percpu(ca->usage_gc);
ca->usage_gc = NULL;
}
free_percpu(c->usage_gc);
c->usage_gc = NULL;
}
static int bch2_gc_done(struct bch_fs *c,
bool initial, bool metadata_only)
{
struct bch_dev *ca = NULL;
struct printbuf buf = PRINTBUF;
bool verify = !metadata_only &&
!c->opts.reconstruct_alloc &&
(!initial || (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info)));
unsigned i, dev;
int ret = 0;
percpu_down_write(&c->mark_lock);
#define copy_field(_err, _f, _msg, ...) \
if (dst->_f != src->_f && \
(!verify || \
fsck_err(c, _err, _msg ": got %llu, should be %llu" \
, ##__VA_ARGS__, dst->_f, src->_f))) \
dst->_f = src->_f
#define copy_dev_field(_err, _f, _msg, ...) \
copy_field(_err, _f, "dev %u has wrong " _msg, dev, ##__VA_ARGS__)
#define copy_fs_field(_err, _f, _msg, ...) \
copy_field(_err, _f, "fs has wrong " _msg, ##__VA_ARGS__)
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
for_each_member_device(ca, c, dev) {
struct bch_dev_usage *dst = ca->usage_base;
struct bch_dev_usage *src = (void *)
bch2_acc_percpu_u64s((u64 __percpu *) ca->usage_gc,
dev_usage_u64s());
for (i = 0; i < BCH_DATA_NR; i++) {
copy_dev_field(dev_usage_buckets_wrong,
d[i].buckets, "%s buckets", bch2_data_types[i]);
copy_dev_field(dev_usage_sectors_wrong,
d[i].sectors, "%s sectors", bch2_data_types[i]);
copy_dev_field(dev_usage_fragmented_wrong,
d[i].fragmented, "%s fragmented", bch2_data_types[i]);
}
copy_dev_field(dev_usage_buckets_ec_wrong,
buckets_ec, "buckets_ec");
}
{
unsigned nr = fs_usage_u64s(c);
struct bch_fs_usage *dst = c->usage_base;
struct bch_fs_usage *src = (void *)
bch2_acc_percpu_u64s((u64 __percpu *) c->usage_gc, nr);
copy_fs_field(fs_usage_hidden_wrong,
hidden, "hidden");
copy_fs_field(fs_usage_btree_wrong,
btree, "btree");
if (!metadata_only) {
copy_fs_field(fs_usage_data_wrong,
data, "data");
copy_fs_field(fs_usage_cached_wrong,
cached, "cached");
copy_fs_field(fs_usage_reserved_wrong,
reserved, "reserved");
copy_fs_field(fs_usage_nr_inodes_wrong,
nr_inodes,"nr_inodes");
for (i = 0; i < BCH_REPLICAS_MAX; i++)
copy_fs_field(fs_usage_persistent_reserved_wrong,
persistent_reserved[i],
"persistent_reserved[%i]", i);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
if (metadata_only &&
(e->data_type == BCH_DATA_user ||
e->data_type == BCH_DATA_cached))
continue;
printbuf_reset(&buf);
bch2_replicas_entry_to_text(&buf, e);
copy_fs_field(fs_usage_replicas_wrong,
replicas[i], "%s", buf.buf);
}
}
#undef copy_fs_field
#undef copy_dev_field
#undef copy_stripe_field
#undef copy_field
fsck_err:
if (ca)
percpu_ref_put(&ca->ref);
if (ret)
bch_err_fn(c, ret);
percpu_up_write(&c->mark_lock);
printbuf_exit(&buf);
return ret;
}
static int bch2_gc_start(struct bch_fs *c)
{
struct bch_dev *ca = NULL;
unsigned i;
BUG_ON(c->usage_gc);
c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
sizeof(u64), GFP_KERNEL);
if (!c->usage_gc) {
bch_err(c, "error allocating c->usage_gc");
return -BCH_ERR_ENOMEM_gc_start;
}
for_each_member_device(ca, c, i) {
BUG_ON(ca->usage_gc);
ca->usage_gc = alloc_percpu(struct bch_dev_usage);
if (!ca->usage_gc) {
bch_err(c, "error allocating ca->usage_gc");
percpu_ref_put(&ca->ref);
return -BCH_ERR_ENOMEM_gc_start;
}
this_cpu_write(ca->usage_gc->d[BCH_DATA_free].buckets,
ca->mi.nbuckets - ca->mi.first_bucket);
}
return 0;
}
static int bch2_gc_reset(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
for_each_member_device(ca, c, i) {
free_percpu(ca->usage_gc);
ca->usage_gc = NULL;
}
free_percpu(c->usage_gc);
c->usage_gc = NULL;
return bch2_gc_start(c);
}
/* returns true if not equal */
static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l,
struct bch_alloc_v4 r)
{
return l.gen != r.gen ||
l.oldest_gen != r.oldest_gen ||
l.data_type != r.data_type ||
l.dirty_sectors != r.dirty_sectors ||
l.cached_sectors != r.cached_sectors ||
l.stripe_redundancy != r.stripe_redundancy ||
l.stripe != r.stripe;
}
static int bch2_alloc_write_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
bool metadata_only)
{
struct bch_fs *c = trans->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, iter->pos.inode);
struct bucket gc, *b;
struct bkey_i_alloc_v4 *a;
struct bch_alloc_v4 old_convert, new;
const struct bch_alloc_v4 *old;
enum bch_data_type type;
int ret;
if (bkey_ge(iter->pos, POS(ca->dev_idx, ca->mi.nbuckets)))
return 1;
old = bch2_alloc_to_v4(k, &old_convert);
new = *old;
percpu_down_read(&c->mark_lock);
b = gc_bucket(ca, iter->pos.offset);
/*
* b->data_type doesn't yet include need_discard & need_gc_gen states -
* fix that here:
*/
type = __alloc_data_type(b->dirty_sectors,
b->cached_sectors,
b->stripe,
*old,
b->data_type);
if (b->data_type != type) {
struct bch_dev_usage *u;
preempt_disable();
u = this_cpu_ptr(ca->usage_gc);
u->d[b->data_type].buckets--;
b->data_type = type;
u->d[b->data_type].buckets++;
preempt_enable();
}
gc = *b;
percpu_up_read(&c->mark_lock);
if (metadata_only &&
gc.data_type != BCH_DATA_sb &&
gc.data_type != BCH_DATA_journal &&
gc.data_type != BCH_DATA_btree)
return 0;
if (gen_after(old->gen, gc.gen))
return 0;
if (c->opts.reconstruct_alloc ||
fsck_err_on(new.data_type != gc.data_type, c,
alloc_key_data_type_wrong,
"bucket %llu:%llu gen %u has wrong data_type"
": got %s, should be %s",
iter->pos.inode, iter->pos.offset,
gc.gen,
bch2_data_types[new.data_type],
bch2_data_types[gc.data_type]))
new.data_type = gc.data_type;
#define copy_bucket_field(_errtype, _f) \
if (c->opts.reconstruct_alloc || \
fsck_err_on(new._f != gc._f, c, _errtype, \
"bucket %llu:%llu gen %u data type %s has wrong " #_f \
": got %u, should be %u", \
iter->pos.inode, iter->pos.offset, \
gc.gen, \
bch2_data_types[gc.data_type], \
new._f, gc._f)) \
new._f = gc._f; \
copy_bucket_field(alloc_key_gen_wrong,
gen);
copy_bucket_field(alloc_key_dirty_sectors_wrong,
dirty_sectors);
copy_bucket_field(alloc_key_cached_sectors_wrong,
cached_sectors);
copy_bucket_field(alloc_key_stripe_wrong,
stripe);
copy_bucket_field(alloc_key_stripe_redundancy_wrong,
stripe_redundancy);
#undef copy_bucket_field
if (!bch2_alloc_v4_cmp(*old, new))
return 0;
a = bch2_alloc_to_v4_mut(trans, k);
ret = PTR_ERR_OR_ZERO(a);
if (ret)
return ret;
a->v = new;
/*
* The trigger normally makes sure this is set, but we're not running
* triggers:
*/
if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ])
a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now));
ret = bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_NORUN);
fsck_err:
return ret;
}
static int bch2_gc_alloc_done(struct bch_fs *c, bool metadata_only)
{
struct btree_trans *trans = bch2_trans_get(c);
struct btree_iter iter;
struct bkey_s_c k;
struct bch_dev *ca;
unsigned i;
int ret = 0;
for_each_member_device(ca, c, i) {
ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc,
POS(ca->dev_idx, ca->mi.first_bucket),
BTREE_ITER_SLOTS|BTREE_ITER_PREFETCH, k,
NULL, NULL, BTREE_INSERT_LAZY_RW,
bch2_alloc_write_key(trans, &iter, k, metadata_only));
if (ret < 0) {
bch_err_fn(c, ret);
percpu_ref_put(&ca->ref);
break;
}
}
bch2_trans_put(trans);
return ret < 0 ? ret : 0;
}
static int bch2_gc_alloc_start(struct bch_fs *c, bool metadata_only)
{
struct bch_dev *ca;
struct btree_trans *trans = bch2_trans_get(c);
struct btree_iter iter;
struct bkey_s_c k;
struct bucket *g;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
unsigned i;
int ret;
for_each_member_device(ca, c, i) {
struct bucket_array *buckets = kvpmalloc(sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO);
if (!buckets) {
percpu_ref_put(&ca->ref);
bch_err(c, "error allocating ca->buckets[gc]");
ret = -BCH_ERR_ENOMEM_gc_alloc_start;
goto err;
}
buckets->first_bucket = ca->mi.first_bucket;
buckets->nbuckets = ca->mi.nbuckets;
rcu_assign_pointer(ca->buckets_gc, buckets);
}
for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
ca = bch_dev_bkey_exists(c, k.k->p.inode);
g = gc_bucket(ca, k.k->p.offset);
a = bch2_alloc_to_v4(k, &a_convert);
g->gen_valid = 1;
g->gen = a->gen;
if (metadata_only &&
(a->data_type == BCH_DATA_user ||
a->data_type == BCH_DATA_cached ||
a->data_type == BCH_DATA_parity)) {
g->data_type = a->data_type;
g->dirty_sectors = a->dirty_sectors;
g->cached_sectors = a->cached_sectors;
g->stripe = a->stripe;
g->stripe_redundancy = a->stripe_redundancy;
}
}
bch2_trans_iter_exit(trans, &iter);
err:
bch2_trans_put(trans);
if (ret)
bch_err_fn(c, ret);
return ret;
}
static void bch2_gc_alloc_reset(struct bch_fs *c, bool metadata_only)
{
struct bch_dev *ca;
unsigned i;
for_each_member_device(ca, c, i) {
struct bucket_array *buckets = gc_bucket_array(ca);
struct bucket *g;
for_each_bucket(g, buckets) {
if (metadata_only &&
(g->data_type == BCH_DATA_user ||
g->data_type == BCH_DATA_cached ||
g->data_type == BCH_DATA_parity))
continue;
g->data_type = 0;
g->dirty_sectors = 0;
g->cached_sectors = 0;
}
}
}
static int bch2_gc_write_reflink_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
size_t *idx)
{
struct bch_fs *c = trans->c;
const __le64 *refcount = bkey_refcount_c(k);
struct printbuf buf = PRINTBUF;
struct reflink_gc *r;
int ret = 0;
if (!refcount)
return 0;
while ((r = genradix_ptr(&c->reflink_gc_table, *idx)) &&
r->offset < k.k->p.offset)
++*idx;
if (!r ||
r->offset != k.k->p.offset ||
r->size != k.k->size) {
bch_err(c, "unexpected inconsistency walking reflink table at gc finish");
return -EINVAL;
}
if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c,
reflink_v_refcount_wrong,
"reflink key has wrong refcount:\n"
" %s\n"
" should be %u",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf),
r->refcount)) {
struct bkey_i *new = bch2_bkey_make_mut(trans, iter, &k, 0);
ret = PTR_ERR_OR_ZERO(new);
if (ret)
return ret;
if (!r->refcount)
new->k.type = KEY_TYPE_deleted;
else
*bkey_refcount(new) = cpu_to_le64(r->refcount);
}
fsck_err:
printbuf_exit(&buf);
return ret;
}
static int bch2_gc_reflink_done(struct bch_fs *c, bool metadata_only)
{
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
size_t idx = 0;
int ret = 0;
if (metadata_only)
return 0;
trans = bch2_trans_get(c);
ret = for_each_btree_key_commit(trans, iter,
BTREE_ID_reflink, POS_MIN,
BTREE_ITER_PREFETCH, k,
NULL, NULL, BTREE_INSERT_NOFAIL,
bch2_gc_write_reflink_key(trans, &iter, k, &idx));
c->reflink_gc_nr = 0;
bch2_trans_put(trans);
return ret;
}
static int bch2_gc_reflink_start(struct bch_fs *c,
bool metadata_only)
{
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
struct reflink_gc *r;
int ret = 0;
if (metadata_only)
return 0;
trans = bch2_trans_get(c);
c->reflink_gc_nr = 0;
for_each_btree_key(trans, iter, BTREE_ID_reflink, POS_MIN,
BTREE_ITER_PREFETCH, k, ret) {
const __le64 *refcount = bkey_refcount_c(k);
if (!refcount)
continue;
r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++,
GFP_KERNEL);
if (!r) {
ret = -BCH_ERR_ENOMEM_gc_reflink_start;
break;
}
r->offset = k.k->p.offset;
r->size = k.k->size;
r->refcount = 0;
}
bch2_trans_iter_exit(trans, &iter);
bch2_trans_put(trans);
return ret;
}
static void bch2_gc_reflink_reset(struct bch_fs *c, bool metadata_only)
{
struct genradix_iter iter;
struct reflink_gc *r;
genradix_for_each(&c->reflink_gc_table, iter, r)
r->refcount = 0;
}
static int bch2_gc_write_stripes_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
struct printbuf buf = PRINTBUF;
const struct bch_stripe *s;
struct gc_stripe *m;
bool bad = false;
unsigned i;
int ret = 0;
if (k.k->type != KEY_TYPE_stripe)
return 0;
s = bkey_s_c_to_stripe(k).v;
m = genradix_ptr(&c->gc_stripes, k.k->p.offset);
for (i = 0; i < s->nr_blocks; i++) {
u32 old = stripe_blockcount_get(s, i);
u32 new = (m ? m->block_sectors[i] : 0);
if (old != new) {
prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n",
i, old, new);
bad = true;
}
}
if (bad)
bch2_bkey_val_to_text(&buf, c, k);
if (fsck_err_on(bad, c, stripe_sector_count_wrong,
"%s", buf.buf)) {
struct bkey_i_stripe *new;
new = bch2_trans_kmalloc(trans, bkey_bytes(k.k));
ret = PTR_ERR_OR_ZERO(new);
if (ret)
return ret;
bkey_reassemble(&new->k_i, k);
for (i = 0; i < new->v.nr_blocks; i++)
stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0);
ret = bch2_trans_update(trans, iter, &new->k_i, 0);
}
fsck_err:
printbuf_exit(&buf);
return ret;
}
static int bch2_gc_stripes_done(struct bch_fs *c, bool metadata_only)
{
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
if (metadata_only)
return 0;
trans = bch2_trans_get(c);
ret = for_each_btree_key_commit(trans, iter,
BTREE_ID_stripes, POS_MIN,
BTREE_ITER_PREFETCH, k,
NULL, NULL, BTREE_INSERT_NOFAIL,
bch2_gc_write_stripes_key(trans, &iter, k));
bch2_trans_put(trans);
return ret;
}
static void bch2_gc_stripes_reset(struct bch_fs *c, bool metadata_only)
{
genradix_free(&c->gc_stripes);
}
/**
* bch2_gc - walk _all_ references to buckets, and recompute them:
*
* @c: filesystem object
* @initial: are we in recovery?
* @metadata_only: are we just checking metadata references, or everything?
*
* Returns: 0 on success, or standard errcode on failure
*
* Order matters here:
* - Concurrent GC relies on the fact that we have a total ordering for
* everything that GC walks - see gc_will_visit_node(),
* gc_will_visit_root()
*
* - also, references move around in the course of index updates and
* various other crap: everything needs to agree on the ordering
* references are allowed to move around in - e.g., we're allowed to
* start with a reference owned by an open_bucket (the allocator) and
* move it to the btree, but not the reverse.
*
* This is necessary to ensure that gc doesn't miss references that
* move around - if references move backwards in the ordering GC
* uses, GC could skip past them
*/
int bch2_gc(struct bch_fs *c, bool initial, bool metadata_only)
{
unsigned iter = 0;
int ret;
lockdep_assert_held(&c->state_lock);
down_write(&c->gc_lock);
bch2_btree_interior_updates_flush(c);
ret = bch2_gc_start(c) ?:
bch2_gc_alloc_start(c, metadata_only) ?:
bch2_gc_reflink_start(c, metadata_only);
if (ret)
goto out;
again:
gc_pos_set(c, gc_phase(GC_PHASE_START));
bch2_mark_superblocks(c);
ret = bch2_gc_btrees(c, initial, metadata_only);
if (ret)
goto out;
#if 0
bch2_mark_pending_btree_node_frees(c);
#endif
c->gc_count++;
if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) ||
(!iter && bch2_test_restart_gc)) {
if (iter++ > 2) {
bch_info(c, "Unable to fix bucket gens, looping");
ret = -EINVAL;
goto out;
}
/*
* XXX: make sure gens we fixed got saved
*/
bch_info(c, "Second GC pass needed, restarting:");
clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
bch2_gc_stripes_reset(c, metadata_only);
bch2_gc_alloc_reset(c, metadata_only);
bch2_gc_reflink_reset(c, metadata_only);
ret = bch2_gc_reset(c);
if (ret)
goto out;
/* flush fsck errors, reset counters */
bch2_flush_fsck_errs(c);
goto again;
}
out:
if (!ret) {
bch2_journal_block(&c->journal);
ret = bch2_gc_stripes_done(c, metadata_only) ?:
bch2_gc_reflink_done(c, metadata_only) ?:
bch2_gc_alloc_done(c, metadata_only) ?:
bch2_gc_done(c, initial, metadata_only);
bch2_journal_unblock(&c->journal);
}
percpu_down_write(&c->mark_lock);
/* Indicates that gc is no longer in progress: */
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
bch2_gc_free(c);
percpu_up_write(&c->mark_lock);
up_write(&c->gc_lock);
/*
* At startup, allocations can happen directly instead of via the
* allocator thread - issue wakeup in case they blocked on gc_lock:
*/
closure_wake_up(&c->freelist_wait);
if (ret)
bch_err_fn(c, ret);
return ret;
}
static int gc_btree_gens_key(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
struct bkey_i *u;
int ret;
percpu_down_read(&c->mark_lock);
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ptr_stale(ca, ptr) > 16) {
percpu_up_read(&c->mark_lock);
goto update;
}
}
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
u8 *gen = &ca->oldest_gen[PTR_BUCKET_NR(ca, ptr)];
if (gen_after(*gen, ptr->gen))
*gen = ptr->gen;
}
percpu_up_read(&c->mark_lock);
return 0;
update:
u = bch2_bkey_make_mut(trans, iter, &k, 0);
ret = PTR_ERR_OR_ZERO(u);
if (ret)
return ret;
bch2_extent_normalize(c, bkey_i_to_s(u));
return 0;
}
static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_s_c k)
{
struct bch_dev *ca = bch_dev_bkey_exists(trans->c, iter->pos.inode);
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert);
struct bkey_i_alloc_v4 *a_mut;
int ret;
if (a->oldest_gen == ca->oldest_gen[iter->pos.offset])
return 0;
a_mut = bch2_alloc_to_v4_mut(trans, k);
ret = PTR_ERR_OR_ZERO(a_mut);
if (ret)
return ret;
a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset];
a_mut->v.data_type = alloc_data_type(a_mut->v, a_mut->v.data_type);
return bch2_trans_update(trans, iter, &a_mut->k_i, 0);
}
int bch2_gc_gens(struct bch_fs *c)
{
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bch_dev *ca;
u64 b, start_time = local_clock();
unsigned i;
int ret;
/*
* Ideally we would be using state_lock and not gc_lock here, but that
* introduces a deadlock in the RO path - we currently take the state
* lock at the start of going RO, thus the gc thread may get stuck:
*/
if (!mutex_trylock(&c->gc_gens_lock))
return 0;
trace_and_count(c, gc_gens_start, c);
down_read(&c->gc_lock);
trans = bch2_trans_get(c);
for_each_member_device(ca, c, i) {
struct bucket_gens *gens = bucket_gens(ca);
BUG_ON(ca->oldest_gen);
ca->oldest_gen = kvmalloc(gens->nbuckets, GFP_KERNEL);
if (!ca->oldest_gen) {
percpu_ref_put(&ca->ref);
ret = -BCH_ERR_ENOMEM_gc_gens;
goto err;
}
for (b = gens->first_bucket;
b < gens->nbuckets; b++)
ca->oldest_gen[b] = gens->b[b];
}
for (i = 0; i < BTREE_ID_NR; i++)
if (btree_type_has_ptrs(i)) {
c->gc_gens_btree = i;
c->gc_gens_pos = POS_MIN;
ret = for_each_btree_key_commit(trans, iter, i,
POS_MIN,
BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS,
k,
NULL, NULL,
BTREE_INSERT_NOFAIL,
gc_btree_gens_key(trans, &iter, k));
if (ret && !bch2_err_matches(ret, EROFS))
bch_err_fn(c, ret);
if (ret)
goto err;
}
ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc,
POS_MIN,
BTREE_ITER_PREFETCH,
k,
NULL, NULL,
BTREE_INSERT_NOFAIL,
bch2_alloc_write_oldest_gen(trans, &iter, k));
if (ret && !bch2_err_matches(ret, EROFS))
bch_err_fn(c, ret);
if (ret)
goto err;
c->gc_gens_btree = 0;
c->gc_gens_pos = POS_MIN;
c->gc_count++;
bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
trace_and_count(c, gc_gens_end, c);
err:
for_each_member_device(ca, c, i) {
kvfree(ca->oldest_gen);
ca->oldest_gen = NULL;
}
bch2_trans_put(trans);
up_read(&c->gc_lock);
mutex_unlock(&c->gc_gens_lock);
return ret;
}
static int bch2_gc_thread(void *arg)
{
struct bch_fs *c = arg;
struct io_clock *clock = &c->io_clock[WRITE];
unsigned long last = atomic64_read(&clock->now);
unsigned last_kick = atomic_read(&c->kick_gc);
int ret;
set_freezable();
while (1) {
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 0;
}
if (atomic_read(&c->kick_gc) != last_kick)
break;
if (c->btree_gc_periodic) {
unsigned long next = last + c->capacity / 16;
if (atomic64_read(&clock->now) >= next)
break;
bch2_io_clock_schedule_timeout(clock, next);
} else {
schedule();
}
try_to_freeze();
}
__set_current_state(TASK_RUNNING);
last = atomic64_read(&clock->now);
last_kick = atomic_read(&c->kick_gc);
/*
* Full gc is currently incompatible with btree key cache:
*/
#if 0
ret = bch2_gc(c, false, false);
#else
ret = bch2_gc_gens(c);
#endif
if (ret < 0)
bch_err_fn(c, ret);
debug_check_no_locks_held();
}
return 0;
}
void bch2_gc_thread_stop(struct bch_fs *c)
{
struct task_struct *p;
p = c->gc_thread;
c->gc_thread = NULL;
if (p) {
kthread_stop(p);
put_task_struct(p);
}
}
int bch2_gc_thread_start(struct bch_fs *c)
{
struct task_struct *p;
if (c->gc_thread)
return 0;
p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name);
if (IS_ERR(p)) {
bch_err_fn(c, PTR_ERR(p));
return PTR_ERR(p);
}
get_task_struct(p);
c->gc_thread = p;
wake_up_process(p);
return 0;
}