| // SPDX-License-Identifier: GPL-2.0 |
| #include "bcachefs.h" |
| #include "checksum.h" |
| #include "compress.h" |
| #include "extents.h" |
| #include "super-io.h" |
| |
| #include <linux/lz4.h> |
| #include <linux/zlib.h> |
| #include <linux/zstd.h> |
| |
| /* Bounce buffer: */ |
| struct bbuf { |
| void *b; |
| enum { |
| BB_NONE, |
| BB_VMAP, |
| BB_KMALLOC, |
| BB_MEMPOOL, |
| } type; |
| int rw; |
| }; |
| |
| static struct bbuf __bounce_alloc(struct bch_fs *c, unsigned size, int rw) |
| { |
| void *b; |
| |
| BUG_ON(size > c->opts.encoded_extent_max); |
| |
| b = kmalloc(size, GFP_NOFS|__GFP_NOWARN); |
| if (b) |
| return (struct bbuf) { .b = b, .type = BB_KMALLOC, .rw = rw }; |
| |
| b = mempool_alloc(&c->compression_bounce[rw], GFP_NOFS); |
| if (b) |
| return (struct bbuf) { .b = b, .type = BB_MEMPOOL, .rw = rw }; |
| |
| BUG(); |
| } |
| |
| static bool bio_phys_contig(struct bio *bio, struct bvec_iter start) |
| { |
| struct bio_vec bv; |
| struct bvec_iter iter; |
| void *expected_start = NULL; |
| |
| __bio_for_each_bvec(bv, bio, iter, start) { |
| if (expected_start && |
| expected_start != page_address(bv.bv_page) + bv.bv_offset) |
| return false; |
| |
| expected_start = page_address(bv.bv_page) + |
| bv.bv_offset + bv.bv_len; |
| } |
| |
| return true; |
| } |
| |
| static struct bbuf __bio_map_or_bounce(struct bch_fs *c, struct bio *bio, |
| struct bvec_iter start, int rw) |
| { |
| struct bbuf ret; |
| struct bio_vec bv; |
| struct bvec_iter iter; |
| unsigned nr_pages = 0; |
| struct page *stack_pages[16]; |
| struct page **pages = NULL; |
| void *data; |
| |
| BUG_ON(start.bi_size > c->opts.encoded_extent_max); |
| |
| if (!PageHighMem(bio_iter_page(bio, start)) && |
| bio_phys_contig(bio, start)) |
| return (struct bbuf) { |
| .b = page_address(bio_iter_page(bio, start)) + |
| bio_iter_offset(bio, start), |
| .type = BB_NONE, .rw = rw |
| }; |
| |
| /* check if we can map the pages contiguously: */ |
| __bio_for_each_segment(bv, bio, iter, start) { |
| if (iter.bi_size != start.bi_size && |
| bv.bv_offset) |
| goto bounce; |
| |
| if (bv.bv_len < iter.bi_size && |
| bv.bv_offset + bv.bv_len < PAGE_SIZE) |
| goto bounce; |
| |
| nr_pages++; |
| } |
| |
| BUG_ON(DIV_ROUND_UP(start.bi_size, PAGE_SIZE) > nr_pages); |
| |
| pages = nr_pages > ARRAY_SIZE(stack_pages) |
| ? kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS) |
| : stack_pages; |
| if (!pages) |
| goto bounce; |
| |
| nr_pages = 0; |
| __bio_for_each_segment(bv, bio, iter, start) |
| pages[nr_pages++] = bv.bv_page; |
| |
| data = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); |
| if (pages != stack_pages) |
| kfree(pages); |
| |
| if (data) |
| return (struct bbuf) { |
| .b = data + bio_iter_offset(bio, start), |
| .type = BB_VMAP, .rw = rw |
| }; |
| bounce: |
| ret = __bounce_alloc(c, start.bi_size, rw); |
| |
| if (rw == READ) |
| memcpy_from_bio(ret.b, bio, start); |
| |
| return ret; |
| } |
| |
| static struct bbuf bio_map_or_bounce(struct bch_fs *c, struct bio *bio, int rw) |
| { |
| return __bio_map_or_bounce(c, bio, bio->bi_iter, rw); |
| } |
| |
| static void bio_unmap_or_unbounce(struct bch_fs *c, struct bbuf buf) |
| { |
| switch (buf.type) { |
| case BB_NONE: |
| break; |
| case BB_VMAP: |
| vunmap((void *) ((unsigned long) buf.b & PAGE_MASK)); |
| break; |
| case BB_KMALLOC: |
| kfree(buf.b); |
| break; |
| case BB_MEMPOOL: |
| mempool_free(buf.b, &c->compression_bounce[buf.rw]); |
| break; |
| } |
| } |
| |
| static inline void zlib_set_workspace(z_stream *strm, void *workspace) |
| { |
| #ifdef __KERNEL__ |
| strm->workspace = workspace; |
| #endif |
| } |
| |
| static int __bio_uncompress(struct bch_fs *c, struct bio *src, |
| void *dst_data, struct bch_extent_crc_unpacked crc) |
| { |
| struct bbuf src_data = { NULL }; |
| size_t src_len = src->bi_iter.bi_size; |
| size_t dst_len = crc.uncompressed_size << 9; |
| void *workspace; |
| int ret; |
| |
| src_data = bio_map_or_bounce(c, src, READ); |
| |
| switch (crc.compression_type) { |
| case BCH_COMPRESSION_TYPE_lz4_old: |
| case BCH_COMPRESSION_TYPE_lz4: |
| ret = LZ4_decompress_safe_partial(src_data.b, dst_data, |
| src_len, dst_len, dst_len); |
| if (ret != dst_len) |
| goto err; |
| break; |
| case BCH_COMPRESSION_TYPE_gzip: { |
| z_stream strm = { |
| .next_in = src_data.b, |
| .avail_in = src_len, |
| .next_out = dst_data, |
| .avail_out = dst_len, |
| }; |
| |
| workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); |
| |
| zlib_set_workspace(&strm, workspace); |
| zlib_inflateInit2(&strm, -MAX_WBITS); |
| ret = zlib_inflate(&strm, Z_FINISH); |
| |
| mempool_free(workspace, &c->decompress_workspace); |
| |
| if (ret != Z_STREAM_END) |
| goto err; |
| break; |
| } |
| case BCH_COMPRESSION_TYPE_zstd: { |
| ZSTD_DCtx *ctx; |
| size_t real_src_len = le32_to_cpup(src_data.b); |
| |
| if (real_src_len > src_len - 4) |
| goto err; |
| |
| workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); |
| ctx = zstd_init_dctx(workspace, zstd_dctx_workspace_bound()); |
| |
| ret = zstd_decompress_dctx(ctx, |
| dst_data, dst_len, |
| src_data.b + 4, real_src_len); |
| |
| mempool_free(workspace, &c->decompress_workspace); |
| |
| if (ret != dst_len) |
| goto err; |
| break; |
| } |
| default: |
| BUG(); |
| } |
| ret = 0; |
| out: |
| bio_unmap_or_unbounce(c, src_data); |
| return ret; |
| err: |
| ret = -EIO; |
| goto out; |
| } |
| |
| int bch2_bio_uncompress_inplace(struct bch_fs *c, struct bio *bio, |
| struct bch_extent_crc_unpacked *crc) |
| { |
| struct bbuf data = { NULL }; |
| size_t dst_len = crc->uncompressed_size << 9; |
| |
| /* bio must own its pages: */ |
| BUG_ON(!bio->bi_vcnt); |
| BUG_ON(DIV_ROUND_UP(crc->live_size, PAGE_SECTORS) > bio->bi_max_vecs); |
| |
| if (crc->uncompressed_size << 9 > c->opts.encoded_extent_max || |
| crc->compressed_size << 9 > c->opts.encoded_extent_max) { |
| bch_err(c, "error rewriting existing data: extent too big"); |
| return -EIO; |
| } |
| |
| data = __bounce_alloc(c, dst_len, WRITE); |
| |
| if (__bio_uncompress(c, bio, data.b, *crc)) { |
| if (!c->opts.no_data_io) |
| bch_err(c, "error rewriting existing data: decompression error"); |
| bio_unmap_or_unbounce(c, data); |
| return -EIO; |
| } |
| |
| /* |
| * XXX: don't have a good way to assert that the bio was allocated with |
| * enough space, we depend on bch2_move_extent doing the right thing |
| */ |
| bio->bi_iter.bi_size = crc->live_size << 9; |
| |
| memcpy_to_bio(bio, bio->bi_iter, data.b + (crc->offset << 9)); |
| |
| crc->csum_type = 0; |
| crc->compression_type = 0; |
| crc->compressed_size = crc->live_size; |
| crc->uncompressed_size = crc->live_size; |
| crc->offset = 0; |
| crc->csum = (struct bch_csum) { 0, 0 }; |
| |
| bio_unmap_or_unbounce(c, data); |
| return 0; |
| } |
| |
| int bch2_bio_uncompress(struct bch_fs *c, struct bio *src, |
| struct bio *dst, struct bvec_iter dst_iter, |
| struct bch_extent_crc_unpacked crc) |
| { |
| struct bbuf dst_data = { NULL }; |
| size_t dst_len = crc.uncompressed_size << 9; |
| int ret; |
| |
| if (crc.uncompressed_size << 9 > c->opts.encoded_extent_max || |
| crc.compressed_size << 9 > c->opts.encoded_extent_max) |
| return -EIO; |
| |
| dst_data = dst_len == dst_iter.bi_size |
| ? __bio_map_or_bounce(c, dst, dst_iter, WRITE) |
| : __bounce_alloc(c, dst_len, WRITE); |
| |
| ret = __bio_uncompress(c, src, dst_data.b, crc); |
| if (ret) |
| goto err; |
| |
| if (dst_data.type != BB_NONE && |
| dst_data.type != BB_VMAP) |
| memcpy_to_bio(dst, dst_iter, dst_data.b + (crc.offset << 9)); |
| err: |
| bio_unmap_or_unbounce(c, dst_data); |
| return ret; |
| } |
| |
| static int attempt_compress(struct bch_fs *c, |
| void *workspace, |
| void *dst, size_t dst_len, |
| void *src, size_t src_len, |
| struct bch_compression_opt compression) |
| { |
| enum bch_compression_type compression_type = |
| __bch2_compression_opt_to_type[compression.type]; |
| |
| switch (compression_type) { |
| case BCH_COMPRESSION_TYPE_lz4: |
| if (compression.level < LZ4HC_MIN_CLEVEL) { |
| int len = src_len; |
| int ret = LZ4_compress_destSize( |
| src, dst, |
| &len, dst_len, |
| workspace); |
| if (len < src_len) |
| return -len; |
| |
| return ret; |
| } else { |
| int ret = LZ4_compress_HC( |
| src, dst, |
| src_len, dst_len, |
| compression.level, |
| workspace); |
| |
| return ret ?: -1; |
| } |
| case BCH_COMPRESSION_TYPE_gzip: { |
| z_stream strm = { |
| .next_in = src, |
| .avail_in = src_len, |
| .next_out = dst, |
| .avail_out = dst_len, |
| }; |
| |
| zlib_set_workspace(&strm, workspace); |
| zlib_deflateInit2(&strm, |
| compression.level |
| ? clamp_t(unsigned, compression.level, |
| Z_BEST_SPEED, Z_BEST_COMPRESSION) |
| : Z_DEFAULT_COMPRESSION, |
| Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, |
| Z_DEFAULT_STRATEGY); |
| |
| if (zlib_deflate(&strm, Z_FINISH) != Z_STREAM_END) |
| return 0; |
| |
| if (zlib_deflateEnd(&strm) != Z_OK) |
| return 0; |
| |
| return strm.total_out; |
| } |
| case BCH_COMPRESSION_TYPE_zstd: { |
| /* |
| * rescale: |
| * zstd max compression level is 22, our max level is 15 |
| */ |
| unsigned level = min((compression.level * 3) / 2, zstd_max_clevel()); |
| ZSTD_parameters params = zstd_get_params(level, c->opts.encoded_extent_max); |
| ZSTD_CCtx *ctx = zstd_init_cctx(workspace, |
| zstd_cctx_workspace_bound(¶ms.cParams)); |
| |
| /* |
| * ZSTD requires that when we decompress we pass in the exact |
| * compressed size - rounding it up to the nearest sector |
| * doesn't work, so we use the first 4 bytes of the buffer for |
| * that. |
| * |
| * Additionally, the ZSTD code seems to have a bug where it will |
| * write just past the end of the buffer - so subtract a fudge |
| * factor (7 bytes) from the dst buffer size to account for |
| * that. |
| */ |
| size_t len = zstd_compress_cctx(ctx, |
| dst + 4, dst_len - 4 - 7, |
| src, src_len, |
| &c->zstd_params); |
| if (zstd_is_error(len)) |
| return 0; |
| |
| *((__le32 *) dst) = cpu_to_le32(len); |
| return len + 4; |
| } |
| default: |
| BUG(); |
| } |
| } |
| |
| static unsigned __bio_compress(struct bch_fs *c, |
| struct bio *dst, size_t *dst_len, |
| struct bio *src, size_t *src_len, |
| struct bch_compression_opt compression) |
| { |
| struct bbuf src_data = { NULL }, dst_data = { NULL }; |
| void *workspace; |
| enum bch_compression_type compression_type = |
| __bch2_compression_opt_to_type[compression.type]; |
| unsigned pad; |
| int ret = 0; |
| |
| BUG_ON(compression_type >= BCH_COMPRESSION_TYPE_NR); |
| BUG_ON(!mempool_initialized(&c->compress_workspace[compression_type])); |
| |
| /* If it's only one block, don't bother trying to compress: */ |
| if (src->bi_iter.bi_size <= c->opts.block_size) |
| return BCH_COMPRESSION_TYPE_incompressible; |
| |
| dst_data = bio_map_or_bounce(c, dst, WRITE); |
| src_data = bio_map_or_bounce(c, src, READ); |
| |
| workspace = mempool_alloc(&c->compress_workspace[compression_type], GFP_NOFS); |
| |
| *src_len = src->bi_iter.bi_size; |
| *dst_len = dst->bi_iter.bi_size; |
| |
| /* |
| * XXX: this algorithm sucks when the compression code doesn't tell us |
| * how much would fit, like LZ4 does: |
| */ |
| while (1) { |
| if (*src_len <= block_bytes(c)) { |
| ret = -1; |
| break; |
| } |
| |
| ret = attempt_compress(c, workspace, |
| dst_data.b, *dst_len, |
| src_data.b, *src_len, |
| compression); |
| if (ret > 0) { |
| *dst_len = ret; |
| ret = 0; |
| break; |
| } |
| |
| /* Didn't fit: should we retry with a smaller amount? */ |
| if (*src_len <= *dst_len) { |
| ret = -1; |
| break; |
| } |
| |
| /* |
| * If ret is negative, it's a hint as to how much data would fit |
| */ |
| BUG_ON(-ret >= *src_len); |
| |
| if (ret < 0) |
| *src_len = -ret; |
| else |
| *src_len -= (*src_len - *dst_len) / 2; |
| *src_len = round_down(*src_len, block_bytes(c)); |
| } |
| |
| mempool_free(workspace, &c->compress_workspace[compression_type]); |
| |
| if (ret) |
| goto err; |
| |
| /* Didn't get smaller: */ |
| if (round_up(*dst_len, block_bytes(c)) >= *src_len) |
| goto err; |
| |
| pad = round_up(*dst_len, block_bytes(c)) - *dst_len; |
| |
| memset(dst_data.b + *dst_len, 0, pad); |
| *dst_len += pad; |
| |
| if (dst_data.type != BB_NONE && |
| dst_data.type != BB_VMAP) |
| memcpy_to_bio(dst, dst->bi_iter, dst_data.b); |
| |
| BUG_ON(!*dst_len || *dst_len > dst->bi_iter.bi_size); |
| BUG_ON(!*src_len || *src_len > src->bi_iter.bi_size); |
| BUG_ON(*dst_len & (block_bytes(c) - 1)); |
| BUG_ON(*src_len & (block_bytes(c) - 1)); |
| ret = compression_type; |
| out: |
| bio_unmap_or_unbounce(c, src_data); |
| bio_unmap_or_unbounce(c, dst_data); |
| return ret; |
| err: |
| ret = BCH_COMPRESSION_TYPE_incompressible; |
| goto out; |
| } |
| |
| unsigned bch2_bio_compress(struct bch_fs *c, |
| struct bio *dst, size_t *dst_len, |
| struct bio *src, size_t *src_len, |
| unsigned compression_opt) |
| { |
| unsigned orig_dst = dst->bi_iter.bi_size; |
| unsigned orig_src = src->bi_iter.bi_size; |
| unsigned compression_type; |
| |
| /* Don't consume more than BCH_ENCODED_EXTENT_MAX from @src: */ |
| src->bi_iter.bi_size = min_t(unsigned, src->bi_iter.bi_size, |
| c->opts.encoded_extent_max); |
| /* Don't generate a bigger output than input: */ |
| dst->bi_iter.bi_size = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); |
| |
| compression_type = |
| __bio_compress(c, dst, dst_len, src, src_len, |
| bch2_compression_decode(compression_opt)); |
| |
| dst->bi_iter.bi_size = orig_dst; |
| src->bi_iter.bi_size = orig_src; |
| return compression_type; |
| } |
| |
| static int __bch2_fs_compress_init(struct bch_fs *, u64); |
| |
| #define BCH_FEATURE_none 0 |
| |
| static const unsigned bch2_compression_opt_to_feature[] = { |
| #define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_FEATURE_##t, |
| BCH_COMPRESSION_OPTS() |
| #undef x |
| }; |
| |
| #undef BCH_FEATURE_none |
| |
| static int __bch2_check_set_has_compressed_data(struct bch_fs *c, u64 f) |
| { |
| int ret = 0; |
| |
| if ((c->sb.features & f) == f) |
| return 0; |
| |
| mutex_lock(&c->sb_lock); |
| |
| if ((c->sb.features & f) == f) { |
| mutex_unlock(&c->sb_lock); |
| return 0; |
| } |
| |
| ret = __bch2_fs_compress_init(c, c->sb.features|f); |
| if (ret) { |
| mutex_unlock(&c->sb_lock); |
| return ret; |
| } |
| |
| c->disk_sb.sb->features[0] |= cpu_to_le64(f); |
| bch2_write_super(c); |
| mutex_unlock(&c->sb_lock); |
| |
| return 0; |
| } |
| |
| int bch2_check_set_has_compressed_data(struct bch_fs *c, |
| unsigned compression_opt) |
| { |
| unsigned compression_type = bch2_compression_decode(compression_opt).type; |
| |
| BUG_ON(compression_type >= ARRAY_SIZE(bch2_compression_opt_to_feature)); |
| |
| return compression_type |
| ? __bch2_check_set_has_compressed_data(c, |
| 1ULL << bch2_compression_opt_to_feature[compression_type]) |
| : 0; |
| } |
| |
| void bch2_fs_compress_exit(struct bch_fs *c) |
| { |
| unsigned i; |
| |
| mempool_exit(&c->decompress_workspace); |
| for (i = 0; i < ARRAY_SIZE(c->compress_workspace); i++) |
| mempool_exit(&c->compress_workspace[i]); |
| mempool_exit(&c->compression_bounce[WRITE]); |
| mempool_exit(&c->compression_bounce[READ]); |
| } |
| |
| static int __bch2_fs_compress_init(struct bch_fs *c, u64 features) |
| { |
| size_t decompress_workspace_size = 0; |
| ZSTD_parameters params = zstd_get_params(zstd_max_clevel(), |
| c->opts.encoded_extent_max); |
| struct { |
| unsigned feature; |
| enum bch_compression_type type; |
| size_t compress_workspace; |
| size_t decompress_workspace; |
| } compression_types[] = { |
| { BCH_FEATURE_lz4, BCH_COMPRESSION_TYPE_lz4, |
| max_t(size_t, LZ4_MEM_COMPRESS, LZ4HC_MEM_COMPRESS), |
| 0 }, |
| { BCH_FEATURE_gzip, BCH_COMPRESSION_TYPE_gzip, |
| zlib_deflate_workspacesize(MAX_WBITS, DEF_MEM_LEVEL), |
| zlib_inflate_workspacesize(), }, |
| { BCH_FEATURE_zstd, BCH_COMPRESSION_TYPE_zstd, |
| zstd_cctx_workspace_bound(¶ms.cParams), |
| zstd_dctx_workspace_bound() }, |
| }, *i; |
| bool have_compressed = false; |
| |
| c->zstd_params = params; |
| |
| for (i = compression_types; |
| i < compression_types + ARRAY_SIZE(compression_types); |
| i++) |
| have_compressed |= (features & (1 << i->feature)) != 0; |
| |
| if (!have_compressed) |
| return 0; |
| |
| if (!mempool_initialized(&c->compression_bounce[READ]) && |
| mempool_init_kvpmalloc_pool(&c->compression_bounce[READ], |
| 1, c->opts.encoded_extent_max)) |
| return -BCH_ERR_ENOMEM_compression_bounce_read_init; |
| |
| if (!mempool_initialized(&c->compression_bounce[WRITE]) && |
| mempool_init_kvpmalloc_pool(&c->compression_bounce[WRITE], |
| 1, c->opts.encoded_extent_max)) |
| return -BCH_ERR_ENOMEM_compression_bounce_write_init; |
| |
| for (i = compression_types; |
| i < compression_types + ARRAY_SIZE(compression_types); |
| i++) { |
| decompress_workspace_size = |
| max(decompress_workspace_size, i->decompress_workspace); |
| |
| if (!(features & (1 << i->feature))) |
| continue; |
| |
| if (mempool_initialized(&c->compress_workspace[i->type])) |
| continue; |
| |
| if (mempool_init_kvpmalloc_pool( |
| &c->compress_workspace[i->type], |
| 1, i->compress_workspace)) |
| return -BCH_ERR_ENOMEM_compression_workspace_init; |
| } |
| |
| if (!mempool_initialized(&c->decompress_workspace) && |
| mempool_init_kvpmalloc_pool(&c->decompress_workspace, |
| 1, decompress_workspace_size)) |
| return -BCH_ERR_ENOMEM_decompression_workspace_init; |
| |
| return 0; |
| } |
| |
| static u64 compression_opt_to_feature(unsigned v) |
| { |
| unsigned type = bch2_compression_decode(v).type; |
| |
| return BIT_ULL(bch2_compression_opt_to_feature[type]); |
| } |
| |
| int bch2_fs_compress_init(struct bch_fs *c) |
| { |
| u64 f = c->sb.features; |
| |
| f |= compression_opt_to_feature(c->opts.compression); |
| f |= compression_opt_to_feature(c->opts.background_compression); |
| |
| return __bch2_fs_compress_init(c, f); |
| } |
| |
| int bch2_opt_compression_parse(struct bch_fs *c, const char *_val, u64 *res, |
| struct printbuf *err) |
| { |
| char *val = kstrdup(_val, GFP_KERNEL); |
| char *p = val, *type_str, *level_str; |
| struct bch_compression_opt opt = { 0 }; |
| int ret; |
| |
| if (!val) |
| return -ENOMEM; |
| |
| type_str = strsep(&p, ":"); |
| level_str = p; |
| |
| ret = match_string(bch2_compression_opts, -1, type_str); |
| if (ret < 0 && err) |
| prt_str(err, "invalid compression type"); |
| if (ret < 0) |
| goto err; |
| |
| opt.type = ret; |
| |
| if (level_str) { |
| unsigned level; |
| |
| ret = kstrtouint(level_str, 10, &level); |
| if (!ret && !opt.type && level) |
| ret = -EINVAL; |
| if (!ret && level > 15) |
| ret = -EINVAL; |
| if (ret < 0 && err) |
| prt_str(err, "invalid compression level"); |
| if (ret < 0) |
| goto err; |
| |
| opt.level = level; |
| } |
| |
| *res = bch2_compression_encode(opt); |
| err: |
| kfree(val); |
| return ret; |
| } |
| |
| void bch2_compression_opt_to_text(struct printbuf *out, u64 v) |
| { |
| struct bch_compression_opt opt = bch2_compression_decode(v); |
| |
| if (opt.type < BCH_COMPRESSION_OPT_NR) |
| prt_str(out, bch2_compression_opts[opt.type]); |
| else |
| prt_printf(out, "(unknown compression opt %u)", opt.type); |
| if (opt.level) |
| prt_printf(out, ":%u", opt.level); |
| } |
| |
| void bch2_opt_compression_to_text(struct printbuf *out, |
| struct bch_fs *c, |
| struct bch_sb *sb, |
| u64 v) |
| { |
| return bch2_compression_opt_to_text(out, v); |
| } |
| |
| int bch2_opt_compression_validate(u64 v, struct printbuf *err) |
| { |
| if (!bch2_compression_opt_valid(v)) { |
| prt_printf(err, "invalid compression opt %llu", v); |
| return -BCH_ERR_invalid_sb_opt_compression; |
| } |
| |
| return 0; |
| } |