blob: f61bd89734c588e7c5314859f7245c7e081bba87 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
/* TSN endpoint Ethernet MAC driver
*
* The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
* communication. It is designed for endpoints within TSN (Time Sensitive
* Networking) networks; e.g., for PLCs in the industrial automation case.
*
* It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
* by the driver.
*
* More information can be found here:
* - www.embedded-experts.at/tsn
* - www.engleder-embedded.com
*/
#include "tsnep.h"
#include "tsnep_hw.h"
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include <linux/phy.h>
#include <linux/iopoll.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <net/page_pool/helpers.h>
#include <net/xdp_sock_drv.h>
#define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
#define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
#define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
/* XSK buffer shall store at least Q-in-Q frame */
#define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
ETH_FRAME_LEN + ETH_FCS_LEN + \
VLAN_HLEN * 2, 4))
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
#define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
#else
#define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
#endif
#define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
#define TSNEP_COALESCE_USECS_DEFAULT 64
#define TSNEP_COALESCE_USECS_MAX ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
#define TSNEP_TX_TYPE_SKB BIT(0)
#define TSNEP_TX_TYPE_SKB_FRAG BIT(1)
#define TSNEP_TX_TYPE_XDP_TX BIT(2)
#define TSNEP_TX_TYPE_XDP_NDO BIT(3)
#define TSNEP_TX_TYPE_XDP (TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
#define TSNEP_TX_TYPE_XSK BIT(4)
#define TSNEP_XDP_TX BIT(0)
#define TSNEP_XDP_REDIRECT BIT(1)
static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
{
iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
}
static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
{
mask |= ECM_INT_DISABLE;
iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
}
static irqreturn_t tsnep_irq(int irq, void *arg)
{
struct tsnep_adapter *adapter = arg;
u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
/* acknowledge interrupt */
if (active != 0)
iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
/* handle link interrupt */
if ((active & ECM_INT_LINK) != 0)
phy_mac_interrupt(adapter->netdev->phydev);
/* handle TX/RX queue 0 interrupt */
if ((active & adapter->queue[0].irq_mask) != 0) {
tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
napi_schedule(&adapter->queue[0].napi);
}
return IRQ_HANDLED;
}
static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
{
struct tsnep_queue *queue = arg;
/* handle TX/RX queue interrupt */
tsnep_disable_irq(queue->adapter, queue->irq_mask);
napi_schedule(&queue->napi);
return IRQ_HANDLED;
}
int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
{
if (usecs > TSNEP_COALESCE_USECS_MAX)
return -ERANGE;
usecs /= ECM_INT_DELAY_BASE_US;
usecs <<= ECM_INT_DELAY_SHIFT;
usecs &= ECM_INT_DELAY_MASK;
queue->irq_delay &= ~ECM_INT_DELAY_MASK;
queue->irq_delay |= usecs;
iowrite8(queue->irq_delay, queue->irq_delay_addr);
return 0;
}
u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
{
u32 usecs;
usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
usecs >>= ECM_INT_DELAY_SHIFT;
usecs *= ECM_INT_DELAY_BASE_US;
return usecs;
}
static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
{
struct tsnep_adapter *adapter = bus->priv;
u32 md;
int retval;
md = ECM_MD_READ;
if (!adapter->suppress_preamble)
md |= ECM_MD_PREAMBLE;
md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
iowrite32(md, adapter->addr + ECM_MD_CONTROL);
retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
!(md & ECM_MD_BUSY), 16, 1000);
if (retval != 0)
return retval;
return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
}
static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct tsnep_adapter *adapter = bus->priv;
u32 md;
int retval;
md = ECM_MD_WRITE;
if (!adapter->suppress_preamble)
md |= ECM_MD_PREAMBLE;
md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
iowrite32(md, adapter->addr + ECM_MD_CONTROL);
retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
!(md & ECM_MD_BUSY), 16, 1000);
if (retval != 0)
return retval;
return 0;
}
static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
{
u32 mode;
switch (adapter->phydev->speed) {
case SPEED_100:
mode = ECM_LINK_MODE_100;
break;
case SPEED_1000:
mode = ECM_LINK_MODE_1000;
break;
default:
mode = ECM_LINK_MODE_OFF;
break;
}
iowrite32(mode, adapter->addr + ECM_STATUS);
}
static void tsnep_phy_link_status_change(struct net_device *netdev)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
if (phydev->link)
tsnep_set_link_mode(adapter);
phy_print_status(netdev->phydev);
}
static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
{
int retval;
retval = phy_loopback(adapter->phydev, enable);
/* PHY link state change is not signaled if loopback is enabled, it
* would delay a working loopback anyway, let's ensure that loopback
* is working immediately by setting link mode directly
*/
if (!retval && enable)
tsnep_set_link_mode(adapter);
return retval;
}
static int tsnep_phy_open(struct tsnep_adapter *adapter)
{
struct phy_device *phydev;
struct ethtool_eee ethtool_eee;
int retval;
retval = phy_connect_direct(adapter->netdev, adapter->phydev,
tsnep_phy_link_status_change,
adapter->phy_mode);
if (retval)
return retval;
phydev = adapter->netdev->phydev;
/* MAC supports only 100Mbps|1000Mbps full duplex
* SPE (Single Pair Ethernet) is also an option but not implemented yet
*/
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
/* disable EEE autoneg, EEE not supported by TSNEP */
memset(&ethtool_eee, 0, sizeof(ethtool_eee));
phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
adapter->phydev->irq = PHY_MAC_INTERRUPT;
phy_start(adapter->phydev);
return 0;
}
static void tsnep_phy_close(struct tsnep_adapter *adapter)
{
phy_stop(adapter->netdev->phydev);
phy_disconnect(adapter->netdev->phydev);
}
static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
{
struct device *dmadev = tx->adapter->dmadev;
int i;
memset(tx->entry, 0, sizeof(tx->entry));
for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
if (tx->page[i]) {
dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
tx->page_dma[i]);
tx->page[i] = NULL;
tx->page_dma[i] = 0;
}
}
}
static int tsnep_tx_ring_create(struct tsnep_tx *tx)
{
struct device *dmadev = tx->adapter->dmadev;
struct tsnep_tx_entry *entry;
struct tsnep_tx_entry *next_entry;
int i, j;
int retval;
for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
tx->page[i] =
dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
GFP_KERNEL);
if (!tx->page[i]) {
retval = -ENOMEM;
goto alloc_failed;
}
for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
entry->desc_wb = (struct tsnep_tx_desc_wb *)
(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
entry->desc = (struct tsnep_tx_desc *)
(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
entry->owner_user_flag = false;
}
}
for (i = 0; i < TSNEP_RING_SIZE; i++) {
entry = &tx->entry[i];
next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
}
return 0;
alloc_failed:
tsnep_tx_ring_cleanup(tx);
return retval;
}
static void tsnep_tx_init(struct tsnep_tx *tx)
{
dma_addr_t dma;
dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
tx->write = 0;
tx->read = 0;
tx->owner_counter = 1;
tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
}
static void tsnep_tx_enable(struct tsnep_tx *tx)
{
struct netdev_queue *nq;
nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
__netif_tx_lock_bh(nq);
netif_tx_wake_queue(nq);
__netif_tx_unlock_bh(nq);
}
static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
{
struct netdev_queue *nq;
u32 val;
nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
__netif_tx_lock_bh(nq);
netif_tx_stop_queue(nq);
__netif_tx_unlock_bh(nq);
/* wait until TX is done in hardware */
readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
1000000);
/* wait until TX is also done in software */
while (READ_ONCE(tx->read) != tx->write) {
napi_schedule(napi);
napi_synchronize(napi);
}
}
static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
bool last)
{
struct tsnep_tx_entry *entry = &tx->entry[index];
entry->properties = 0;
/* xdpf and zc are union with skb */
if (entry->skb) {
entry->properties = length & TSNEP_DESC_LENGTH_MASK;
entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
if ((entry->type & TSNEP_TX_TYPE_SKB) &&
(skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
/* toggle user flag to prevent false acknowledge
*
* Only the first fragment is acknowledged. For all other
* fragments no acknowledge is done and the last written owner
* counter stays in the writeback descriptor. Therefore, it is
* possible that the last written owner counter is identical to
* the new incremented owner counter and a false acknowledge is
* detected before the real acknowledge has been done by
* hardware.
*
* The user flag is used to prevent this situation. The user
* flag is copied to the writeback descriptor by the hardware
* and is used as additional acknowledge data. By toggeling the
* user flag only for the first fragment (which is
* acknowledged), it is guaranteed that the last acknowledge
* done for this descriptor has used a different user flag and
* cannot be detected as false acknowledge.
*/
entry->owner_user_flag = !entry->owner_user_flag;
}
if (last)
entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
if (index == tx->increment_owner_counter) {
tx->owner_counter++;
if (tx->owner_counter == 4)
tx->owner_counter = 1;
tx->increment_owner_counter--;
if (tx->increment_owner_counter < 0)
tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
}
entry->properties |=
(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
TSNEP_DESC_OWNER_COUNTER_MASK;
if (entry->owner_user_flag)
entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
entry->desc->more_properties =
__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
/* descriptor properties shall be written last, because valid data is
* signaled there
*/
dma_wmb();
entry->desc->properties = __cpu_to_le32(entry->properties);
}
static int tsnep_tx_desc_available(struct tsnep_tx *tx)
{
if (tx->read <= tx->write)
return TSNEP_RING_SIZE - tx->write + tx->read - 1;
else
return tx->read - tx->write - 1;
}
static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
{
struct device *dmadev = tx->adapter->dmadev;
struct tsnep_tx_entry *entry;
unsigned int len;
dma_addr_t dma;
int map_len = 0;
int i;
for (i = 0; i < count; i++) {
entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
if (!i) {
len = skb_headlen(skb);
dma = dma_map_single(dmadev, skb->data, len,
DMA_TO_DEVICE);
entry->type = TSNEP_TX_TYPE_SKB;
} else {
len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
dma = skb_frag_dma_map(dmadev,
&skb_shinfo(skb)->frags[i - 1],
0, len, DMA_TO_DEVICE);
entry->type = TSNEP_TX_TYPE_SKB_FRAG;
}
if (dma_mapping_error(dmadev, dma))
return -ENOMEM;
entry->len = len;
dma_unmap_addr_set(entry, dma, dma);
entry->desc->tx = __cpu_to_le64(dma);
map_len += len;
}
return map_len;
}
static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
{
struct device *dmadev = tx->adapter->dmadev;
struct tsnep_tx_entry *entry;
int map_len = 0;
int i;
for (i = 0; i < count; i++) {
entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
if (entry->len) {
if (entry->type & TSNEP_TX_TYPE_SKB)
dma_unmap_single(dmadev,
dma_unmap_addr(entry, dma),
dma_unmap_len(entry, len),
DMA_TO_DEVICE);
else if (entry->type &
(TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
dma_unmap_page(dmadev,
dma_unmap_addr(entry, dma),
dma_unmap_len(entry, len),
DMA_TO_DEVICE);
map_len += entry->len;
entry->len = 0;
}
}
return map_len;
}
static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
struct tsnep_tx *tx)
{
int count = 1;
struct tsnep_tx_entry *entry;
int length;
int i;
int retval;
if (skb_shinfo(skb)->nr_frags > 0)
count += skb_shinfo(skb)->nr_frags;
if (tsnep_tx_desc_available(tx) < count) {
/* ring full, shall not happen because queue is stopped if full
* below
*/
netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
return NETDEV_TX_BUSY;
}
entry = &tx->entry[tx->write];
entry->skb = skb;
retval = tsnep_tx_map(skb, tx, count);
if (retval < 0) {
tsnep_tx_unmap(tx, tx->write, count);
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
tx->dropped++;
return NETDEV_TX_OK;
}
length = retval;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
for (i = 0; i < count; i++)
tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
i == count - 1);
tx->write = (tx->write + count) & TSNEP_RING_MASK;
skb_tx_timestamp(skb);
/* descriptor properties shall be valid before hardware is notified */
dma_wmb();
iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
/* ring can get full with next frame */
netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
}
return NETDEV_TX_OK;
}
static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
struct skb_shared_info *shinfo, int count, u32 type)
{
struct device *dmadev = tx->adapter->dmadev;
struct tsnep_tx_entry *entry;
struct page *page;
skb_frag_t *frag;
unsigned int len;
int map_len = 0;
dma_addr_t dma;
void *data;
int i;
frag = NULL;
len = xdpf->len;
for (i = 0; i < count; i++) {
entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
if (type & TSNEP_TX_TYPE_XDP_NDO) {
data = unlikely(frag) ? skb_frag_address(frag) :
xdpf->data;
dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
if (dma_mapping_error(dmadev, dma))
return -ENOMEM;
entry->type = TSNEP_TX_TYPE_XDP_NDO;
} else {
page = unlikely(frag) ? skb_frag_page(frag) :
virt_to_page(xdpf->data);
dma = page_pool_get_dma_addr(page);
if (unlikely(frag))
dma += skb_frag_off(frag);
else
dma += sizeof(*xdpf) + xdpf->headroom;
dma_sync_single_for_device(dmadev, dma, len,
DMA_BIDIRECTIONAL);
entry->type = TSNEP_TX_TYPE_XDP_TX;
}
entry->len = len;
dma_unmap_addr_set(entry, dma, dma);
entry->desc->tx = __cpu_to_le64(dma);
map_len += len;
if (i + 1 < count) {
frag = &shinfo->frags[i];
len = skb_frag_size(frag);
}
}
return map_len;
}
/* This function requires __netif_tx_lock is held by the caller. */
static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
struct tsnep_tx *tx, u32 type)
{
struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
struct tsnep_tx_entry *entry;
int count, length, retval, i;
count = 1;
if (unlikely(xdp_frame_has_frags(xdpf)))
count += shinfo->nr_frags;
/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
* will be available for normal TX path and queue is stopped there if
* necessary
*/
if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
return false;
entry = &tx->entry[tx->write];
entry->xdpf = xdpf;
retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
if (retval < 0) {
tsnep_tx_unmap(tx, tx->write, count);
entry->xdpf = NULL;
tx->dropped++;
return false;
}
length = retval;
for (i = 0; i < count; i++)
tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
i == count - 1);
tx->write = (tx->write + count) & TSNEP_RING_MASK;
/* descriptor properties shall be valid before hardware is notified */
dma_wmb();
return true;
}
static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
{
iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
}
static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
struct xdp_buff *xdp,
struct netdev_queue *tx_nq, struct tsnep_tx *tx)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
bool xmit;
if (unlikely(!xdpf))
return false;
__netif_tx_lock(tx_nq, smp_processor_id());
xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
/* Avoid transmit queue timeout since we share it with the slow path */
if (xmit)
txq_trans_cond_update(tx_nq);
__netif_tx_unlock(tx_nq);
return xmit;
}
static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
{
struct tsnep_tx_entry *entry;
dma_addr_t dma;
entry = &tx->entry[tx->write];
entry->zc = true;
dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
entry->type = TSNEP_TX_TYPE_XSK;
entry->len = xdpd->len;
entry->desc->tx = __cpu_to_le64(dma);
return xdpd->len;
}
static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
struct tsnep_tx *tx)
{
int length;
length = tsnep_xdp_tx_map_zc(xdpd, tx);
tsnep_tx_activate(tx, tx->write, length, true);
tx->write = (tx->write + 1) & TSNEP_RING_MASK;
}
static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
{
int desc_available = tsnep_tx_desc_available(tx);
struct xdp_desc *descs = tx->xsk_pool->tx_descs;
int batch, i;
/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
* will be available for normal TX path and queue is stopped there if
* necessary
*/
if (desc_available <= (MAX_SKB_FRAGS + 1))
return;
desc_available -= MAX_SKB_FRAGS + 1;
batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
for (i = 0; i < batch; i++)
tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
if (batch) {
/* descriptor properties shall be valid before hardware is
* notified
*/
dma_wmb();
tsnep_xdp_xmit_flush(tx);
}
}
static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
{
struct tsnep_tx_entry *entry;
struct netdev_queue *nq;
int xsk_frames = 0;
int budget = 128;
int length;
int count;
nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
__netif_tx_lock(nq, smp_processor_id());
do {
if (tx->read == tx->write)
break;
entry = &tx->entry[tx->read];
if ((__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_TX_DESC_OWNER_MASK) !=
(entry->properties & TSNEP_TX_DESC_OWNER_MASK))
break;
/* descriptor properties shall be read first, because valid data
* is signaled there
*/
dma_rmb();
count = 1;
if ((entry->type & TSNEP_TX_TYPE_SKB) &&
skb_shinfo(entry->skb)->nr_frags > 0)
count += skb_shinfo(entry->skb)->nr_frags;
else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
xdp_frame_has_frags(entry->xdpf))
count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
length = tsnep_tx_unmap(tx, tx->read, count);
if ((entry->type & TSNEP_TX_TYPE_SKB) &&
(skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
(__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
struct skb_shared_hwtstamps hwtstamps;
u64 timestamp;
if (skb_shinfo(entry->skb)->tx_flags &
SKBTX_HW_TSTAMP_USE_CYCLES)
timestamp =
__le64_to_cpu(entry->desc_wb->counter);
else
timestamp =
__le64_to_cpu(entry->desc_wb->timestamp);
memset(&hwtstamps, 0, sizeof(hwtstamps));
hwtstamps.hwtstamp = ns_to_ktime(timestamp);
skb_tstamp_tx(entry->skb, &hwtstamps);
}
if (entry->type & TSNEP_TX_TYPE_SKB)
napi_consume_skb(entry->skb, napi_budget);
else if (entry->type & TSNEP_TX_TYPE_XDP)
xdp_return_frame_rx_napi(entry->xdpf);
else
xsk_frames++;
/* xdpf and zc are union with skb */
entry->skb = NULL;
tx->read = (tx->read + count) & TSNEP_RING_MASK;
tx->packets++;
tx->bytes += length + ETH_FCS_LEN;
budget--;
} while (likely(budget));
if (tx->xsk_pool) {
if (xsk_frames)
xsk_tx_completed(tx->xsk_pool, xsk_frames);
if (xsk_uses_need_wakeup(tx->xsk_pool))
xsk_set_tx_need_wakeup(tx->xsk_pool);
tsnep_xdp_xmit_zc(tx);
}
if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
netif_tx_queue_stopped(nq)) {
netif_tx_wake_queue(nq);
}
__netif_tx_unlock(nq);
return budget != 0;
}
static bool tsnep_tx_pending(struct tsnep_tx *tx)
{
struct tsnep_tx_entry *entry;
struct netdev_queue *nq;
bool pending = false;
nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
__netif_tx_lock(nq, smp_processor_id());
if (tx->read != tx->write) {
entry = &tx->entry[tx->read];
if ((__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_TX_DESC_OWNER_MASK) ==
(entry->properties & TSNEP_TX_DESC_OWNER_MASK))
pending = true;
}
__netif_tx_unlock(nq);
return pending;
}
static int tsnep_tx_open(struct tsnep_tx *tx)
{
int retval;
retval = tsnep_tx_ring_create(tx);
if (retval)
return retval;
tsnep_tx_init(tx);
return 0;
}
static void tsnep_tx_close(struct tsnep_tx *tx)
{
tsnep_tx_ring_cleanup(tx);
}
static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
{
struct device *dmadev = rx->adapter->dmadev;
struct tsnep_rx_entry *entry;
int i;
for (i = 0; i < TSNEP_RING_SIZE; i++) {
entry = &rx->entry[i];
if (!rx->xsk_pool && entry->page)
page_pool_put_full_page(rx->page_pool, entry->page,
false);
if (rx->xsk_pool && entry->xdp)
xsk_buff_free(entry->xdp);
/* xdp is union with page */
entry->page = NULL;
}
if (rx->page_pool)
page_pool_destroy(rx->page_pool);
memset(rx->entry, 0, sizeof(rx->entry));
for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
if (rx->page[i]) {
dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
rx->page_dma[i]);
rx->page[i] = NULL;
rx->page_dma[i] = 0;
}
}
}
static int tsnep_rx_ring_create(struct tsnep_rx *rx)
{
struct device *dmadev = rx->adapter->dmadev;
struct tsnep_rx_entry *entry;
struct page_pool_params pp_params = { 0 };
struct tsnep_rx_entry *next_entry;
int i, j;
int retval;
for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
rx->page[i] =
dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
GFP_KERNEL);
if (!rx->page[i]) {
retval = -ENOMEM;
goto failed;
}
for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
entry->desc_wb = (struct tsnep_rx_desc_wb *)
(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
entry->desc = (struct tsnep_rx_desc *)
(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
}
}
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
pp_params.order = 0;
pp_params.pool_size = TSNEP_RING_SIZE;
pp_params.nid = dev_to_node(dmadev);
pp_params.dev = dmadev;
pp_params.dma_dir = DMA_BIDIRECTIONAL;
pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
pp_params.offset = TSNEP_RX_OFFSET;
rx->page_pool = page_pool_create(&pp_params);
if (IS_ERR(rx->page_pool)) {
retval = PTR_ERR(rx->page_pool);
rx->page_pool = NULL;
goto failed;
}
for (i = 0; i < TSNEP_RING_SIZE; i++) {
entry = &rx->entry[i];
next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
}
return 0;
failed:
tsnep_rx_ring_cleanup(rx);
return retval;
}
static void tsnep_rx_init(struct tsnep_rx *rx)
{
dma_addr_t dma;
dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
rx->write = 0;
rx->read = 0;
rx->owner_counter = 1;
rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
}
static void tsnep_rx_enable(struct tsnep_rx *rx)
{
/* descriptor properties shall be valid before hardware is notified */
dma_wmb();
iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
}
static void tsnep_rx_disable(struct tsnep_rx *rx)
{
u32 val;
iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1000000);
}
static int tsnep_rx_desc_available(struct tsnep_rx *rx)
{
if (rx->read <= rx->write)
return TSNEP_RING_SIZE - rx->write + rx->read - 1;
else
return rx->read - rx->write - 1;
}
static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
{
struct page **page;
/* last entry of page_buffer is always zero, because ring cannot be
* filled completely
*/
page = rx->page_buffer;
while (*page) {
page_pool_put_full_page(rx->page_pool, *page, false);
*page = NULL;
page++;
}
}
static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
{
int i;
/* alloc for all ring entries except the last one, because ring cannot
* be filled completely
*/
for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
if (!rx->page_buffer[i]) {
tsnep_rx_free_page_buffer(rx);
return -ENOMEM;
}
}
return 0;
}
static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
struct page *page)
{
entry->page = page;
entry->len = TSNEP_MAX_RX_BUF_SIZE;
entry->dma = page_pool_get_dma_addr(entry->page);
entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
}
static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
{
struct tsnep_rx_entry *entry = &rx->entry[index];
struct page *page;
page = page_pool_dev_alloc_pages(rx->page_pool);
if (unlikely(!page))
return -ENOMEM;
tsnep_rx_set_page(rx, entry, page);
return 0;
}
static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
{
struct tsnep_rx_entry *entry = &rx->entry[index];
struct tsnep_rx_entry *read = &rx->entry[rx->read];
tsnep_rx_set_page(rx, entry, read->page);
read->page = NULL;
}
static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
{
struct tsnep_rx_entry *entry = &rx->entry[index];
/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
if (index == rx->increment_owner_counter) {
rx->owner_counter++;
if (rx->owner_counter == 4)
rx->owner_counter = 1;
rx->increment_owner_counter--;
if (rx->increment_owner_counter < 0)
rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
}
entry->properties |=
(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
TSNEP_DESC_OWNER_COUNTER_MASK;
/* descriptor properties shall be written last, because valid data is
* signaled there
*/
dma_wmb();
entry->desc->properties = __cpu_to_le32(entry->properties);
}
static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
{
bool alloc_failed = false;
int i, index;
for (i = 0; i < count && !alloc_failed; i++) {
index = (rx->write + i) & TSNEP_RING_MASK;
if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
rx->alloc_failed++;
alloc_failed = true;
/* reuse only if no other allocation was successful */
if (i == 0 && reuse)
tsnep_rx_reuse_buffer(rx, index);
else
break;
}
tsnep_rx_activate(rx, index);
}
if (i)
rx->write = (rx->write + i) & TSNEP_RING_MASK;
return i;
}
static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
{
int desc_refilled;
desc_refilled = tsnep_rx_alloc(rx, count, reuse);
if (desc_refilled)
tsnep_rx_enable(rx);
return desc_refilled;
}
static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
struct xdp_buff *xdp)
{
entry->xdp = xdp;
entry->len = TSNEP_XSK_RX_BUF_SIZE;
entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
entry->desc->rx = __cpu_to_le64(entry->dma);
}
static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
{
struct tsnep_rx_entry *entry = &rx->entry[index];
struct tsnep_rx_entry *read = &rx->entry[rx->read];
tsnep_rx_set_xdp(rx, entry, read->xdp);
read->xdp = NULL;
}
static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
{
u32 allocated;
int i;
allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
for (i = 0; i < allocated; i++) {
int index = (rx->write + i) & TSNEP_RING_MASK;
struct tsnep_rx_entry *entry = &rx->entry[index];
tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
tsnep_rx_activate(rx, index);
}
if (i == 0) {
rx->alloc_failed++;
if (reuse) {
tsnep_rx_reuse_buffer_zc(rx, rx->write);
tsnep_rx_activate(rx, rx->write);
}
}
if (i)
rx->write = (rx->write + i) & TSNEP_RING_MASK;
return i;
}
static void tsnep_rx_free_zc(struct tsnep_rx *rx)
{
int i;
for (i = 0; i < TSNEP_RING_SIZE; i++) {
struct tsnep_rx_entry *entry = &rx->entry[i];
if (entry->xdp)
xsk_buff_free(entry->xdp);
entry->xdp = NULL;
}
}
static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
{
int desc_refilled;
desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
if (desc_refilled)
tsnep_rx_enable(rx);
return desc_refilled;
}
static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
struct xdp_buff *xdp, int *status,
struct netdev_queue *tx_nq, struct tsnep_tx *tx)
{
unsigned int length;
unsigned int sync;
u32 act;
length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
return false;
case XDP_TX:
if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
goto out_failure;
*status |= TSNEP_XDP_TX;
return true;
case XDP_REDIRECT:
if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
goto out_failure;
*status |= TSNEP_XDP_REDIRECT;
return true;
default:
bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(rx->adapter->netdev, prog, act);
fallthrough;
case XDP_DROP:
/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
* touch
*/
sync = xdp->data_end - xdp->data_hard_start -
XDP_PACKET_HEADROOM;
sync = max(sync, length);
page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
sync, true);
return true;
}
}
static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
struct xdp_buff *xdp, int *status,
struct netdev_queue *tx_nq,
struct tsnep_tx *tx)
{
u32 act;
act = bpf_prog_run_xdp(prog, xdp);
/* XDP_REDIRECT is the main action for zero-copy */
if (likely(act == XDP_REDIRECT)) {
if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
goto out_failure;
*status |= TSNEP_XDP_REDIRECT;
return true;
}
switch (act) {
case XDP_PASS:
return false;
case XDP_TX:
if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
goto out_failure;
*status |= TSNEP_XDP_TX;
return true;
default:
bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(rx->adapter->netdev, prog, act);
fallthrough;
case XDP_DROP:
xsk_buff_free(xdp);
return true;
}
}
static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
struct netdev_queue *tx_nq, struct tsnep_tx *tx)
{
if (status & TSNEP_XDP_TX) {
__netif_tx_lock(tx_nq, smp_processor_id());
tsnep_xdp_xmit_flush(tx);
__netif_tx_unlock(tx_nq);
}
if (status & TSNEP_XDP_REDIRECT)
xdp_do_flush();
}
static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
int length)
{
struct sk_buff *skb;
skb = napi_build_skb(page_address(page), PAGE_SIZE);
if (unlikely(!skb))
return NULL;
/* update pointers within the skb to store the data */
skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
__skb_put(skb, length - ETH_FCS_LEN);
if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
struct tsnep_rx_inline *rx_inline =
(struct tsnep_rx_inline *)(page_address(page) +
TSNEP_RX_OFFSET);
skb_shinfo(skb)->tx_flags |=
SKBTX_HW_TSTAMP_NETDEV;
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->netdev_data = rx_inline;
}
skb_record_rx_queue(skb, rx->queue_index);
skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
return skb;
}
static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
struct page *page, int length)
{
struct sk_buff *skb;
skb = tsnep_build_skb(rx, page, length);
if (skb) {
skb_mark_for_recycle(skb);
rx->packets++;
rx->bytes += length;
if (skb->pkt_type == PACKET_MULTICAST)
rx->multicast++;
napi_gro_receive(napi, skb);
} else {
page_pool_recycle_direct(rx->page_pool, page);
rx->dropped++;
}
}
static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
int budget)
{
struct device *dmadev = rx->adapter->dmadev;
enum dma_data_direction dma_dir;
struct tsnep_rx_entry *entry;
struct netdev_queue *tx_nq;
struct bpf_prog *prog;
struct xdp_buff xdp;
struct tsnep_tx *tx;
int desc_available;
int xdp_status = 0;
int done = 0;
int length;
desc_available = tsnep_rx_desc_available(rx);
dma_dir = page_pool_get_dma_dir(rx->page_pool);
prog = READ_ONCE(rx->adapter->xdp_prog);
if (prog) {
tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
rx->tx_queue_index);
tx = &rx->adapter->tx[rx->tx_queue_index];
xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
}
while (likely(done < budget) && (rx->read != rx->write)) {
entry = &rx->entry[rx->read];
if ((__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_OWNER_COUNTER_MASK) !=
(entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
break;
done++;
if (desc_available >= TSNEP_RING_RX_REFILL) {
bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
desc_available -= tsnep_rx_refill(rx, desc_available,
reuse);
if (!entry->page) {
/* buffer has been reused for refill to prevent
* empty RX ring, thus buffer cannot be used for
* RX processing
*/
rx->read = (rx->read + 1) & TSNEP_RING_MASK;
desc_available++;
rx->dropped++;
continue;
}
}
/* descriptor properties shall be read first, because valid data
* is signaled there
*/
dma_rmb();
prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
length = __le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_LENGTH_MASK;
dma_sync_single_range_for_cpu(dmadev, entry->dma,
TSNEP_RX_OFFSET, length, dma_dir);
/* RX metadata with timestamps is in front of actual data,
* subtract metadata size to get length of actual data and
* consider metadata size as offset of actual data during RX
* processing
*/
length -= TSNEP_RX_INLINE_METADATA_SIZE;
rx->read = (rx->read + 1) & TSNEP_RING_MASK;
desc_available++;
if (prog) {
bool consume;
xdp_prepare_buff(&xdp, page_address(entry->page),
XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
length, false);
consume = tsnep_xdp_run_prog(rx, prog, &xdp,
&xdp_status, tx_nq, tx);
if (consume) {
rx->packets++;
rx->bytes += length;
entry->page = NULL;
continue;
}
}
tsnep_rx_page(rx, napi, entry->page, length);
entry->page = NULL;
}
if (xdp_status)
tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
if (desc_available)
tsnep_rx_refill(rx, desc_available, false);
return done;
}
static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
int budget)
{
struct tsnep_rx_entry *entry;
struct netdev_queue *tx_nq;
struct bpf_prog *prog;
struct tsnep_tx *tx;
int desc_available;
int xdp_status = 0;
struct page *page;
int done = 0;
int length;
desc_available = tsnep_rx_desc_available(rx);
prog = READ_ONCE(rx->adapter->xdp_prog);
if (prog) {
tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
rx->tx_queue_index);
tx = &rx->adapter->tx[rx->tx_queue_index];
}
while (likely(done < budget) && (rx->read != rx->write)) {
entry = &rx->entry[rx->read];
if ((__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_OWNER_COUNTER_MASK) !=
(entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
break;
done++;
if (desc_available >= TSNEP_RING_RX_REFILL) {
bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
desc_available -= tsnep_rx_refill_zc(rx, desc_available,
reuse);
if (!entry->xdp) {
/* buffer has been reused for refill to prevent
* empty RX ring, thus buffer cannot be used for
* RX processing
*/
rx->read = (rx->read + 1) & TSNEP_RING_MASK;
desc_available++;
rx->dropped++;
continue;
}
}
/* descriptor properties shall be read first, because valid data
* is signaled there
*/
dma_rmb();
prefetch(entry->xdp->data);
length = __le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_LENGTH_MASK;
xsk_buff_set_size(entry->xdp, length);
xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
/* RX metadata with timestamps is in front of actual data,
* subtract metadata size to get length of actual data and
* consider metadata size as offset of actual data during RX
* processing
*/
length -= TSNEP_RX_INLINE_METADATA_SIZE;
rx->read = (rx->read + 1) & TSNEP_RING_MASK;
desc_available++;
if (prog) {
bool consume;
entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
&xdp_status, tx_nq, tx);
if (consume) {
rx->packets++;
rx->bytes += length;
entry->xdp = NULL;
continue;
}
}
page = page_pool_dev_alloc_pages(rx->page_pool);
if (page) {
memcpy(page_address(page) + TSNEP_RX_OFFSET,
entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
length + TSNEP_RX_INLINE_METADATA_SIZE);
tsnep_rx_page(rx, napi, page, length);
} else {
rx->dropped++;
}
xsk_buff_free(entry->xdp);
entry->xdp = NULL;
}
if (xdp_status)
tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
if (desc_available)
desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
if (xsk_uses_need_wakeup(rx->xsk_pool)) {
if (desc_available)
xsk_set_rx_need_wakeup(rx->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx->xsk_pool);
return done;
}
return desc_available ? budget : done;
}
static bool tsnep_rx_pending(struct tsnep_rx *rx)
{
struct tsnep_rx_entry *entry;
if (rx->read != rx->write) {
entry = &rx->entry[rx->read];
if ((__le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_OWNER_COUNTER_MASK) ==
(entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
return true;
}
return false;
}
static int tsnep_rx_open(struct tsnep_rx *rx)
{
int desc_available;
int retval;
retval = tsnep_rx_ring_create(rx);
if (retval)
return retval;
tsnep_rx_init(rx);
desc_available = tsnep_rx_desc_available(rx);
if (rx->xsk_pool)
retval = tsnep_rx_alloc_zc(rx, desc_available, false);
else
retval = tsnep_rx_alloc(rx, desc_available, false);
if (retval != desc_available) {
retval = -ENOMEM;
goto alloc_failed;
}
/* prealloc pages to prevent allocation failures when XSK pool is
* disabled at runtime
*/
if (rx->xsk_pool) {
retval = tsnep_rx_alloc_page_buffer(rx);
if (retval)
goto alloc_failed;
}
return 0;
alloc_failed:
tsnep_rx_ring_cleanup(rx);
return retval;
}
static void tsnep_rx_close(struct tsnep_rx *rx)
{
if (rx->xsk_pool)
tsnep_rx_free_page_buffer(rx);
tsnep_rx_ring_cleanup(rx);
}
static void tsnep_rx_reopen(struct tsnep_rx *rx)
{
struct page **page = rx->page_buffer;
int i;
tsnep_rx_init(rx);
for (i = 0; i < TSNEP_RING_SIZE; i++) {
struct tsnep_rx_entry *entry = &rx->entry[i];
/* defined initial values for properties are required for
* correct owner counter checking
*/
entry->desc->properties = 0;
entry->desc_wb->properties = 0;
/* prevent allocation failures by reusing kept pages */
if (*page) {
tsnep_rx_set_page(rx, entry, *page);
tsnep_rx_activate(rx, rx->write);
rx->write++;
*page = NULL;
page++;
}
}
}
static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
{
struct page **page = rx->page_buffer;
u32 allocated;
int i;
tsnep_rx_init(rx);
/* alloc all ring entries except the last one, because ring cannot be
* filled completely, as many buffers as possible is enough as wakeup is
* done if new buffers are available
*/
allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
TSNEP_RING_SIZE - 1);
for (i = 0; i < TSNEP_RING_SIZE; i++) {
struct tsnep_rx_entry *entry = &rx->entry[i];
/* keep pages to prevent allocation failures when xsk is
* disabled
*/
if (entry->page) {
*page = entry->page;
entry->page = NULL;
page++;
}
/* defined initial values for properties are required for
* correct owner counter checking
*/
entry->desc->properties = 0;
entry->desc_wb->properties = 0;
if (allocated) {
tsnep_rx_set_xdp(rx, entry,
rx->xdp_batch[allocated - 1]);
tsnep_rx_activate(rx, rx->write);
rx->write++;
allocated--;
}
}
}
static bool tsnep_pending(struct tsnep_queue *queue)
{
if (queue->tx && tsnep_tx_pending(queue->tx))
return true;
if (queue->rx && tsnep_rx_pending(queue->rx))
return true;
return false;
}
static int tsnep_poll(struct napi_struct *napi, int budget)
{
struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
napi);
bool complete = true;
int done = 0;
if (queue->tx)
complete = tsnep_tx_poll(queue->tx, budget);
if (queue->rx) {
done = queue->rx->xsk_pool ?
tsnep_rx_poll_zc(queue->rx, napi, budget) :
tsnep_rx_poll(queue->rx, napi, budget);
if (done >= budget)
complete = false;
}
/* if all work not completed, return budget and keep polling */
if (!complete)
return budget;
if (likely(napi_complete_done(napi, done))) {
tsnep_enable_irq(queue->adapter, queue->irq_mask);
/* reschedule if work is already pending, prevent rotten packets
* which are transmitted or received after polling but before
* interrupt enable
*/
if (tsnep_pending(queue)) {
tsnep_disable_irq(queue->adapter, queue->irq_mask);
napi_schedule(napi);
}
}
return min(done, budget - 1);
}
static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
{
const char *name = netdev_name(queue->adapter->netdev);
irq_handler_t handler;
void *dev;
int retval;
if (first) {
sprintf(queue->name, "%s-mac", name);
handler = tsnep_irq;
dev = queue->adapter;
} else {
if (queue->tx && queue->rx)
sprintf(queue->name, "%s-txrx-%d", name,
queue->rx->queue_index);
else if (queue->tx)
sprintf(queue->name, "%s-tx-%d", name,
queue->tx->queue_index);
else
sprintf(queue->name, "%s-rx-%d", name,
queue->rx->queue_index);
handler = tsnep_irq_txrx;
dev = queue;
}
retval = request_irq(queue->irq, handler, 0, queue->name, dev);
if (retval) {
/* if name is empty, then interrupt won't be freed */
memset(queue->name, 0, sizeof(queue->name));
}
return retval;
}
static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
{
void *dev;
if (!strlen(queue->name))
return;
if (first)
dev = queue->adapter;
else
dev = queue;
free_irq(queue->irq, dev);
memset(queue->name, 0, sizeof(queue->name));
}
static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
{
struct tsnep_rx *rx = queue->rx;
tsnep_free_irq(queue, first);
if (rx) {
if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
xdp_rxq_info_unreg(&rx->xdp_rxq);
if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
}
netif_napi_del(&queue->napi);
}
static int tsnep_queue_open(struct tsnep_adapter *adapter,
struct tsnep_queue *queue, bool first)
{
struct tsnep_rx *rx = queue->rx;
struct tsnep_tx *tx = queue->tx;
int retval;
netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
if (rx) {
/* choose TX queue for XDP_TX */
if (tx)
rx->tx_queue_index = tx->queue_index;
else if (rx->queue_index < adapter->num_tx_queues)
rx->tx_queue_index = rx->queue_index;
else
rx->tx_queue_index = 0;
/* prepare both memory models to eliminate possible registration
* errors when memory model is switched between page pool and
* XSK pool during runtime
*/
retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
rx->queue_index, queue->napi.napi_id);
if (retval)
goto failed;
retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
MEM_TYPE_PAGE_POOL,
rx->page_pool);
if (retval)
goto failed;
retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
rx->queue_index, queue->napi.napi_id);
if (retval)
goto failed;
retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
MEM_TYPE_XSK_BUFF_POOL,
NULL);
if (retval)
goto failed;
if (rx->xsk_pool)
xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
}
retval = tsnep_request_irq(queue, first);
if (retval) {
netif_err(adapter, drv, adapter->netdev,
"can't get assigned irq %d.\n", queue->irq);
goto failed;
}
return 0;
failed:
tsnep_queue_close(queue, first);
return retval;
}
static void tsnep_queue_enable(struct tsnep_queue *queue)
{
napi_enable(&queue->napi);
tsnep_enable_irq(queue->adapter, queue->irq_mask);
if (queue->tx)
tsnep_tx_enable(queue->tx);
if (queue->rx)
tsnep_rx_enable(queue->rx);
}
static void tsnep_queue_disable(struct tsnep_queue *queue)
{
if (queue->tx)
tsnep_tx_disable(queue->tx, &queue->napi);
napi_disable(&queue->napi);
tsnep_disable_irq(queue->adapter, queue->irq_mask);
/* disable RX after NAPI polling has been disabled, because RX can be
* enabled during NAPI polling
*/
if (queue->rx)
tsnep_rx_disable(queue->rx);
}
static int tsnep_netdev_open(struct net_device *netdev)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
int i, retval;
for (i = 0; i < adapter->num_queues; i++) {
if (adapter->queue[i].tx) {
retval = tsnep_tx_open(adapter->queue[i].tx);
if (retval)
goto failed;
}
if (adapter->queue[i].rx) {
retval = tsnep_rx_open(adapter->queue[i].rx);
if (retval)
goto failed;
}
retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
if (retval)
goto failed;
}
retval = netif_set_real_num_tx_queues(adapter->netdev,
adapter->num_tx_queues);
if (retval)
goto failed;
retval = netif_set_real_num_rx_queues(adapter->netdev,
adapter->num_rx_queues);
if (retval)
goto failed;
tsnep_enable_irq(adapter, ECM_INT_LINK);
retval = tsnep_phy_open(adapter);
if (retval)
goto phy_failed;
for (i = 0; i < adapter->num_queues; i++)
tsnep_queue_enable(&adapter->queue[i]);
return 0;
phy_failed:
tsnep_disable_irq(adapter, ECM_INT_LINK);
failed:
for (i = 0; i < adapter->num_queues; i++) {
tsnep_queue_close(&adapter->queue[i], i == 0);
if (adapter->queue[i].rx)
tsnep_rx_close(adapter->queue[i].rx);
if (adapter->queue[i].tx)
tsnep_tx_close(adapter->queue[i].tx);
}
return retval;
}
static int tsnep_netdev_close(struct net_device *netdev)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
int i;
tsnep_disable_irq(adapter, ECM_INT_LINK);
tsnep_phy_close(adapter);
for (i = 0; i < adapter->num_queues; i++) {
tsnep_queue_disable(&adapter->queue[i]);
tsnep_queue_close(&adapter->queue[i], i == 0);
if (adapter->queue[i].rx)
tsnep_rx_close(adapter->queue[i].rx);
if (adapter->queue[i].tx)
tsnep_tx_close(adapter->queue[i].tx);
}
return 0;
}
int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
{
bool running = netif_running(queue->adapter->netdev);
u32 frame_size;
frame_size = xsk_pool_get_rx_frame_size(pool);
if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
return -EOPNOTSUPP;
queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
sizeof(*queue->rx->page_buffer),
GFP_KERNEL);
if (!queue->rx->page_buffer)
return -ENOMEM;
queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
sizeof(*queue->rx->xdp_batch),
GFP_KERNEL);
if (!queue->rx->xdp_batch) {
kfree(queue->rx->page_buffer);
queue->rx->page_buffer = NULL;
return -ENOMEM;
}
xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
if (running)
tsnep_queue_disable(queue);
queue->tx->xsk_pool = pool;
queue->rx->xsk_pool = pool;
if (running) {
tsnep_rx_reopen_xsk(queue->rx);
tsnep_queue_enable(queue);
}
return 0;
}
void tsnep_disable_xsk(struct tsnep_queue *queue)
{
bool running = netif_running(queue->adapter->netdev);
if (running)
tsnep_queue_disable(queue);
tsnep_rx_free_zc(queue->rx);
queue->rx->xsk_pool = NULL;
queue->tx->xsk_pool = NULL;
if (running) {
tsnep_rx_reopen(queue->rx);
tsnep_queue_enable(queue);
}
kfree(queue->rx->xdp_batch);
queue->rx->xdp_batch = NULL;
kfree(queue->rx->page_buffer);
queue->rx->page_buffer = NULL;
}
static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
u16 queue_mapping = skb_get_queue_mapping(skb);
if (queue_mapping >= adapter->num_tx_queues)
queue_mapping = 0;
return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
}
static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
if (!netif_running(netdev))
return -EINVAL;
if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
return tsnep_ptp_ioctl(netdev, ifr, cmd);
return phy_mii_ioctl(netdev->phydev, ifr, cmd);
}
static void tsnep_netdev_set_multicast(struct net_device *netdev)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
u16 rx_filter = 0;
/* configured MAC address and broadcasts are never filtered */
if (netdev->flags & IFF_PROMISC) {
rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
}
iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
}
static void tsnep_netdev_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
u32 reg;
u32 val;
int i;
for (i = 0; i < adapter->num_tx_queues; i++) {
stats->tx_packets += adapter->tx[i].packets;
stats->tx_bytes += adapter->tx[i].bytes;
stats->tx_dropped += adapter->tx[i].dropped;
}
for (i = 0; i < adapter->num_rx_queues; i++) {
stats->rx_packets += adapter->rx[i].packets;
stats->rx_bytes += adapter->rx[i].bytes;
stats->rx_dropped += adapter->rx[i].dropped;
stats->multicast += adapter->rx[i].multicast;
reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
TSNEP_RX_STATISTIC);
val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
stats->rx_dropped += val;
val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
stats->rx_dropped += val;
val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
stats->rx_errors += val;
stats->rx_fifo_errors += val;
val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
stats->rx_errors += val;
stats->rx_frame_errors += val;
}
reg = ioread32(adapter->addr + ECM_STAT);
val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
stats->rx_errors += val;
val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
stats->rx_errors += val;
stats->rx_crc_errors += val;
val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
stats->rx_errors += val;
}
static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
{
iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
iowrite16(*(u16 *)(addr + sizeof(u32)),
adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
ether_addr_copy(adapter->mac_address, addr);
netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
addr);
}
static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
struct sockaddr *sock_addr = addr;
int retval;
retval = eth_prepare_mac_addr_change(netdev, sock_addr);
if (retval)
return retval;
eth_hw_addr_set(netdev, sock_addr->sa_data);
tsnep_mac_set_address(adapter, sock_addr->sa_data);
return 0;
}
static int tsnep_netdev_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct tsnep_adapter *adapter = netdev_priv(netdev);
netdev_features_t changed = netdev->features ^ features;
bool enable;
int retval = 0;
if (changed & NETIF_F_LOOPBACK) {
enable = !!(features & NETIF_F_LOOPBACK);
retval = tsnep_phy_loopback(adapter, enable);
}
return retval;
}
static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
const struct skb_shared_hwtstamps *hwtstamps,
bool cycles)
{
struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
u64 timestamp;
if (cycles)
timestamp = __le64_to_cpu(rx_inline->counter);
else
timestamp = __le64_to_cpu(rx_inline->timestamp);
return ns_to_ktime(timestamp);
}
static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
struct tsnep_adapter *adapter = netdev_priv(dev);
switch (bpf->command) {
case XDP_SETUP_PROG:
return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
case XDP_SETUP_XSK_POOL:
return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
bpf->xsk.queue_id);
default:
return -EOPNOTSUPP;
}
}
static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
{
if (cpu >= TSNEP_MAX_QUEUES)
cpu &= TSNEP_MAX_QUEUES - 1;
while (cpu >= adapter->num_tx_queues)
cpu -= adapter->num_tx_queues;
return &adapter->tx[cpu];
}
static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **xdp, u32 flags)
{
struct tsnep_adapter *adapter = netdev_priv(dev);
u32 cpu = smp_processor_id();
struct netdev_queue *nq;
struct tsnep_tx *tx;
int nxmit;
bool xmit;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
tx = tsnep_xdp_get_tx(adapter, cpu);
nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
__netif_tx_lock(nq, cpu);
for (nxmit = 0; nxmit < n; nxmit++) {
xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
TSNEP_TX_TYPE_XDP_NDO);
if (!xmit)
break;
/* avoid transmit queue timeout since we share it with the slow
* path
*/
txq_trans_cond_update(nq);
}
if (flags & XDP_XMIT_FLUSH)
tsnep_xdp_xmit_flush(tx);
__netif_tx_unlock(nq);
return nxmit;
}
static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
u32 flags)
{
struct tsnep_adapter *adapter = netdev_priv(dev);
struct tsnep_queue *queue;
if (queue_id >= adapter->num_rx_queues ||
queue_id >= adapter->num_tx_queues)
return -EINVAL;
queue = &adapter->queue[queue_id];
if (!napi_if_scheduled_mark_missed(&queue->napi))
napi_schedule(&queue->napi);
return 0;
}
static const struct net_device_ops tsnep_netdev_ops = {
.ndo_open = tsnep_netdev_open,
.ndo_stop = tsnep_netdev_close,
.ndo_start_xmit = tsnep_netdev_xmit_frame,
.ndo_eth_ioctl = tsnep_netdev_ioctl,
.ndo_set_rx_mode = tsnep_netdev_set_multicast,
.ndo_get_stats64 = tsnep_netdev_get_stats64,
.ndo_set_mac_address = tsnep_netdev_set_mac_address,
.ndo_set_features = tsnep_netdev_set_features,
.ndo_get_tstamp = tsnep_netdev_get_tstamp,
.ndo_setup_tc = tsnep_tc_setup,
.ndo_bpf = tsnep_netdev_bpf,
.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
};
static int tsnep_mac_init(struct tsnep_adapter *adapter)
{
int retval;
/* initialize RX filtering, at least configured MAC address and
* broadcast are not filtered
*/
iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
/* try to get MAC address in the following order:
* - device tree
* - valid MAC address already set
* - MAC address register if valid
* - random MAC address
*/
retval = of_get_mac_address(adapter->pdev->dev.of_node,
adapter->mac_address);
if (retval == -EPROBE_DEFER)
return retval;
if (retval && !is_valid_ether_addr(adapter->mac_address)) {
*(u32 *)adapter->mac_address =
ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
*(u16 *)(adapter->mac_address + sizeof(u32)) =
ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
if (!is_valid_ether_addr(adapter->mac_address))
eth_random_addr(adapter->mac_address);
}
tsnep_mac_set_address(adapter, adapter->mac_address);
eth_hw_addr_set(adapter->netdev, adapter->mac_address);
return 0;
}
static int tsnep_mdio_init(struct tsnep_adapter *adapter)
{
struct device_node *np = adapter->pdev->dev.of_node;
int retval;
if (np) {
np = of_get_child_by_name(np, "mdio");
if (!np)
return 0;
adapter->suppress_preamble =
of_property_read_bool(np, "suppress-preamble");
}
adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
if (!adapter->mdiobus) {
retval = -ENOMEM;
goto out;
}
adapter->mdiobus->priv = (void *)adapter;
adapter->mdiobus->parent = &adapter->pdev->dev;
adapter->mdiobus->read = tsnep_mdiobus_read;
adapter->mdiobus->write = tsnep_mdiobus_write;
adapter->mdiobus->name = TSNEP "-mdiobus";
snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
adapter->pdev->name);
/* do not scan broadcast address */
adapter->mdiobus->phy_mask = 0x0000001;
retval = of_mdiobus_register(adapter->mdiobus, np);
out:
of_node_put(np);
return retval;
}
static int tsnep_phy_init(struct tsnep_adapter *adapter)
{
struct device_node *phy_node;
int retval;
retval = of_get_phy_mode(adapter->pdev->dev.of_node,
&adapter->phy_mode);
if (retval)
adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
0);
adapter->phydev = of_phy_find_device(phy_node);
of_node_put(phy_node);
if (!adapter->phydev && adapter->mdiobus)
adapter->phydev = phy_find_first(adapter->mdiobus);
if (!adapter->phydev)
return -EIO;
return 0;
}
static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
{
u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
char name[8];
int i;
int retval;
/* one TX/RX queue pair for netdev is mandatory */
if (platform_irq_count(adapter->pdev) == 1)
retval = platform_get_irq(adapter->pdev, 0);
else
retval = platform_get_irq_byname(adapter->pdev, "mac");
if (retval < 0)
return retval;
adapter->num_tx_queues = 1;
adapter->num_rx_queues = 1;
adapter->num_queues = 1;
adapter->queue[0].adapter = adapter;
adapter->queue[0].irq = retval;
adapter->queue[0].tx = &adapter->tx[0];
adapter->queue[0].tx->adapter = adapter;
adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
adapter->queue[0].tx->queue_index = 0;
adapter->queue[0].rx = &adapter->rx[0];
adapter->queue[0].rx->adapter = adapter;
adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
adapter->queue[0].rx->queue_index = 0;
adapter->queue[0].irq_mask = irq_mask;
adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
retval = tsnep_set_irq_coalesce(&adapter->queue[0],
TSNEP_COALESCE_USECS_DEFAULT);
if (retval < 0)
return retval;
adapter->netdev->irq = adapter->queue[0].irq;
/* add additional TX/RX queue pairs only if dedicated interrupt is
* available
*/
for (i = 1; i < queue_count; i++) {
sprintf(name, "txrx-%d", i);
retval = platform_get_irq_byname_optional(adapter->pdev, name);
if (retval < 0)
break;
adapter->num_tx_queues++;
adapter->num_rx_queues++;
adapter->num_queues++;
adapter->queue[i].adapter = adapter;
adapter->queue[i].irq = retval;
adapter->queue[i].tx = &adapter->tx[i];
adapter->queue[i].tx->adapter = adapter;
adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
adapter->queue[i].tx->queue_index = i;
adapter->queue[i].rx = &adapter->rx[i];
adapter->queue[i].rx->adapter = adapter;
adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
adapter->queue[i].rx->queue_index = i;
adapter->queue[i].irq_mask =
irq_mask << (ECM_INT_TXRX_SHIFT * i);
adapter->queue[i].irq_delay_addr =
adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
retval = tsnep_set_irq_coalesce(&adapter->queue[i],
TSNEP_COALESCE_USECS_DEFAULT);
if (retval < 0)
return retval;
}
return 0;
}
static int tsnep_probe(struct platform_device *pdev)
{
struct tsnep_adapter *adapter;
struct net_device *netdev;
struct resource *io;
u32 type;
int revision;
int version;
int queue_count;
int retval;
netdev = devm_alloc_etherdev_mqs(&pdev->dev,
sizeof(struct tsnep_adapter),
TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
if (!netdev)
return -ENODEV;
SET_NETDEV_DEV(netdev, &pdev->dev);
adapter = netdev_priv(netdev);
platform_set_drvdata(pdev, adapter);
adapter->pdev = pdev;
adapter->dmadev = &pdev->dev;
adapter->netdev = netdev;
adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
mutex_init(&adapter->gate_control_lock);
mutex_init(&adapter->rxnfc_lock);
INIT_LIST_HEAD(&adapter->rxnfc_rules);
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
adapter->addr = devm_ioremap_resource(&pdev->dev, io);
if (IS_ERR(adapter->addr))
return PTR_ERR(adapter->addr);
netdev->mem_start = io->start;
netdev->mem_end = io->end;
type = ioread32(adapter->addr + ECM_TYPE);
revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
adapter->gate_control = type & ECM_GATE_CONTROL;
adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
tsnep_disable_irq(adapter, ECM_INT_ALL);
retval = tsnep_queue_init(adapter, queue_count);
if (retval)
return retval;
retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
DMA_BIT_MASK(64));
if (retval) {
dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
return retval;
}
retval = tsnep_mac_init(adapter);
if (retval)
return retval;
retval = tsnep_mdio_init(adapter);
if (retval)
goto mdio_init_failed;
retval = tsnep_phy_init(adapter);
if (retval)
goto phy_init_failed;
retval = tsnep_ptp_init(adapter);
if (retval)
goto ptp_init_failed;
retval = tsnep_tc_init(adapter);
if (retval)
goto tc_init_failed;
retval = tsnep_rxnfc_init(adapter);
if (retval)
goto rxnfc_init_failed;
netdev->netdev_ops = &tsnep_netdev_ops;
netdev->ethtool_ops = &tsnep_ethtool_ops;
netdev->features = NETIF_F_SG;
netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_NDO_XMIT |
NETDEV_XDP_ACT_NDO_XMIT_SG |
NETDEV_XDP_ACT_XSK_ZEROCOPY;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
retval = register_netdev(netdev);
if (retval)
goto register_failed;
dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
revision);
if (adapter->gate_control)
dev_info(&adapter->pdev->dev, "gate control detected\n");
return 0;
register_failed:
tsnep_rxnfc_cleanup(adapter);
rxnfc_init_failed:
tsnep_tc_cleanup(adapter);
tc_init_failed:
tsnep_ptp_cleanup(adapter);
ptp_init_failed:
phy_init_failed:
if (adapter->mdiobus)
mdiobus_unregister(adapter->mdiobus);
mdio_init_failed:
return retval;
}
static int tsnep_remove(struct platform_device *pdev)
{
struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
unregister_netdev(adapter->netdev);
tsnep_rxnfc_cleanup(adapter);
tsnep_tc_cleanup(adapter);
tsnep_ptp_cleanup(adapter);
if (adapter->mdiobus)
mdiobus_unregister(adapter->mdiobus);
tsnep_disable_irq(adapter, ECM_INT_ALL);
return 0;
}
static const struct of_device_id tsnep_of_match[] = {
{ .compatible = "engleder,tsnep", },
{ },
};
MODULE_DEVICE_TABLE(of, tsnep_of_match);
static struct platform_driver tsnep_driver = {
.driver = {
.name = TSNEP,
.of_match_table = tsnep_of_match,
},
.probe = tsnep_probe,
.remove = tsnep_remove,
};
module_platform_driver(tsnep_driver);
MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
MODULE_LICENSE("GPL");