| /* |
| * bootmem - A boot-time physical memory allocator and configurator |
| * |
| * Copyright (C) 1999 Ingo Molnar |
| * 1999 Kanoj Sarcar, SGI |
| * 2008 Johannes Weiner |
| * |
| * Access to this subsystem has to be serialized externally (which is true |
| * for the boot process anyway). |
| */ |
| #include <linux/init.h> |
| #include <linux/pfn.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| |
| #include <asm/bug.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| |
| #include "internal.h" |
| |
| unsigned long max_low_pfn; |
| unsigned long min_low_pfn; |
| unsigned long max_pfn; |
| |
| static LIST_HEAD(bdata_list); |
| #ifdef CONFIG_CRASH_DUMP |
| /* |
| * If we have booted due to a crash, max_pfn will be a very low value. We need |
| * to know the amount of memory that the previous kernel used. |
| */ |
| unsigned long saved_max_pfn; |
| #endif |
| |
| bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; |
| |
| /* |
| * Given an initialised bdata, it returns the size of the boot bitmap |
| */ |
| static unsigned long __init get_mapsize(bootmem_data_t *bdata) |
| { |
| unsigned long mapsize; |
| unsigned long start = PFN_DOWN(bdata->node_boot_start); |
| unsigned long end = bdata->node_low_pfn; |
| |
| mapsize = ((end - start) + 7) / 8; |
| return ALIGN(mapsize, sizeof(long)); |
| } |
| |
| /* return the number of _pages_ that will be allocated for the boot bitmap */ |
| unsigned long __init bootmem_bootmap_pages(unsigned long pages) |
| { |
| unsigned long mapsize; |
| |
| mapsize = (pages+7)/8; |
| mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; |
| mapsize >>= PAGE_SHIFT; |
| |
| return mapsize; |
| } |
| |
| /* |
| * link bdata in order |
| */ |
| static void __init link_bootmem(bootmem_data_t *bdata) |
| { |
| bootmem_data_t *ent; |
| |
| if (list_empty(&bdata_list)) { |
| list_add(&bdata->list, &bdata_list); |
| return; |
| } |
| /* insert in order */ |
| list_for_each_entry(ent, &bdata_list, list) { |
| if (bdata->node_boot_start < ent->node_boot_start) { |
| list_add_tail(&bdata->list, &ent->list); |
| return; |
| } |
| } |
| list_add_tail(&bdata->list, &bdata_list); |
| } |
| |
| /* |
| * Called once to set up the allocator itself. |
| */ |
| static unsigned long __init init_bootmem_core(bootmem_data_t *bdata, |
| unsigned long mapstart, unsigned long start, unsigned long end) |
| { |
| unsigned long mapsize; |
| |
| mminit_validate_memmodel_limits(&start, &end); |
| bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); |
| bdata->node_boot_start = PFN_PHYS(start); |
| bdata->node_low_pfn = end; |
| link_bootmem(bdata); |
| |
| /* |
| * Initially all pages are reserved - setup_arch() has to |
| * register free RAM areas explicitly. |
| */ |
| mapsize = get_mapsize(bdata); |
| memset(bdata->node_bootmem_map, 0xff, mapsize); |
| |
| return mapsize; |
| } |
| |
| unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, |
| unsigned long startpfn, unsigned long endpfn) |
| { |
| return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn); |
| } |
| |
| unsigned long __init init_bootmem(unsigned long start, unsigned long pages) |
| { |
| max_low_pfn = pages; |
| min_low_pfn = start; |
| return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages); |
| } |
| |
| static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata) |
| { |
| struct page *page; |
| unsigned long pfn; |
| unsigned long i, count; |
| unsigned long idx; |
| unsigned long *map; |
| int gofast = 0; |
| |
| BUG_ON(!bdata->node_bootmem_map); |
| |
| count = 0; |
| /* first extant page of the node */ |
| pfn = PFN_DOWN(bdata->node_boot_start); |
| idx = bdata->node_low_pfn - pfn; |
| map = bdata->node_bootmem_map; |
| /* |
| * Check if we are aligned to BITS_PER_LONG pages. If so, we might |
| * be able to free page orders of that size at once. |
| */ |
| if (!(pfn & (BITS_PER_LONG-1))) |
| gofast = 1; |
| |
| for (i = 0; i < idx; ) { |
| unsigned long v = ~map[i / BITS_PER_LONG]; |
| |
| if (gofast && v == ~0UL) { |
| int order; |
| |
| page = pfn_to_page(pfn); |
| count += BITS_PER_LONG; |
| order = ffs(BITS_PER_LONG) - 1; |
| __free_pages_bootmem(page, order); |
| i += BITS_PER_LONG; |
| page += BITS_PER_LONG; |
| } else if (v) { |
| unsigned long m; |
| |
| page = pfn_to_page(pfn); |
| for (m = 1; m && i < idx; m<<=1, page++, i++) { |
| if (v & m) { |
| count++; |
| __free_pages_bootmem(page, 0); |
| } |
| } |
| } else { |
| i += BITS_PER_LONG; |
| } |
| pfn += BITS_PER_LONG; |
| } |
| |
| /* |
| * Now free the allocator bitmap itself, it's not |
| * needed anymore: |
| */ |
| page = virt_to_page(bdata->node_bootmem_map); |
| idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT; |
| for (i = 0; i < idx; i++, page++) |
| __free_pages_bootmem(page, 0); |
| count += i; |
| bdata->node_bootmem_map = NULL; |
| |
| return count; |
| } |
| |
| unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) |
| { |
| register_page_bootmem_info_node(pgdat); |
| return free_all_bootmem_core(pgdat->bdata); |
| } |
| |
| unsigned long __init free_all_bootmem(void) |
| { |
| return free_all_bootmem_core(NODE_DATA(0)->bdata); |
| } |
| |
| static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, |
| unsigned long size) |
| { |
| unsigned long sidx, eidx; |
| unsigned long i; |
| |
| BUG_ON(!size); |
| |
| /* out range */ |
| if (addr + size < bdata->node_boot_start || |
| PFN_DOWN(addr) > bdata->node_low_pfn) |
| return; |
| /* |
| * round down end of usable mem, partially free pages are |
| * considered reserved. |
| */ |
| |
| if (addr >= bdata->node_boot_start && addr < bdata->last_success) |
| bdata->last_success = addr; |
| |
| /* |
| * Round up to index to the range. |
| */ |
| if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start)) |
| sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start); |
| else |
| sidx = 0; |
| |
| eidx = PFN_DOWN(addr + size - bdata->node_boot_start); |
| if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) |
| eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); |
| |
| for (i = sidx; i < eidx; i++) { |
| if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) |
| BUG(); |
| } |
| } |
| |
| void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, |
| unsigned long size) |
| { |
| free_bootmem_core(pgdat->bdata, physaddr, size); |
| } |
| |
| void __init free_bootmem(unsigned long addr, unsigned long size) |
| { |
| bootmem_data_t *bdata; |
| list_for_each_entry(bdata, &bdata_list, list) |
| free_bootmem_core(bdata, addr, size); |
| } |
| |
| /* |
| * Marks a particular physical memory range as unallocatable. Usable RAM |
| * might be used for boot-time allocations - or it might get added |
| * to the free page pool later on. |
| */ |
| static int __init can_reserve_bootmem_core(bootmem_data_t *bdata, |
| unsigned long addr, unsigned long size, int flags) |
| { |
| unsigned long sidx, eidx; |
| unsigned long i; |
| |
| BUG_ON(!size); |
| |
| /* out of range, don't hold other */ |
| if (addr + size < bdata->node_boot_start || |
| PFN_DOWN(addr) > bdata->node_low_pfn) |
| return 0; |
| |
| /* |
| * Round up to index to the range. |
| */ |
| if (addr > bdata->node_boot_start) |
| sidx= PFN_DOWN(addr - bdata->node_boot_start); |
| else |
| sidx = 0; |
| |
| eidx = PFN_UP(addr + size - bdata->node_boot_start); |
| if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) |
| eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); |
| |
| for (i = sidx; i < eidx; i++) { |
| if (test_bit(i, bdata->node_bootmem_map)) { |
| if (flags & BOOTMEM_EXCLUSIVE) |
| return -EBUSY; |
| } |
| } |
| |
| return 0; |
| |
| } |
| |
| static void __init reserve_bootmem_core(bootmem_data_t *bdata, |
| unsigned long addr, unsigned long size, int flags) |
| { |
| unsigned long sidx, eidx; |
| unsigned long i; |
| |
| BUG_ON(!size); |
| |
| /* out of range */ |
| if (addr + size < bdata->node_boot_start || |
| PFN_DOWN(addr) > bdata->node_low_pfn) |
| return; |
| |
| /* |
| * Round up to index to the range. |
| */ |
| if (addr > bdata->node_boot_start) |
| sidx= PFN_DOWN(addr - bdata->node_boot_start); |
| else |
| sidx = 0; |
| |
| eidx = PFN_UP(addr + size - bdata->node_boot_start); |
| if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) |
| eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); |
| |
| for (i = sidx; i < eidx; i++) { |
| if (test_and_set_bit(i, bdata->node_bootmem_map)) { |
| #ifdef CONFIG_DEBUG_BOOTMEM |
| printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); |
| #endif |
| } |
| } |
| } |
| |
| int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, |
| unsigned long size, int flags) |
| { |
| int ret; |
| |
| ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); |
| if (ret < 0) |
| return -ENOMEM; |
| reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); |
| return 0; |
| } |
| |
| #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
| int __init reserve_bootmem(unsigned long addr, unsigned long size, |
| int flags) |
| { |
| bootmem_data_t *bdata; |
| int ret; |
| |
| list_for_each_entry(bdata, &bdata_list, list) { |
| ret = can_reserve_bootmem_core(bdata, addr, size, flags); |
| if (ret < 0) |
| return ret; |
| } |
| list_for_each_entry(bdata, &bdata_list, list) |
| reserve_bootmem_core(bdata, addr, size, flags); |
| |
| return 0; |
| } |
| #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ |
| |
| /* |
| * We 'merge' subsequent allocations to save space. We might 'lose' |
| * some fraction of a page if allocations cannot be satisfied due to |
| * size constraints on boxes where there is physical RAM space |
| * fragmentation - in these cases (mostly large memory boxes) this |
| * is not a problem. |
| * |
| * On low memory boxes we get it right in 100% of the cases. |
| * |
| * alignment has to be a power of 2 value. |
| * |
| * NOTE: This function is _not_ reentrant. |
| */ |
| static void * __init |
| alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, |
| unsigned long align, unsigned long goal, unsigned long limit) |
| { |
| unsigned long areasize, preferred; |
| unsigned long i, start = 0, incr, eidx, end_pfn; |
| void *ret; |
| unsigned long node_boot_start; |
| void *node_bootmem_map; |
| |
| if (!size) { |
| printk("alloc_bootmem_core(): zero-sized request\n"); |
| BUG(); |
| } |
| BUG_ON(align & (align-1)); |
| |
| /* on nodes without memory - bootmem_map is NULL */ |
| if (!bdata->node_bootmem_map) |
| return NULL; |
| |
| /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */ |
| node_boot_start = bdata->node_boot_start; |
| node_bootmem_map = bdata->node_bootmem_map; |
| if (align) { |
| node_boot_start = ALIGN(bdata->node_boot_start, align); |
| if (node_boot_start > bdata->node_boot_start) |
| node_bootmem_map = (unsigned long *)bdata->node_bootmem_map + |
| PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG; |
| } |
| |
| if (limit && node_boot_start >= limit) |
| return NULL; |
| |
| end_pfn = bdata->node_low_pfn; |
| limit = PFN_DOWN(limit); |
| if (limit && end_pfn > limit) |
| end_pfn = limit; |
| |
| eidx = end_pfn - PFN_DOWN(node_boot_start); |
| |
| /* |
| * We try to allocate bootmem pages above 'goal' |
| * first, then we try to allocate lower pages. |
| */ |
| preferred = 0; |
| if (goal && PFN_DOWN(goal) < end_pfn) { |
| if (goal > node_boot_start) |
| preferred = goal - node_boot_start; |
| |
| if (bdata->last_success > node_boot_start && |
| bdata->last_success - node_boot_start >= preferred) |
| if (!limit || (limit && limit > bdata->last_success)) |
| preferred = bdata->last_success - node_boot_start; |
| } |
| |
| preferred = PFN_DOWN(ALIGN(preferred, align)); |
| areasize = (size + PAGE_SIZE-1) / PAGE_SIZE; |
| incr = align >> PAGE_SHIFT ? : 1; |
| |
| restart_scan: |
| for (i = preferred; i < eidx;) { |
| unsigned long j; |
| |
| i = find_next_zero_bit(node_bootmem_map, eidx, i); |
| i = ALIGN(i, incr); |
| if (i >= eidx) |
| break; |
| if (test_bit(i, node_bootmem_map)) { |
| i += incr; |
| continue; |
| } |
| for (j = i + 1; j < i + areasize; ++j) { |
| if (j >= eidx) |
| goto fail_block; |
| if (test_bit(j, node_bootmem_map)) |
| goto fail_block; |
| } |
| start = i; |
| goto found; |
| fail_block: |
| i = ALIGN(j, incr); |
| if (i == j) |
| i += incr; |
| } |
| |
| if (preferred > 0) { |
| preferred = 0; |
| goto restart_scan; |
| } |
| return NULL; |
| |
| found: |
| bdata->last_success = PFN_PHYS(start) + node_boot_start; |
| BUG_ON(start >= eidx); |
| |
| /* |
| * Is the next page of the previous allocation-end the start |
| * of this allocation's buffer? If yes then we can 'merge' |
| * the previous partial page with this allocation. |
| */ |
| if (align < PAGE_SIZE && |
| bdata->last_offset && bdata->last_pos+1 == start) { |
| unsigned long offset, remaining_size; |
| offset = ALIGN(bdata->last_offset, align); |
| BUG_ON(offset > PAGE_SIZE); |
| remaining_size = PAGE_SIZE - offset; |
| if (size < remaining_size) { |
| areasize = 0; |
| /* last_pos unchanged */ |
| bdata->last_offset = offset + size; |
| ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + |
| offset + node_boot_start); |
| } else { |
| remaining_size = size - remaining_size; |
| areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE; |
| ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + |
| offset + node_boot_start); |
| bdata->last_pos = start + areasize - 1; |
| bdata->last_offset = remaining_size; |
| } |
| bdata->last_offset &= ~PAGE_MASK; |
| } else { |
| bdata->last_pos = start + areasize - 1; |
| bdata->last_offset = size & ~PAGE_MASK; |
| ret = phys_to_virt(start * PAGE_SIZE + node_boot_start); |
| } |
| |
| /* |
| * Reserve the area now: |
| */ |
| for (i = start; i < start + areasize; i++) |
| if (unlikely(test_and_set_bit(i, node_bootmem_map))) |
| BUG(); |
| memset(ret, 0, size); |
| return ret; |
| } |
| |
| void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, |
| unsigned long goal) |
| { |
| bootmem_data_t *bdata; |
| void *ptr; |
| |
| list_for_each_entry(bdata, &bdata_list, list) { |
| ptr = alloc_bootmem_core(bdata, size, align, goal, 0); |
| if (ptr) |
| return ptr; |
| } |
| return NULL; |
| } |
| |
| void * __init __alloc_bootmem(unsigned long size, unsigned long align, |
| unsigned long goal) |
| { |
| void *mem = __alloc_bootmem_nopanic(size,align,goal); |
| |
| if (mem) |
| return mem; |
| /* |
| * Whoops, we cannot satisfy the allocation request. |
| */ |
| printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); |
| panic("Out of memory"); |
| return NULL; |
| } |
| |
| void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, |
| unsigned long align, unsigned long goal) |
| { |
| void *ptr; |
| |
| ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
| if (ptr) |
| return ptr; |
| |
| return __alloc_bootmem(size, align, goal); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM |
| void * __init alloc_bootmem_section(unsigned long size, |
| unsigned long section_nr) |
| { |
| void *ptr; |
| unsigned long limit, goal, start_nr, end_nr, pfn; |
| struct pglist_data *pgdat; |
| |
| pfn = section_nr_to_pfn(section_nr); |
| goal = PFN_PHYS(pfn); |
| limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1; |
| pgdat = NODE_DATA(early_pfn_to_nid(pfn)); |
| ptr = alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal, |
| limit); |
| |
| if (!ptr) |
| return NULL; |
| |
| start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr))); |
| end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size)); |
| if (start_nr != section_nr || end_nr != section_nr) { |
| printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n", |
| section_nr); |
| free_bootmem_core(pgdat->bdata, __pa(ptr), size); |
| ptr = NULL; |
| } |
| |
| return ptr; |
| } |
| #endif |
| |
| void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, |
| unsigned long align, unsigned long goal) |
| { |
| void *ptr; |
| |
| ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
| if (ptr) |
| return ptr; |
| |
| return __alloc_bootmem_nopanic(size, align, goal); |
| } |
| |
| #ifndef ARCH_LOW_ADDRESS_LIMIT |
| #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL |
| #endif |
| |
| void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, |
| unsigned long goal) |
| { |
| bootmem_data_t *bdata; |
| void *ptr; |
| |
| list_for_each_entry(bdata, &bdata_list, list) { |
| ptr = alloc_bootmem_core(bdata, size, align, goal, |
| ARCH_LOW_ADDRESS_LIMIT); |
| if (ptr) |
| return ptr; |
| } |
| |
| /* |
| * Whoops, we cannot satisfy the allocation request. |
| */ |
| printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); |
| panic("Out of low memory"); |
| return NULL; |
| } |
| |
| void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, |
| unsigned long align, unsigned long goal) |
| { |
| return alloc_bootmem_core(pgdat->bdata, size, align, goal, |
| ARCH_LOW_ADDRESS_LIMIT); |
| } |