| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Longest prefix match list implementation | 
 |  * | 
 |  * Copyright (c) 2016,2017 Daniel Mack | 
 |  * Copyright (c) 2016 David Herrmann | 
 |  */ | 
 |  | 
 | #include <linux/bpf.h> | 
 | #include <linux/btf.h> | 
 | #include <linux/err.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <net/ipv6.h> | 
 | #include <uapi/linux/btf.h> | 
 |  | 
 | /* Intermediate node */ | 
 | #define LPM_TREE_NODE_FLAG_IM BIT(0) | 
 |  | 
 | struct lpm_trie_node; | 
 |  | 
 | struct lpm_trie_node { | 
 | 	struct rcu_head rcu; | 
 | 	struct lpm_trie_node __rcu	*child[2]; | 
 | 	u32				prefixlen; | 
 | 	u32				flags; | 
 | 	u8				data[0]; | 
 | }; | 
 |  | 
 | struct lpm_trie { | 
 | 	struct bpf_map			map; | 
 | 	struct lpm_trie_node __rcu	*root; | 
 | 	size_t				n_entries; | 
 | 	size_t				max_prefixlen; | 
 | 	size_t				data_size; | 
 | 	raw_spinlock_t			lock; | 
 | }; | 
 |  | 
 | /* This trie implements a longest prefix match algorithm that can be used to | 
 |  * match IP addresses to a stored set of ranges. | 
 |  * | 
 |  * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is | 
 |  * interpreted as big endian, so data[0] stores the most significant byte. | 
 |  * | 
 |  * Match ranges are internally stored in instances of struct lpm_trie_node | 
 |  * which each contain their prefix length as well as two pointers that may | 
 |  * lead to more nodes containing more specific matches. Each node also stores | 
 |  * a value that is defined by and returned to userspace via the update_elem | 
 |  * and lookup functions. | 
 |  * | 
 |  * For instance, let's start with a trie that was created with a prefix length | 
 |  * of 32, so it can be used for IPv4 addresses, and one single element that | 
 |  * matches 192.168.0.0/16. The data array would hence contain | 
 |  * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will | 
 |  * stick to IP-address notation for readability though. | 
 |  * | 
 |  * As the trie is empty initially, the new node (1) will be places as root | 
 |  * node, denoted as (R) in the example below. As there are no other node, both | 
 |  * child pointers are %NULL. | 
 |  * | 
 |  *              +----------------+ | 
 |  *              |       (1)  (R) | | 
 |  *              | 192.168.0.0/16 | | 
 |  *              |    value: 1    | | 
 |  *              |   [0]    [1]   | | 
 |  *              +----------------+ | 
 |  * | 
 |  * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already | 
 |  * a node with the same data and a smaller prefix (ie, a less specific one), | 
 |  * node (2) will become a child of (1). In child index depends on the next bit | 
 |  * that is outside of what (1) matches, and that bit is 0, so (2) will be | 
 |  * child[0] of (1): | 
 |  * | 
 |  *              +----------------+ | 
 |  *              |       (1)  (R) | | 
 |  *              | 192.168.0.0/16 | | 
 |  *              |    value: 1    | | 
 |  *              |   [0]    [1]   | | 
 |  *              +----------------+ | 
 |  *                   | | 
 |  *    +----------------+ | 
 |  *    |       (2)      | | 
 |  *    | 192.168.0.0/24 | | 
 |  *    |    value: 2    | | 
 |  *    |   [0]    [1]   | | 
 |  *    +----------------+ | 
 |  * | 
 |  * The child[1] slot of (1) could be filled with another node which has bit #17 | 
 |  * (the next bit after the ones that (1) matches on) set to 1. For instance, | 
 |  * 192.168.128.0/24: | 
 |  * | 
 |  *              +----------------+ | 
 |  *              |       (1)  (R) | | 
 |  *              | 192.168.0.0/16 | | 
 |  *              |    value: 1    | | 
 |  *              |   [0]    [1]   | | 
 |  *              +----------------+ | 
 |  *                   |      | | 
 |  *    +----------------+  +------------------+ | 
 |  *    |       (2)      |  |        (3)       | | 
 |  *    | 192.168.0.0/24 |  | 192.168.128.0/24 | | 
 |  *    |    value: 2    |  |     value: 3     | | 
 |  *    |   [0]    [1]   |  |    [0]    [1]    | | 
 |  *    +----------------+  +------------------+ | 
 |  * | 
 |  * Let's add another node (4) to the game for 192.168.1.0/24. In order to place | 
 |  * it, node (1) is looked at first, and because (4) of the semantics laid out | 
 |  * above (bit #17 is 0), it would normally be attached to (1) as child[0]. | 
 |  * However, that slot is already allocated, so a new node is needed in between. | 
 |  * That node does not have a value attached to it and it will never be | 
 |  * returned to users as result of a lookup. It is only there to differentiate | 
 |  * the traversal further. It will get a prefix as wide as necessary to | 
 |  * distinguish its two children: | 
 |  * | 
 |  *                      +----------------+ | 
 |  *                      |       (1)  (R) | | 
 |  *                      | 192.168.0.0/16 | | 
 |  *                      |    value: 1    | | 
 |  *                      |   [0]    [1]   | | 
 |  *                      +----------------+ | 
 |  *                           |      | | 
 |  *            +----------------+  +------------------+ | 
 |  *            |       (4)  (I) |  |        (3)       | | 
 |  *            | 192.168.0.0/23 |  | 192.168.128.0/24 | | 
 |  *            |    value: ---  |  |     value: 3     | | 
 |  *            |   [0]    [1]   |  |    [0]    [1]    | | 
 |  *            +----------------+  +------------------+ | 
 |  *                 |      | | 
 |  *  +----------------+  +----------------+ | 
 |  *  |       (2)      |  |       (5)      | | 
 |  *  | 192.168.0.0/24 |  | 192.168.1.0/24 | | 
 |  *  |    value: 2    |  |     value: 5   | | 
 |  *  |   [0]    [1]   |  |   [0]    [1]   | | 
 |  *  +----------------+  +----------------+ | 
 |  * | 
 |  * 192.168.1.1/32 would be a child of (5) etc. | 
 |  * | 
 |  * An intermediate node will be turned into a 'real' node on demand. In the | 
 |  * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. | 
 |  * | 
 |  * A fully populated trie would have a height of 32 nodes, as the trie was | 
 |  * created with a prefix length of 32. | 
 |  * | 
 |  * The lookup starts at the root node. If the current node matches and if there | 
 |  * is a child that can be used to become more specific, the trie is traversed | 
 |  * downwards. The last node in the traversal that is a non-intermediate one is | 
 |  * returned. | 
 |  */ | 
 |  | 
 | static inline int extract_bit(const u8 *data, size_t index) | 
 | { | 
 | 	return !!(data[index / 8] & (1 << (7 - (index % 8)))); | 
 | } | 
 |  | 
 | /** | 
 |  * longest_prefix_match() - determine the longest prefix | 
 |  * @trie:	The trie to get internal sizes from | 
 |  * @node:	The node to operate on | 
 |  * @key:	The key to compare to @node | 
 |  * | 
 |  * Determine the longest prefix of @node that matches the bits in @key. | 
 |  */ | 
 | static size_t longest_prefix_match(const struct lpm_trie *trie, | 
 | 				   const struct lpm_trie_node *node, | 
 | 				   const struct bpf_lpm_trie_key *key) | 
 | { | 
 | 	u32 limit = min(node->prefixlen, key->prefixlen); | 
 | 	u32 prefixlen = 0, i = 0; | 
 |  | 
 | 	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32)); | 
 | 	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32)); | 
 |  | 
 | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT) | 
 |  | 
 | 	/* data_size >= 16 has very small probability. | 
 | 	 * We do not use a loop for optimal code generation. | 
 | 	 */ | 
 | 	if (trie->data_size >= 8) { | 
 | 		u64 diff = be64_to_cpu(*(__be64 *)node->data ^ | 
 | 				       *(__be64 *)key->data); | 
 |  | 
 | 		prefixlen = 64 - fls64(diff); | 
 | 		if (prefixlen >= limit) | 
 | 			return limit; | 
 | 		if (diff) | 
 | 			return prefixlen; | 
 | 		i = 8; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	while (trie->data_size >= i + 4) { | 
 | 		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^ | 
 | 				       *(__be32 *)&key->data[i]); | 
 |  | 
 | 		prefixlen += 32 - fls(diff); | 
 | 		if (prefixlen >= limit) | 
 | 			return limit; | 
 | 		if (diff) | 
 | 			return prefixlen; | 
 | 		i += 4; | 
 | 	} | 
 |  | 
 | 	if (trie->data_size >= i + 2) { | 
 | 		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^ | 
 | 				       *(__be16 *)&key->data[i]); | 
 |  | 
 | 		prefixlen += 16 - fls(diff); | 
 | 		if (prefixlen >= limit) | 
 | 			return limit; | 
 | 		if (diff) | 
 | 			return prefixlen; | 
 | 		i += 2; | 
 | 	} | 
 |  | 
 | 	if (trie->data_size >= i + 1) { | 
 | 		prefixlen += 8 - fls(node->data[i] ^ key->data[i]); | 
 |  | 
 | 		if (prefixlen >= limit) | 
 | 			return limit; | 
 | 	} | 
 |  | 
 | 	return prefixlen; | 
 | } | 
 |  | 
 | /* Called from syscall or from eBPF program */ | 
 | static void *trie_lookup_elem(struct bpf_map *map, void *_key) | 
 | { | 
 | 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
 | 	struct lpm_trie_node *node, *found = NULL; | 
 | 	struct bpf_lpm_trie_key *key = _key; | 
 |  | 
 | 	/* Start walking the trie from the root node ... */ | 
 |  | 
 | 	for (node = rcu_dereference(trie->root); node;) { | 
 | 		unsigned int next_bit; | 
 | 		size_t matchlen; | 
 |  | 
 | 		/* Determine the longest prefix of @node that matches @key. | 
 | 		 * If it's the maximum possible prefix for this trie, we have | 
 | 		 * an exact match and can return it directly. | 
 | 		 */ | 
 | 		matchlen = longest_prefix_match(trie, node, key); | 
 | 		if (matchlen == trie->max_prefixlen) { | 
 | 			found = node; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* If the number of bits that match is smaller than the prefix | 
 | 		 * length of @node, bail out and return the node we have seen | 
 | 		 * last in the traversal (ie, the parent). | 
 | 		 */ | 
 | 		if (matchlen < node->prefixlen) | 
 | 			break; | 
 |  | 
 | 		/* Consider this node as return candidate unless it is an | 
 | 		 * artificially added intermediate one. | 
 | 		 */ | 
 | 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | 
 | 			found = node; | 
 |  | 
 | 		/* If the node match is fully satisfied, let's see if we can | 
 | 		 * become more specific. Determine the next bit in the key and | 
 | 		 * traverse down. | 
 | 		 */ | 
 | 		next_bit = extract_bit(key->data, node->prefixlen); | 
 | 		node = rcu_dereference(node->child[next_bit]); | 
 | 	} | 
 |  | 
 | 	if (!found) | 
 | 		return NULL; | 
 |  | 
 | 	return found->data + trie->data_size; | 
 | } | 
 |  | 
 | static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, | 
 | 						 const void *value) | 
 | { | 
 | 	struct lpm_trie_node *node; | 
 | 	size_t size = sizeof(struct lpm_trie_node) + trie->data_size; | 
 |  | 
 | 	if (value) | 
 | 		size += trie->map.value_size; | 
 |  | 
 | 	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN, | 
 | 			    trie->map.numa_node); | 
 | 	if (!node) | 
 | 		return NULL; | 
 |  | 
 | 	node->flags = 0; | 
 |  | 
 | 	if (value) | 
 | 		memcpy(node->data + trie->data_size, value, | 
 | 		       trie->map.value_size); | 
 |  | 
 | 	return node; | 
 | } | 
 |  | 
 | /* Called from syscall or from eBPF program */ | 
 | static int trie_update_elem(struct bpf_map *map, | 
 | 			    void *_key, void *value, u64 flags) | 
 | { | 
 | 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
 | 	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; | 
 | 	struct lpm_trie_node __rcu **slot; | 
 | 	struct bpf_lpm_trie_key *key = _key; | 
 | 	unsigned long irq_flags; | 
 | 	unsigned int next_bit; | 
 | 	size_t matchlen = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(flags > BPF_EXIST)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (key->prefixlen > trie->max_prefixlen) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irqsave(&trie->lock, irq_flags); | 
 |  | 
 | 	/* Allocate and fill a new node */ | 
 |  | 
 | 	if (trie->n_entries == trie->map.max_entries) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	new_node = lpm_trie_node_alloc(trie, value); | 
 | 	if (!new_node) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trie->n_entries++; | 
 |  | 
 | 	new_node->prefixlen = key->prefixlen; | 
 | 	RCU_INIT_POINTER(new_node->child[0], NULL); | 
 | 	RCU_INIT_POINTER(new_node->child[1], NULL); | 
 | 	memcpy(new_node->data, key->data, trie->data_size); | 
 |  | 
 | 	/* Now find a slot to attach the new node. To do that, walk the tree | 
 | 	 * from the root and match as many bits as possible for each node until | 
 | 	 * we either find an empty slot or a slot that needs to be replaced by | 
 | 	 * an intermediate node. | 
 | 	 */ | 
 | 	slot = &trie->root; | 
 |  | 
 | 	while ((node = rcu_dereference_protected(*slot, | 
 | 					lockdep_is_held(&trie->lock)))) { | 
 | 		matchlen = longest_prefix_match(trie, node, key); | 
 |  | 
 | 		if (node->prefixlen != matchlen || | 
 | 		    node->prefixlen == key->prefixlen || | 
 | 		    node->prefixlen == trie->max_prefixlen) | 
 | 			break; | 
 |  | 
 | 		next_bit = extract_bit(key->data, node->prefixlen); | 
 | 		slot = &node->child[next_bit]; | 
 | 	} | 
 |  | 
 | 	/* If the slot is empty (a free child pointer or an empty root), | 
 | 	 * simply assign the @new_node to that slot and be done. | 
 | 	 */ | 
 | 	if (!node) { | 
 | 		rcu_assign_pointer(*slot, new_node); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If the slot we picked already exists, replace it with @new_node | 
 | 	 * which already has the correct data array set. | 
 | 	 */ | 
 | 	if (node->prefixlen == matchlen) { | 
 | 		new_node->child[0] = node->child[0]; | 
 | 		new_node->child[1] = node->child[1]; | 
 |  | 
 | 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) | 
 | 			trie->n_entries--; | 
 |  | 
 | 		rcu_assign_pointer(*slot, new_node); | 
 | 		kfree_rcu(node, rcu); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If the new node matches the prefix completely, it must be inserted | 
 | 	 * as an ancestor. Simply insert it between @node and *@slot. | 
 | 	 */ | 
 | 	if (matchlen == key->prefixlen) { | 
 | 		next_bit = extract_bit(node->data, matchlen); | 
 | 		rcu_assign_pointer(new_node->child[next_bit], node); | 
 | 		rcu_assign_pointer(*slot, new_node); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	im_node = lpm_trie_node_alloc(trie, NULL); | 
 | 	if (!im_node) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	im_node->prefixlen = matchlen; | 
 | 	im_node->flags |= LPM_TREE_NODE_FLAG_IM; | 
 | 	memcpy(im_node->data, node->data, trie->data_size); | 
 |  | 
 | 	/* Now determine which child to install in which slot */ | 
 | 	if (extract_bit(key->data, matchlen)) { | 
 | 		rcu_assign_pointer(im_node->child[0], node); | 
 | 		rcu_assign_pointer(im_node->child[1], new_node); | 
 | 	} else { | 
 | 		rcu_assign_pointer(im_node->child[0], new_node); | 
 | 		rcu_assign_pointer(im_node->child[1], node); | 
 | 	} | 
 |  | 
 | 	/* Finally, assign the intermediate node to the determined spot */ | 
 | 	rcu_assign_pointer(*slot, im_node); | 
 |  | 
 | out: | 
 | 	if (ret) { | 
 | 		if (new_node) | 
 | 			trie->n_entries--; | 
 |  | 
 | 		kfree(new_node); | 
 | 		kfree(im_node); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Called from syscall or from eBPF program */ | 
 | static int trie_delete_elem(struct bpf_map *map, void *_key) | 
 | { | 
 | 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
 | 	struct bpf_lpm_trie_key *key = _key; | 
 | 	struct lpm_trie_node __rcu **trim, **trim2; | 
 | 	struct lpm_trie_node *node, *parent; | 
 | 	unsigned long irq_flags; | 
 | 	unsigned int next_bit; | 
 | 	size_t matchlen = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (key->prefixlen > trie->max_prefixlen) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irqsave(&trie->lock, irq_flags); | 
 |  | 
 | 	/* Walk the tree looking for an exact key/length match and keeping | 
 | 	 * track of the path we traverse.  We will need to know the node | 
 | 	 * we wish to delete, and the slot that points to the node we want | 
 | 	 * to delete.  We may also need to know the nodes parent and the | 
 | 	 * slot that contains it. | 
 | 	 */ | 
 | 	trim = &trie->root; | 
 | 	trim2 = trim; | 
 | 	parent = NULL; | 
 | 	while ((node = rcu_dereference_protected( | 
 | 		       *trim, lockdep_is_held(&trie->lock)))) { | 
 | 		matchlen = longest_prefix_match(trie, node, key); | 
 |  | 
 | 		if (node->prefixlen != matchlen || | 
 | 		    node->prefixlen == key->prefixlen) | 
 | 			break; | 
 |  | 
 | 		parent = node; | 
 | 		trim2 = trim; | 
 | 		next_bit = extract_bit(key->data, node->prefixlen); | 
 | 		trim = &node->child[next_bit]; | 
 | 	} | 
 |  | 
 | 	if (!node || node->prefixlen != key->prefixlen || | 
 | 	    node->prefixlen != matchlen || | 
 | 	    (node->flags & LPM_TREE_NODE_FLAG_IM)) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trie->n_entries--; | 
 |  | 
 | 	/* If the node we are removing has two children, simply mark it | 
 | 	 * as intermediate and we are done. | 
 | 	 */ | 
 | 	if (rcu_access_pointer(node->child[0]) && | 
 | 	    rcu_access_pointer(node->child[1])) { | 
 | 		node->flags |= LPM_TREE_NODE_FLAG_IM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If the parent of the node we are about to delete is an intermediate | 
 | 	 * node, and the deleted node doesn't have any children, we can delete | 
 | 	 * the intermediate parent as well and promote its other child | 
 | 	 * up the tree.  Doing this maintains the invariant that all | 
 | 	 * intermediate nodes have exactly 2 children and that there are no | 
 | 	 * unnecessary intermediate nodes in the tree. | 
 | 	 */ | 
 | 	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && | 
 | 	    !node->child[0] && !node->child[1]) { | 
 | 		if (node == rcu_access_pointer(parent->child[0])) | 
 | 			rcu_assign_pointer( | 
 | 				*trim2, rcu_access_pointer(parent->child[1])); | 
 | 		else | 
 | 			rcu_assign_pointer( | 
 | 				*trim2, rcu_access_pointer(parent->child[0])); | 
 | 		kfree_rcu(parent, rcu); | 
 | 		kfree_rcu(node, rcu); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* The node we are removing has either zero or one child. If there | 
 | 	 * is a child, move it into the removed node's slot then delete | 
 | 	 * the node.  Otherwise just clear the slot and delete the node. | 
 | 	 */ | 
 | 	if (node->child[0]) | 
 | 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); | 
 | 	else if (node->child[1]) | 
 | 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); | 
 | 	else | 
 | 		RCU_INIT_POINTER(*trim, NULL); | 
 | 	kfree_rcu(node, rcu); | 
 |  | 
 | out: | 
 | 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define LPM_DATA_SIZE_MAX	256 | 
 | #define LPM_DATA_SIZE_MIN	1 | 
 |  | 
 | #define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ | 
 | 				 sizeof(struct lpm_trie_node)) | 
 | #define LPM_VAL_SIZE_MIN	1 | 
 |  | 
 | #define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X)) | 
 | #define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) | 
 | #define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) | 
 |  | 
 | #define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\ | 
 | 				 BPF_F_ACCESS_MASK) | 
 |  | 
 | static struct bpf_map *trie_alloc(union bpf_attr *attr) | 
 | { | 
 | 	struct lpm_trie *trie; | 
 | 	u64 cost = sizeof(*trie), cost_per_node; | 
 | 	int ret; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return ERR_PTR(-EPERM); | 
 |  | 
 | 	/* check sanity of attributes */ | 
 | 	if (attr->max_entries == 0 || | 
 | 	    !(attr->map_flags & BPF_F_NO_PREALLOC) || | 
 | 	    attr->map_flags & ~LPM_CREATE_FLAG_MASK || | 
 | 	    !bpf_map_flags_access_ok(attr->map_flags) || | 
 | 	    attr->key_size < LPM_KEY_SIZE_MIN || | 
 | 	    attr->key_size > LPM_KEY_SIZE_MAX || | 
 | 	    attr->value_size < LPM_VAL_SIZE_MIN || | 
 | 	    attr->value_size > LPM_VAL_SIZE_MAX) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); | 
 | 	if (!trie) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* copy mandatory map attributes */ | 
 | 	bpf_map_init_from_attr(&trie->map, attr); | 
 | 	trie->data_size = attr->key_size - | 
 | 			  offsetof(struct bpf_lpm_trie_key, data); | 
 | 	trie->max_prefixlen = trie->data_size * 8; | 
 |  | 
 | 	cost_per_node = sizeof(struct lpm_trie_node) + | 
 | 			attr->value_size + trie->data_size; | 
 | 	cost += (u64) attr->max_entries * cost_per_node; | 
 |  | 
 | 	ret = bpf_map_charge_init(&trie->map.memory, cost); | 
 | 	if (ret) | 
 | 		goto out_err; | 
 |  | 
 | 	raw_spin_lock_init(&trie->lock); | 
 |  | 
 | 	return &trie->map; | 
 | out_err: | 
 | 	kfree(trie); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static void trie_free(struct bpf_map *map) | 
 | { | 
 | 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
 | 	struct lpm_trie_node __rcu **slot; | 
 | 	struct lpm_trie_node *node; | 
 |  | 
 | 	/* Wait for outstanding programs to complete | 
 | 	 * update/lookup/delete/get_next_key and free the trie. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* Always start at the root and walk down to a node that has no | 
 | 	 * children. Then free that node, nullify its reference in the parent | 
 | 	 * and start over. | 
 | 	 */ | 
 |  | 
 | 	for (;;) { | 
 | 		slot = &trie->root; | 
 |  | 
 | 		for (;;) { | 
 | 			node = rcu_dereference_protected(*slot, 1); | 
 | 			if (!node) | 
 | 				goto out; | 
 |  | 
 | 			if (rcu_access_pointer(node->child[0])) { | 
 | 				slot = &node->child[0]; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (rcu_access_pointer(node->child[1])) { | 
 | 				slot = &node->child[1]; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			kfree(node); | 
 | 			RCU_INIT_POINTER(*slot, NULL); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(trie); | 
 | } | 
 |  | 
 | static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key) | 
 | { | 
 | 	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root; | 
 | 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map); | 
 | 	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key; | 
 | 	struct lpm_trie_node **node_stack = NULL; | 
 | 	int err = 0, stack_ptr = -1; | 
 | 	unsigned int next_bit; | 
 | 	size_t matchlen; | 
 |  | 
 | 	/* The get_next_key follows postorder. For the 4 node example in | 
 | 	 * the top of this file, the trie_get_next_key() returns the following | 
 | 	 * one after another: | 
 | 	 *   192.168.0.0/24 | 
 | 	 *   192.168.1.0/24 | 
 | 	 *   192.168.128.0/24 | 
 | 	 *   192.168.0.0/16 | 
 | 	 * | 
 | 	 * The idea is to return more specific keys before less specific ones. | 
 | 	 */ | 
 |  | 
 | 	/* Empty trie */ | 
 | 	search_root = rcu_dereference(trie->root); | 
 | 	if (!search_root) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* For invalid key, find the leftmost node in the trie */ | 
 | 	if (!key || key->prefixlen > trie->max_prefixlen) | 
 | 		goto find_leftmost; | 
 |  | 
 | 	node_stack = kmalloc_array(trie->max_prefixlen, | 
 | 				   sizeof(struct lpm_trie_node *), | 
 | 				   GFP_ATOMIC | __GFP_NOWARN); | 
 | 	if (!node_stack) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Try to find the exact node for the given key */ | 
 | 	for (node = search_root; node;) { | 
 | 		node_stack[++stack_ptr] = node; | 
 | 		matchlen = longest_prefix_match(trie, node, key); | 
 | 		if (node->prefixlen != matchlen || | 
 | 		    node->prefixlen == key->prefixlen) | 
 | 			break; | 
 |  | 
 | 		next_bit = extract_bit(key->data, node->prefixlen); | 
 | 		node = rcu_dereference(node->child[next_bit]); | 
 | 	} | 
 | 	if (!node || node->prefixlen != key->prefixlen || | 
 | 	    (node->flags & LPM_TREE_NODE_FLAG_IM)) | 
 | 		goto find_leftmost; | 
 |  | 
 | 	/* The node with the exactly-matching key has been found, | 
 | 	 * find the first node in postorder after the matched node. | 
 | 	 */ | 
 | 	node = node_stack[stack_ptr]; | 
 | 	while (stack_ptr > 0) { | 
 | 		parent = node_stack[stack_ptr - 1]; | 
 | 		if (rcu_dereference(parent->child[0]) == node) { | 
 | 			search_root = rcu_dereference(parent->child[1]); | 
 | 			if (search_root) | 
 | 				goto find_leftmost; | 
 | 		} | 
 | 		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) { | 
 | 			next_node = parent; | 
 | 			goto do_copy; | 
 | 		} | 
 |  | 
 | 		node = parent; | 
 | 		stack_ptr--; | 
 | 	} | 
 |  | 
 | 	/* did not find anything */ | 
 | 	err = -ENOENT; | 
 | 	goto free_stack; | 
 |  | 
 | find_leftmost: | 
 | 	/* Find the leftmost non-intermediate node, all intermediate nodes | 
 | 	 * have exact two children, so this function will never return NULL. | 
 | 	 */ | 
 | 	for (node = search_root; node;) { | 
 | 		if (node->flags & LPM_TREE_NODE_FLAG_IM) { | 
 | 			node = rcu_dereference(node->child[0]); | 
 | 		} else { | 
 | 			next_node = node; | 
 | 			node = rcu_dereference(node->child[0]); | 
 | 			if (!node) | 
 | 				node = rcu_dereference(next_node->child[1]); | 
 | 		} | 
 | 	} | 
 | do_copy: | 
 | 	next_key->prefixlen = next_node->prefixlen; | 
 | 	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data), | 
 | 	       next_node->data, trie->data_size); | 
 | free_stack: | 
 | 	kfree(node_stack); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int trie_check_btf(const struct bpf_map *map, | 
 | 			  const struct btf *btf, | 
 | 			  const struct btf_type *key_type, | 
 | 			  const struct btf_type *value_type) | 
 | { | 
 | 	/* Keys must have struct bpf_lpm_trie_key embedded. */ | 
 | 	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ? | 
 | 	       -EINVAL : 0; | 
 | } | 
 |  | 
 | const struct bpf_map_ops trie_map_ops = { | 
 | 	.map_alloc = trie_alloc, | 
 | 	.map_free = trie_free, | 
 | 	.map_get_next_key = trie_get_next_key, | 
 | 	.map_lookup_elem = trie_lookup_elem, | 
 | 	.map_update_elem = trie_update_elem, | 
 | 	.map_delete_elem = trie_delete_elem, | 
 | 	.map_check_btf = trie_check_btf, | 
 | }; |