| /* |
| * Copyright(c) 2015 - 2018 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/seqlock.h> |
| #include <linux/netdevice.h> |
| #include <linux/moduleparam.h> |
| #include <linux/bitops.h> |
| #include <linux/timer.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| |
| #include "hfi.h" |
| #include "common.h" |
| #include "qp.h" |
| #include "sdma.h" |
| #include "iowait.h" |
| #include "trace.h" |
| |
| /* must be a power of 2 >= 64 <= 32768 */ |
| #define SDMA_DESCQ_CNT 2048 |
| #define SDMA_DESC_INTR 64 |
| #define INVALID_TAIL 0xffff |
| |
| static uint sdma_descq_cnt = SDMA_DESCQ_CNT; |
| module_param(sdma_descq_cnt, uint, S_IRUGO); |
| MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries"); |
| |
| static uint sdma_idle_cnt = 250; |
| module_param(sdma_idle_cnt, uint, S_IRUGO); |
| MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)"); |
| |
| uint mod_num_sdma; |
| module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO); |
| MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use"); |
| |
| static uint sdma_desct_intr = SDMA_DESC_INTR; |
| module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt"); |
| |
| #define SDMA_WAIT_BATCH_SIZE 20 |
| /* max wait time for a SDMA engine to indicate it has halted */ |
| #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */ |
| /* all SDMA engine errors that cause a halt */ |
| |
| #define SD(name) SEND_DMA_##name |
| #define ALL_SDMA_ENG_HALT_ERRS \ |
| (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \ |
| | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK)) |
| |
| /* sdma_sendctrl operations */ |
| #define SDMA_SENDCTRL_OP_ENABLE BIT(0) |
| #define SDMA_SENDCTRL_OP_INTENABLE BIT(1) |
| #define SDMA_SENDCTRL_OP_HALT BIT(2) |
| #define SDMA_SENDCTRL_OP_CLEANUP BIT(3) |
| |
| /* handle long defines */ |
| #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \ |
| SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK |
| #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \ |
| SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT |
| |
| static const char * const sdma_state_names[] = { |
| [sdma_state_s00_hw_down] = "s00_HwDown", |
| [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait", |
| [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait", |
| [sdma_state_s20_idle] = "s20_Idle", |
| [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait", |
| [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait", |
| [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait", |
| [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait", |
| [sdma_state_s80_hw_freeze] = "s80_HwFreeze", |
| [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean", |
| [sdma_state_s99_running] = "s99_Running", |
| }; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| static const char * const sdma_event_names[] = { |
| [sdma_event_e00_go_hw_down] = "e00_GoHwDown", |
| [sdma_event_e10_go_hw_start] = "e10_GoHwStart", |
| [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone", |
| [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone", |
| [sdma_event_e30_go_running] = "e30_GoRunning", |
| [sdma_event_e40_sw_cleaned] = "e40_SwCleaned", |
| [sdma_event_e50_hw_cleaned] = "e50_HwCleaned", |
| [sdma_event_e60_hw_halted] = "e60_HwHalted", |
| [sdma_event_e70_go_idle] = "e70_GoIdle", |
| [sdma_event_e80_hw_freeze] = "e80_HwFreeze", |
| [sdma_event_e81_hw_frozen] = "e81_HwFrozen", |
| [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze", |
| [sdma_event_e85_link_down] = "e85_LinkDown", |
| [sdma_event_e90_sw_halted] = "e90_SwHalted", |
| }; |
| #endif |
| |
| static const struct sdma_set_state_action sdma_action_table[] = { |
| [sdma_state_s00_hw_down] = { |
| .go_s99_running_tofalse = 1, |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s10_hw_start_up_halt_wait] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 1, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s15_hw_start_up_clean_wait] = { |
| .op_enable = 0, |
| .op_intenable = 1, |
| .op_halt = 0, |
| .op_cleanup = 1, |
| }, |
| [sdma_state_s20_idle] = { |
| .op_enable = 0, |
| .op_intenable = 1, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s30_sw_clean_up_wait] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s40_hw_clean_up_wait] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 1, |
| }, |
| [sdma_state_s50_hw_halt_wait] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s60_idle_halt_wait] = { |
| .go_s99_running_tofalse = 1, |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 1, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s80_hw_freeze] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s82_freeze_sw_clean] = { |
| .op_enable = 0, |
| .op_intenable = 0, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| }, |
| [sdma_state_s99_running] = { |
| .op_enable = 1, |
| .op_intenable = 1, |
| .op_halt = 0, |
| .op_cleanup = 0, |
| .go_s99_running_totrue = 1, |
| }, |
| }; |
| |
| #define SDMA_TAIL_UPDATE_THRESH 0x1F |
| |
| /* declare all statics here rather than keep sorting */ |
| static void sdma_complete(struct kref *); |
| static void sdma_finalput(struct sdma_state *); |
| static void sdma_get(struct sdma_state *); |
| static void sdma_hw_clean_up_task(unsigned long); |
| static void sdma_put(struct sdma_state *); |
| static void sdma_set_state(struct sdma_engine *, enum sdma_states); |
| static void sdma_start_hw_clean_up(struct sdma_engine *); |
| static void sdma_sw_clean_up_task(unsigned long); |
| static void sdma_sendctrl(struct sdma_engine *, unsigned); |
| static void init_sdma_regs(struct sdma_engine *, u32, uint); |
| static void sdma_process_event( |
| struct sdma_engine *sde, |
| enum sdma_events event); |
| static void __sdma_process_event( |
| struct sdma_engine *sde, |
| enum sdma_events event); |
| static void dump_sdma_state(struct sdma_engine *sde); |
| static void sdma_make_progress(struct sdma_engine *sde, u64 status); |
| static void sdma_desc_avail(struct sdma_engine *sde, uint avail); |
| static void sdma_flush_descq(struct sdma_engine *sde); |
| |
| /** |
| * sdma_state_name() - return state string from enum |
| * @state: state |
| */ |
| static const char *sdma_state_name(enum sdma_states state) |
| { |
| return sdma_state_names[state]; |
| } |
| |
| static void sdma_get(struct sdma_state *ss) |
| { |
| kref_get(&ss->kref); |
| } |
| |
| static void sdma_complete(struct kref *kref) |
| { |
| struct sdma_state *ss = |
| container_of(kref, struct sdma_state, kref); |
| |
| complete(&ss->comp); |
| } |
| |
| static void sdma_put(struct sdma_state *ss) |
| { |
| kref_put(&ss->kref, sdma_complete); |
| } |
| |
| static void sdma_finalput(struct sdma_state *ss) |
| { |
| sdma_put(ss); |
| wait_for_completion(&ss->comp); |
| } |
| |
| static inline void write_sde_csr( |
| struct sdma_engine *sde, |
| u32 offset0, |
| u64 value) |
| { |
| write_kctxt_csr(sde->dd, sde->this_idx, offset0, value); |
| } |
| |
| static inline u64 read_sde_csr( |
| struct sdma_engine *sde, |
| u32 offset0) |
| { |
| return read_kctxt_csr(sde->dd, sde->this_idx, offset0); |
| } |
| |
| /* |
| * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for |
| * sdma engine 'sde' to drop to 0. |
| */ |
| static void sdma_wait_for_packet_egress(struct sdma_engine *sde, |
| int pause) |
| { |
| u64 off = 8 * sde->this_idx; |
| struct hfi1_devdata *dd = sde->dd; |
| int lcnt = 0; |
| u64 reg_prev; |
| u64 reg = 0; |
| |
| while (1) { |
| reg_prev = reg; |
| reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS); |
| |
| reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK; |
| reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT; |
| if (reg == 0) |
| break; |
| /* counter is reest if accupancy count changes */ |
| if (reg != reg_prev) |
| lcnt = 0; |
| if (lcnt++ > 500) { |
| /* timed out - bounce the link */ |
| dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n", |
| __func__, sde->this_idx, (u32)reg); |
| queue_work(dd->pport->link_wq, |
| &dd->pport->link_bounce_work); |
| break; |
| } |
| udelay(1); |
| } |
| } |
| |
| /* |
| * sdma_wait() - wait for packet egress to complete for all SDMA engines, |
| * and pause for credit return. |
| */ |
| void sdma_wait(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| for (i = 0; i < dd->num_sdma; i++) { |
| struct sdma_engine *sde = &dd->per_sdma[i]; |
| |
| sdma_wait_for_packet_egress(sde, 0); |
| } |
| } |
| |
| static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt) |
| { |
| u64 reg; |
| |
| if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT)) |
| return; |
| reg = cnt; |
| reg &= SD(DESC_CNT_CNT_MASK); |
| reg <<= SD(DESC_CNT_CNT_SHIFT); |
| write_sde_csr(sde, SD(DESC_CNT), reg); |
| } |
| |
| static inline void complete_tx(struct sdma_engine *sde, |
| struct sdma_txreq *tx, |
| int res) |
| { |
| /* protect against complete modifying */ |
| struct iowait *wait = tx->wait; |
| callback_t complete = tx->complete; |
| |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| trace_hfi1_sdma_out_sn(sde, tx->sn); |
| if (WARN_ON_ONCE(sde->head_sn != tx->sn)) |
| dd_dev_err(sde->dd, "expected %llu got %llu\n", |
| sde->head_sn, tx->sn); |
| sde->head_sn++; |
| #endif |
| __sdma_txclean(sde->dd, tx); |
| if (complete) |
| (*complete)(tx, res); |
| if (iowait_sdma_dec(wait)) |
| iowait_drain_wakeup(wait); |
| } |
| |
| /* |
| * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status |
| * |
| * Depending on timing there can be txreqs in two places: |
| * - in the descq ring |
| * - in the flush list |
| * |
| * To avoid ordering issues the descq ring needs to be flushed |
| * first followed by the flush list. |
| * |
| * This routine is called from two places |
| * - From a work queue item |
| * - Directly from the state machine just before setting the |
| * state to running |
| * |
| * Must be called with head_lock held |
| * |
| */ |
| static void sdma_flush(struct sdma_engine *sde) |
| { |
| struct sdma_txreq *txp, *txp_next; |
| LIST_HEAD(flushlist); |
| unsigned long flags; |
| uint seq; |
| |
| /* flush from head to tail */ |
| sdma_flush_descq(sde); |
| spin_lock_irqsave(&sde->flushlist_lock, flags); |
| /* copy flush list */ |
| list_splice_init(&sde->flushlist, &flushlist); |
| spin_unlock_irqrestore(&sde->flushlist_lock, flags); |
| /* flush from flush list */ |
| list_for_each_entry_safe(txp, txp_next, &flushlist, list) |
| complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); |
| /* wakeup QPs orphaned on the dmawait list */ |
| do { |
| struct iowait *w, *nw; |
| |
| seq = read_seqbegin(&sde->waitlock); |
| if (!list_empty(&sde->dmawait)) { |
| write_seqlock(&sde->waitlock); |
| list_for_each_entry_safe(w, nw, &sde->dmawait, list) { |
| if (w->wakeup) { |
| w->wakeup(w, SDMA_AVAIL_REASON); |
| list_del_init(&w->list); |
| } |
| } |
| write_sequnlock(&sde->waitlock); |
| } |
| } while (read_seqretry(&sde->waitlock, seq)); |
| } |
| |
| /* |
| * Fields a work request for flushing the descq ring |
| * and the flush list |
| * |
| * If the engine has been brought to running during |
| * the scheduling delay, the flush is ignored, assuming |
| * that the process of bringing the engine to running |
| * would have done this flush prior to going to running. |
| * |
| */ |
| static void sdma_field_flush(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct sdma_engine *sde = |
| container_of(work, struct sdma_engine, flush_worker); |
| |
| write_seqlock_irqsave(&sde->head_lock, flags); |
| if (!__sdma_running(sde)) |
| sdma_flush(sde); |
| write_sequnlock_irqrestore(&sde->head_lock, flags); |
| } |
| |
| static void sdma_err_halt_wait(struct work_struct *work) |
| { |
| struct sdma_engine *sde = container_of(work, struct sdma_engine, |
| err_halt_worker); |
| u64 statuscsr; |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT); |
| while (1) { |
| statuscsr = read_sde_csr(sde, SD(STATUS)); |
| statuscsr &= SD(STATUS_ENG_HALTED_SMASK); |
| if (statuscsr) |
| break; |
| if (time_after(jiffies, timeout)) { |
| dd_dev_err(sde->dd, |
| "SDMA engine %d - timeout waiting for engine to halt\n", |
| sde->this_idx); |
| /* |
| * Continue anyway. This could happen if there was |
| * an uncorrectable error in the wrong spot. |
| */ |
| break; |
| } |
| usleep_range(80, 120); |
| } |
| |
| sdma_process_event(sde, sdma_event_e15_hw_halt_done); |
| } |
| |
| static void sdma_err_progress_check_schedule(struct sdma_engine *sde) |
| { |
| if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) { |
| unsigned index; |
| struct hfi1_devdata *dd = sde->dd; |
| |
| for (index = 0; index < dd->num_sdma; index++) { |
| struct sdma_engine *curr_sdma = &dd->per_sdma[index]; |
| |
| if (curr_sdma != sde) |
| curr_sdma->progress_check_head = |
| curr_sdma->descq_head; |
| } |
| dd_dev_err(sde->dd, |
| "SDMA engine %d - check scheduled\n", |
| sde->this_idx); |
| mod_timer(&sde->err_progress_check_timer, jiffies + 10); |
| } |
| } |
| |
| static void sdma_err_progress_check(struct timer_list *t) |
| { |
| unsigned index; |
| struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer); |
| |
| dd_dev_err(sde->dd, "SDE progress check event\n"); |
| for (index = 0; index < sde->dd->num_sdma; index++) { |
| struct sdma_engine *curr_sde = &sde->dd->per_sdma[index]; |
| unsigned long flags; |
| |
| /* check progress on each engine except the current one */ |
| if (curr_sde == sde) |
| continue; |
| /* |
| * We must lock interrupts when acquiring sde->lock, |
| * to avoid a deadlock if interrupt triggers and spins on |
| * the same lock on same CPU |
| */ |
| spin_lock_irqsave(&curr_sde->tail_lock, flags); |
| write_seqlock(&curr_sde->head_lock); |
| |
| /* skip non-running queues */ |
| if (curr_sde->state.current_state != sdma_state_s99_running) { |
| write_sequnlock(&curr_sde->head_lock); |
| spin_unlock_irqrestore(&curr_sde->tail_lock, flags); |
| continue; |
| } |
| |
| if ((curr_sde->descq_head != curr_sde->descq_tail) && |
| (curr_sde->descq_head == |
| curr_sde->progress_check_head)) |
| __sdma_process_event(curr_sde, |
| sdma_event_e90_sw_halted); |
| write_sequnlock(&curr_sde->head_lock); |
| spin_unlock_irqrestore(&curr_sde->tail_lock, flags); |
| } |
| schedule_work(&sde->err_halt_worker); |
| } |
| |
| static void sdma_hw_clean_up_task(unsigned long opaque) |
| { |
| struct sdma_engine *sde = (struct sdma_engine *)opaque; |
| u64 statuscsr; |
| |
| while (1) { |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", |
| sde->this_idx, slashstrip(__FILE__), __LINE__, |
| __func__); |
| #endif |
| statuscsr = read_sde_csr(sde, SD(STATUS)); |
| statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK); |
| if (statuscsr) |
| break; |
| udelay(10); |
| } |
| |
| sdma_process_event(sde, sdma_event_e25_hw_clean_up_done); |
| } |
| |
| static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde) |
| { |
| return sde->tx_ring[sde->tx_head & sde->sdma_mask]; |
| } |
| |
| /* |
| * flush ring for recovery |
| */ |
| static void sdma_flush_descq(struct sdma_engine *sde) |
| { |
| u16 head, tail; |
| int progress = 0; |
| struct sdma_txreq *txp = get_txhead(sde); |
| |
| /* The reason for some of the complexity of this code is that |
| * not all descriptors have corresponding txps. So, we have to |
| * be able to skip over descs until we wander into the range of |
| * the next txp on the list. |
| */ |
| head = sde->descq_head & sde->sdma_mask; |
| tail = sde->descq_tail & sde->sdma_mask; |
| while (head != tail) { |
| /* advance head, wrap if needed */ |
| head = ++sde->descq_head & sde->sdma_mask; |
| /* if now past this txp's descs, do the callback */ |
| if (txp && txp->next_descq_idx == head) { |
| /* remove from list */ |
| sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; |
| complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); |
| trace_hfi1_sdma_progress(sde, head, tail, txp); |
| txp = get_txhead(sde); |
| } |
| progress++; |
| } |
| if (progress) |
| sdma_desc_avail(sde, sdma_descq_freecnt(sde)); |
| } |
| |
| static void sdma_sw_clean_up_task(unsigned long opaque) |
| { |
| struct sdma_engine *sde = (struct sdma_engine *)opaque; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sde->tail_lock, flags); |
| write_seqlock(&sde->head_lock); |
| |
| /* |
| * At this point, the following should always be true: |
| * - We are halted, so no more descriptors are getting retired. |
| * - We are not running, so no one is submitting new work. |
| * - Only we can send the e40_sw_cleaned, so we can't start |
| * running again until we say so. So, the active list and |
| * descq are ours to play with. |
| */ |
| |
| /* |
| * In the error clean up sequence, software clean must be called |
| * before the hardware clean so we can use the hardware head in |
| * the progress routine. A hardware clean or SPC unfreeze will |
| * reset the hardware head. |
| * |
| * Process all retired requests. The progress routine will use the |
| * latest physical hardware head - we are not running so speed does |
| * not matter. |
| */ |
| sdma_make_progress(sde, 0); |
| |
| sdma_flush(sde); |
| |
| /* |
| * Reset our notion of head and tail. |
| * Note that the HW registers have been reset via an earlier |
| * clean up. |
| */ |
| sde->descq_tail = 0; |
| sde->descq_head = 0; |
| sde->desc_avail = sdma_descq_freecnt(sde); |
| *sde->head_dma = 0; |
| |
| __sdma_process_event(sde, sdma_event_e40_sw_cleaned); |
| |
| write_sequnlock(&sde->head_lock); |
| spin_unlock_irqrestore(&sde->tail_lock, flags); |
| } |
| |
| static void sdma_sw_tear_down(struct sdma_engine *sde) |
| { |
| struct sdma_state *ss = &sde->state; |
| |
| /* Releasing this reference means the state machine has stopped. */ |
| sdma_put(ss); |
| |
| /* stop waiting for all unfreeze events to complete */ |
| atomic_set(&sde->dd->sdma_unfreeze_count, -1); |
| wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); |
| } |
| |
| static void sdma_start_hw_clean_up(struct sdma_engine *sde) |
| { |
| tasklet_hi_schedule(&sde->sdma_hw_clean_up_task); |
| } |
| |
| static void sdma_set_state(struct sdma_engine *sde, |
| enum sdma_states next_state) |
| { |
| struct sdma_state *ss = &sde->state; |
| const struct sdma_set_state_action *action = sdma_action_table; |
| unsigned op = 0; |
| |
| trace_hfi1_sdma_state( |
| sde, |
| sdma_state_names[ss->current_state], |
| sdma_state_names[next_state]); |
| |
| /* debugging bookkeeping */ |
| ss->previous_state = ss->current_state; |
| ss->previous_op = ss->current_op; |
| ss->current_state = next_state; |
| |
| if (ss->previous_state != sdma_state_s99_running && |
| next_state == sdma_state_s99_running) |
| sdma_flush(sde); |
| |
| if (action[next_state].op_enable) |
| op |= SDMA_SENDCTRL_OP_ENABLE; |
| |
| if (action[next_state].op_intenable) |
| op |= SDMA_SENDCTRL_OP_INTENABLE; |
| |
| if (action[next_state].op_halt) |
| op |= SDMA_SENDCTRL_OP_HALT; |
| |
| if (action[next_state].op_cleanup) |
| op |= SDMA_SENDCTRL_OP_CLEANUP; |
| |
| if (action[next_state].go_s99_running_tofalse) |
| ss->go_s99_running = 0; |
| |
| if (action[next_state].go_s99_running_totrue) |
| ss->go_s99_running = 1; |
| |
| ss->current_op = op; |
| sdma_sendctrl(sde, ss->current_op); |
| } |
| |
| /** |
| * sdma_get_descq_cnt() - called when device probed |
| * |
| * Return a validated descq count. |
| * |
| * This is currently only used in the verbs initialization to build the tx |
| * list. |
| * |
| * This will probably be deleted in favor of a more scalable approach to |
| * alloc tx's. |
| * |
| */ |
| u16 sdma_get_descq_cnt(void) |
| { |
| u16 count = sdma_descq_cnt; |
| |
| if (!count) |
| return SDMA_DESCQ_CNT; |
| /* count must be a power of 2 greater than 64 and less than |
| * 32768. Otherwise return default. |
| */ |
| if (!is_power_of_2(count)) |
| return SDMA_DESCQ_CNT; |
| if (count < 64 || count > 32768) |
| return SDMA_DESCQ_CNT; |
| return count; |
| } |
| |
| /** |
| * sdma_engine_get_vl() - return vl for a given sdma engine |
| * @sde: sdma engine |
| * |
| * This function returns the vl mapped to a given engine, or an error if |
| * the mapping can't be found. The mapping fields are protected by RCU. |
| */ |
| int sdma_engine_get_vl(struct sdma_engine *sde) |
| { |
| struct hfi1_devdata *dd = sde->dd; |
| struct sdma_vl_map *m; |
| u8 vl; |
| |
| if (sde->this_idx >= TXE_NUM_SDMA_ENGINES) |
| return -EINVAL; |
| |
| rcu_read_lock(); |
| m = rcu_dereference(dd->sdma_map); |
| if (unlikely(!m)) { |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| vl = m->engine_to_vl[sde->this_idx]; |
| rcu_read_unlock(); |
| |
| return vl; |
| } |
| |
| /** |
| * sdma_select_engine_vl() - select sdma engine |
| * @dd: devdata |
| * @selector: a spreading factor |
| * @vl: this vl |
| * |
| * |
| * This function returns an engine based on the selector and a vl. The |
| * mapping fields are protected by RCU. |
| */ |
| struct sdma_engine *sdma_select_engine_vl( |
| struct hfi1_devdata *dd, |
| u32 selector, |
| u8 vl) |
| { |
| struct sdma_vl_map *m; |
| struct sdma_map_elem *e; |
| struct sdma_engine *rval; |
| |
| /* NOTE This should only happen if SC->VL changed after the initial |
| * checks on the QP/AH |
| * Default will return engine 0 below |
| */ |
| if (vl >= num_vls) { |
| rval = NULL; |
| goto done; |
| } |
| |
| rcu_read_lock(); |
| m = rcu_dereference(dd->sdma_map); |
| if (unlikely(!m)) { |
| rcu_read_unlock(); |
| return &dd->per_sdma[0]; |
| } |
| e = m->map[vl & m->mask]; |
| rval = e->sde[selector & e->mask]; |
| rcu_read_unlock(); |
| |
| done: |
| rval = !rval ? &dd->per_sdma[0] : rval; |
| trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx); |
| return rval; |
| } |
| |
| /** |
| * sdma_select_engine_sc() - select sdma engine |
| * @dd: devdata |
| * @selector: a spreading factor |
| * @sc5: the 5 bit sc |
| * |
| * |
| * This function returns an engine based on the selector and an sc. |
| */ |
| struct sdma_engine *sdma_select_engine_sc( |
| struct hfi1_devdata *dd, |
| u32 selector, |
| u8 sc5) |
| { |
| u8 vl = sc_to_vlt(dd, sc5); |
| |
| return sdma_select_engine_vl(dd, selector, vl); |
| } |
| |
| struct sdma_rht_map_elem { |
| u32 mask; |
| u8 ctr; |
| struct sdma_engine *sde[0]; |
| }; |
| |
| struct sdma_rht_node { |
| unsigned long cpu_id; |
| struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED]; |
| struct rhash_head node; |
| }; |
| |
| #define NR_CPUS_HINT 192 |
| |
| static const struct rhashtable_params sdma_rht_params = { |
| .nelem_hint = NR_CPUS_HINT, |
| .head_offset = offsetof(struct sdma_rht_node, node), |
| .key_offset = offsetof(struct sdma_rht_node, cpu_id), |
| .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id), |
| .max_size = NR_CPUS, |
| .min_size = 8, |
| .automatic_shrinking = true, |
| }; |
| |
| /* |
| * sdma_select_user_engine() - select sdma engine based on user setup |
| * @dd: devdata |
| * @selector: a spreading factor |
| * @vl: this vl |
| * |
| * This function returns an sdma engine for a user sdma request. |
| * User defined sdma engine affinity setting is honored when applicable, |
| * otherwise system default sdma engine mapping is used. To ensure correct |
| * ordering, the mapping from <selector, vl> to sde must remain unchanged. |
| */ |
| struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, |
| u32 selector, u8 vl) |
| { |
| struct sdma_rht_node *rht_node; |
| struct sdma_engine *sde = NULL; |
| unsigned long cpu_id; |
| |
| /* |
| * To ensure that always the same sdma engine(s) will be |
| * selected make sure the process is pinned to this CPU only. |
| */ |
| if (current->nr_cpus_allowed != 1) |
| goto out; |
| |
| cpu_id = smp_processor_id(); |
| rcu_read_lock(); |
| rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id, |
| sdma_rht_params); |
| |
| if (rht_node && rht_node->map[vl]) { |
| struct sdma_rht_map_elem *map = rht_node->map[vl]; |
| |
| sde = map->sde[selector & map->mask]; |
| } |
| rcu_read_unlock(); |
| |
| if (sde) |
| return sde; |
| |
| out: |
| return sdma_select_engine_vl(dd, selector, vl); |
| } |
| |
| static void sdma_populate_sde_map(struct sdma_rht_map_elem *map) |
| { |
| int i; |
| |
| for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++) |
| map->sde[map->ctr + i] = map->sde[i]; |
| } |
| |
| static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map, |
| struct sdma_engine *sde) |
| { |
| unsigned int i, pow; |
| |
| /* only need to check the first ctr entries for a match */ |
| for (i = 0; i < map->ctr; i++) { |
| if (map->sde[i] == sde) { |
| memmove(&map->sde[i], &map->sde[i + 1], |
| (map->ctr - i - 1) * sizeof(map->sde[0])); |
| map->ctr--; |
| pow = roundup_pow_of_two(map->ctr ? : 1); |
| map->mask = pow - 1; |
| sdma_populate_sde_map(map); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Prevents concurrent reads and writes of the sdma engine cpu_mask |
| */ |
| static DEFINE_MUTEX(process_to_sde_mutex); |
| |
| ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, |
| size_t count) |
| { |
| struct hfi1_devdata *dd = sde->dd; |
| cpumask_var_t mask, new_mask; |
| unsigned long cpu; |
| int ret, vl, sz; |
| struct sdma_rht_node *rht_node; |
| |
| vl = sdma_engine_get_vl(sde); |
| if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map))) |
| return -EINVAL; |
| |
| ret = zalloc_cpumask_var(&mask, GFP_KERNEL); |
| if (!ret) |
| return -ENOMEM; |
| |
| ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL); |
| if (!ret) { |
| free_cpumask_var(mask); |
| return -ENOMEM; |
| } |
| ret = cpulist_parse(buf, mask); |
| if (ret) |
| goto out_free; |
| |
| if (!cpumask_subset(mask, cpu_online_mask)) { |
| dd_dev_warn(sde->dd, "Invalid CPU mask\n"); |
| ret = -EINVAL; |
| goto out_free; |
| } |
| |
| sz = sizeof(struct sdma_rht_map_elem) + |
| (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *)); |
| |
| mutex_lock(&process_to_sde_mutex); |
| |
| for_each_cpu(cpu, mask) { |
| /* Check if we have this already mapped */ |
| if (cpumask_test_cpu(cpu, &sde->cpu_mask)) { |
| cpumask_set_cpu(cpu, new_mask); |
| continue; |
| } |
| |
| rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, |
| sdma_rht_params); |
| if (!rht_node) { |
| rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL); |
| if (!rht_node) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); |
| if (!rht_node->map[vl]) { |
| kfree(rht_node); |
| ret = -ENOMEM; |
| goto out; |
| } |
| rht_node->cpu_id = cpu; |
| rht_node->map[vl]->mask = 0; |
| rht_node->map[vl]->ctr = 1; |
| rht_node->map[vl]->sde[0] = sde; |
| |
| ret = rhashtable_insert_fast(dd->sdma_rht, |
| &rht_node->node, |
| sdma_rht_params); |
| if (ret) { |
| kfree(rht_node->map[vl]); |
| kfree(rht_node); |
| dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n", |
| cpu); |
| goto out; |
| } |
| |
| } else { |
| int ctr, pow; |
| |
| /* Add new user mappings */ |
| if (!rht_node->map[vl]) |
| rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); |
| |
| if (!rht_node->map[vl]) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| rht_node->map[vl]->ctr++; |
| ctr = rht_node->map[vl]->ctr; |
| rht_node->map[vl]->sde[ctr - 1] = sde; |
| pow = roundup_pow_of_two(ctr); |
| rht_node->map[vl]->mask = pow - 1; |
| |
| /* Populate the sde map table */ |
| sdma_populate_sde_map(rht_node->map[vl]); |
| } |
| cpumask_set_cpu(cpu, new_mask); |
| } |
| |
| /* Clean up old mappings */ |
| for_each_cpu(cpu, cpu_online_mask) { |
| struct sdma_rht_node *rht_node; |
| |
| /* Don't cleanup sdes that are set in the new mask */ |
| if (cpumask_test_cpu(cpu, mask)) |
| continue; |
| |
| rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, |
| sdma_rht_params); |
| if (rht_node) { |
| bool empty = true; |
| int i; |
| |
| /* Remove mappings for old sde */ |
| for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) |
| if (rht_node->map[i]) |
| sdma_cleanup_sde_map(rht_node->map[i], |
| sde); |
| |
| /* Free empty hash table entries */ |
| for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { |
| if (!rht_node->map[i]) |
| continue; |
| |
| if (rht_node->map[i]->ctr) { |
| empty = false; |
| break; |
| } |
| } |
| |
| if (empty) { |
| ret = rhashtable_remove_fast(dd->sdma_rht, |
| &rht_node->node, |
| sdma_rht_params); |
| WARN_ON(ret); |
| |
| for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) |
| kfree(rht_node->map[i]); |
| |
| kfree(rht_node); |
| } |
| } |
| } |
| |
| cpumask_copy(&sde->cpu_mask, new_mask); |
| out: |
| mutex_unlock(&process_to_sde_mutex); |
| out_free: |
| free_cpumask_var(mask); |
| free_cpumask_var(new_mask); |
| return ret ? : strnlen(buf, PAGE_SIZE); |
| } |
| |
| ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf) |
| { |
| mutex_lock(&process_to_sde_mutex); |
| if (cpumask_empty(&sde->cpu_mask)) |
| snprintf(buf, PAGE_SIZE, "%s\n", "empty"); |
| else |
| cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask); |
| mutex_unlock(&process_to_sde_mutex); |
| return strnlen(buf, PAGE_SIZE); |
| } |
| |
| static void sdma_rht_free(void *ptr, void *arg) |
| { |
| struct sdma_rht_node *rht_node = ptr; |
| int i; |
| |
| for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) |
| kfree(rht_node->map[i]); |
| |
| kfree(rht_node); |
| } |
| |
| /** |
| * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings |
| * @s: seq file |
| * @dd: hfi1_devdata |
| * @cpuid: cpu id |
| * |
| * This routine dumps the process to sde mappings per cpu |
| */ |
| void sdma_seqfile_dump_cpu_list(struct seq_file *s, |
| struct hfi1_devdata *dd, |
| unsigned long cpuid) |
| { |
| struct sdma_rht_node *rht_node; |
| int i, j; |
| |
| rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid, |
| sdma_rht_params); |
| if (!rht_node) |
| return; |
| |
| seq_printf(s, "cpu%3lu: ", cpuid); |
| for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { |
| if (!rht_node->map[i] || !rht_node->map[i]->ctr) |
| continue; |
| |
| seq_printf(s, " vl%d: [", i); |
| |
| for (j = 0; j < rht_node->map[i]->ctr; j++) { |
| if (!rht_node->map[i]->sde[j]) |
| continue; |
| |
| if (j > 0) |
| seq_puts(s, ","); |
| |
| seq_printf(s, " sdma%2d", |
| rht_node->map[i]->sde[j]->this_idx); |
| } |
| seq_puts(s, " ]"); |
| } |
| |
| seq_puts(s, "\n"); |
| } |
| |
| /* |
| * Free the indicated map struct |
| */ |
| static void sdma_map_free(struct sdma_vl_map *m) |
| { |
| int i; |
| |
| for (i = 0; m && i < m->actual_vls; i++) |
| kfree(m->map[i]); |
| kfree(m); |
| } |
| |
| /* |
| * Handle RCU callback |
| */ |
| static void sdma_map_rcu_callback(struct rcu_head *list) |
| { |
| struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list); |
| |
| sdma_map_free(m); |
| } |
| |
| /** |
| * sdma_map_init - called when # vls change |
| * @dd: hfi1_devdata |
| * @port: port number |
| * @num_vls: number of vls |
| * @vl_engines: per vl engine mapping (optional) |
| * |
| * This routine changes the mapping based on the number of vls. |
| * |
| * vl_engines is used to specify a non-uniform vl/engine loading. NULL |
| * implies auto computing the loading and giving each VLs a uniform |
| * distribution of engines per VL. |
| * |
| * The auto algorithm computes the sde_per_vl and the number of extra |
| * engines. Any extra engines are added from the last VL on down. |
| * |
| * rcu locking is used here to control access to the mapping fields. |
| * |
| * If either the num_vls or num_sdma are non-power of 2, the array sizes |
| * in the struct sdma_vl_map and the struct sdma_map_elem are rounded |
| * up to the next highest power of 2 and the first entry is reused |
| * in a round robin fashion. |
| * |
| * If an error occurs the map change is not done and the mapping is |
| * not changed. |
| * |
| */ |
| int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines) |
| { |
| int i, j; |
| int extra, sde_per_vl; |
| int engine = 0; |
| u8 lvl_engines[OPA_MAX_VLS]; |
| struct sdma_vl_map *oldmap, *newmap; |
| |
| if (!(dd->flags & HFI1_HAS_SEND_DMA)) |
| return 0; |
| |
| if (!vl_engines) { |
| /* truncate divide */ |
| sde_per_vl = dd->num_sdma / num_vls; |
| /* extras */ |
| extra = dd->num_sdma % num_vls; |
| vl_engines = lvl_engines; |
| /* add extras from last vl down */ |
| for (i = num_vls - 1; i >= 0; i--, extra--) |
| vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0); |
| } |
| /* build new map */ |
| newmap = kzalloc( |
| sizeof(struct sdma_vl_map) + |
| roundup_pow_of_two(num_vls) * |
| sizeof(struct sdma_map_elem *), |
| GFP_KERNEL); |
| if (!newmap) |
| goto bail; |
| newmap->actual_vls = num_vls; |
| newmap->vls = roundup_pow_of_two(num_vls); |
| newmap->mask = (1 << ilog2(newmap->vls)) - 1; |
| /* initialize back-map */ |
| for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++) |
| newmap->engine_to_vl[i] = -1; |
| for (i = 0; i < newmap->vls; i++) { |
| /* save for wrap around */ |
| int first_engine = engine; |
| |
| if (i < newmap->actual_vls) { |
| int sz = roundup_pow_of_two(vl_engines[i]); |
| |
| /* only allocate once */ |
| newmap->map[i] = kzalloc( |
| sizeof(struct sdma_map_elem) + |
| sz * sizeof(struct sdma_engine *), |
| GFP_KERNEL); |
| if (!newmap->map[i]) |
| goto bail; |
| newmap->map[i]->mask = (1 << ilog2(sz)) - 1; |
| /* assign engines */ |
| for (j = 0; j < sz; j++) { |
| newmap->map[i]->sde[j] = |
| &dd->per_sdma[engine]; |
| if (++engine >= first_engine + vl_engines[i]) |
| /* wrap back to first engine */ |
| engine = first_engine; |
| } |
| /* assign back-map */ |
| for (j = 0; j < vl_engines[i]; j++) |
| newmap->engine_to_vl[first_engine + j] = i; |
| } else { |
| /* just re-use entry without allocating */ |
| newmap->map[i] = newmap->map[i % num_vls]; |
| } |
| engine = first_engine + vl_engines[i]; |
| } |
| /* newmap in hand, save old map */ |
| spin_lock_irq(&dd->sde_map_lock); |
| oldmap = rcu_dereference_protected(dd->sdma_map, |
| lockdep_is_held(&dd->sde_map_lock)); |
| |
| /* publish newmap */ |
| rcu_assign_pointer(dd->sdma_map, newmap); |
| |
| spin_unlock_irq(&dd->sde_map_lock); |
| /* success, free any old map after grace period */ |
| if (oldmap) |
| call_rcu(&oldmap->list, sdma_map_rcu_callback); |
| return 0; |
| bail: |
| /* free any partial allocation */ |
| sdma_map_free(newmap); |
| return -ENOMEM; |
| } |
| |
| /** |
| * sdma_clean() Clean up allocated memory |
| * @dd: struct hfi1_devdata |
| * @num_engines: num sdma engines |
| * |
| * This routine can be called regardless of the success of |
| * sdma_init() |
| */ |
| void sdma_clean(struct hfi1_devdata *dd, size_t num_engines) |
| { |
| size_t i; |
| struct sdma_engine *sde; |
| |
| if (dd->sdma_pad_dma) { |
| dma_free_coherent(&dd->pcidev->dev, 4, |
| (void *)dd->sdma_pad_dma, |
| dd->sdma_pad_phys); |
| dd->sdma_pad_dma = NULL; |
| dd->sdma_pad_phys = 0; |
| } |
| if (dd->sdma_heads_dma) { |
| dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size, |
| (void *)dd->sdma_heads_dma, |
| dd->sdma_heads_phys); |
| dd->sdma_heads_dma = NULL; |
| dd->sdma_heads_phys = 0; |
| } |
| for (i = 0; dd->per_sdma && i < num_engines; ++i) { |
| sde = &dd->per_sdma[i]; |
| |
| sde->head_dma = NULL; |
| sde->head_phys = 0; |
| |
| if (sde->descq) { |
| dma_free_coherent( |
| &dd->pcidev->dev, |
| sde->descq_cnt * sizeof(u64[2]), |
| sde->descq, |
| sde->descq_phys |
| ); |
| sde->descq = NULL; |
| sde->descq_phys = 0; |
| } |
| kvfree(sde->tx_ring); |
| sde->tx_ring = NULL; |
| } |
| spin_lock_irq(&dd->sde_map_lock); |
| sdma_map_free(rcu_access_pointer(dd->sdma_map)); |
| RCU_INIT_POINTER(dd->sdma_map, NULL); |
| spin_unlock_irq(&dd->sde_map_lock); |
| synchronize_rcu(); |
| kfree(dd->per_sdma); |
| dd->per_sdma = NULL; |
| |
| if (dd->sdma_rht) { |
| rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL); |
| kfree(dd->sdma_rht); |
| dd->sdma_rht = NULL; |
| } |
| } |
| |
| /** |
| * sdma_init() - called when device probed |
| * @dd: hfi1_devdata |
| * @port: port number (currently only zero) |
| * |
| * Initializes each sde and its csrs. |
| * Interrupts are not required to be enabled. |
| * |
| * Returns: |
| * 0 - success, -errno on failure |
| */ |
| int sdma_init(struct hfi1_devdata *dd, u8 port) |
| { |
| unsigned this_idx; |
| struct sdma_engine *sde; |
| struct rhashtable *tmp_sdma_rht; |
| u16 descq_cnt; |
| void *curr_head; |
| struct hfi1_pportdata *ppd = dd->pport + port; |
| u32 per_sdma_credits; |
| uint idle_cnt = sdma_idle_cnt; |
| size_t num_engines = chip_sdma_engines(dd); |
| int ret = -ENOMEM; |
| |
| if (!HFI1_CAP_IS_KSET(SDMA)) { |
| HFI1_CAP_CLEAR(SDMA_AHG); |
| return 0; |
| } |
| if (mod_num_sdma && |
| /* can't exceed chip support */ |
| mod_num_sdma <= chip_sdma_engines(dd) && |
| /* count must be >= vls */ |
| mod_num_sdma >= num_vls) |
| num_engines = mod_num_sdma; |
| |
| dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma); |
| dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd)); |
| dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n", |
| chip_sdma_mem_size(dd)); |
| |
| per_sdma_credits = |
| chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE); |
| |
| /* set up freeze waitqueue */ |
| init_waitqueue_head(&dd->sdma_unfreeze_wq); |
| atomic_set(&dd->sdma_unfreeze_count, 0); |
| |
| descq_cnt = sdma_get_descq_cnt(); |
| dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n", |
| num_engines, descq_cnt); |
| |
| /* alloc memory for array of send engines */ |
| dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma), |
| GFP_KERNEL, dd->node); |
| if (!dd->per_sdma) |
| return ret; |
| |
| idle_cnt = ns_to_cclock(dd, idle_cnt); |
| if (idle_cnt) |
| dd->default_desc1 = |
| SDMA_DESC1_HEAD_TO_HOST_FLAG; |
| else |
| dd->default_desc1 = |
| SDMA_DESC1_INT_REQ_FLAG; |
| |
| if (!sdma_desct_intr) |
| sdma_desct_intr = SDMA_DESC_INTR; |
| |
| /* Allocate memory for SendDMA descriptor FIFOs */ |
| for (this_idx = 0; this_idx < num_engines; ++this_idx) { |
| sde = &dd->per_sdma[this_idx]; |
| sde->dd = dd; |
| sde->ppd = ppd; |
| sde->this_idx = this_idx; |
| sde->descq_cnt = descq_cnt; |
| sde->desc_avail = sdma_descq_freecnt(sde); |
| sde->sdma_shift = ilog2(descq_cnt); |
| sde->sdma_mask = (1 << sde->sdma_shift) - 1; |
| |
| /* Create a mask specifically for each interrupt source */ |
| sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES + |
| this_idx); |
| sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES + |
| this_idx); |
| sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES + |
| this_idx); |
| /* Create a combined mask to cover all 3 interrupt sources */ |
| sde->imask = sde->int_mask | sde->progress_mask | |
| sde->idle_mask; |
| |
| spin_lock_init(&sde->tail_lock); |
| seqlock_init(&sde->head_lock); |
| spin_lock_init(&sde->senddmactrl_lock); |
| spin_lock_init(&sde->flushlist_lock); |
| seqlock_init(&sde->waitlock); |
| /* insure there is always a zero bit */ |
| sde->ahg_bits = 0xfffffffe00000000ULL; |
| |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| |
| /* set up reference counting */ |
| kref_init(&sde->state.kref); |
| init_completion(&sde->state.comp); |
| |
| INIT_LIST_HEAD(&sde->flushlist); |
| INIT_LIST_HEAD(&sde->dmawait); |
| |
| sde->tail_csr = |
| get_kctxt_csr_addr(dd, this_idx, SD(TAIL)); |
| |
| tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task, |
| (unsigned long)sde); |
| |
| tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task, |
| (unsigned long)sde); |
| INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait); |
| INIT_WORK(&sde->flush_worker, sdma_field_flush); |
| |
| sde->progress_check_head = 0; |
| |
| timer_setup(&sde->err_progress_check_timer, |
| sdma_err_progress_check, 0); |
| |
| sde->descq = dma_alloc_coherent(&dd->pcidev->dev, |
| descq_cnt * sizeof(u64[2]), |
| &sde->descq_phys, GFP_KERNEL); |
| if (!sde->descq) |
| goto bail; |
| sde->tx_ring = |
| kvzalloc_node(array_size(descq_cnt, |
| sizeof(struct sdma_txreq *)), |
| GFP_KERNEL, dd->node); |
| if (!sde->tx_ring) |
| goto bail; |
| } |
| |
| dd->sdma_heads_size = L1_CACHE_BYTES * num_engines; |
| /* Allocate memory for DMA of head registers to memory */ |
| dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev, |
| dd->sdma_heads_size, |
| &dd->sdma_heads_phys, |
| GFP_KERNEL); |
| if (!dd->sdma_heads_dma) { |
| dd_dev_err(dd, "failed to allocate SendDMA head memory\n"); |
| goto bail; |
| } |
| |
| /* Allocate memory for pad */ |
| dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u32), |
| &dd->sdma_pad_phys, GFP_KERNEL); |
| if (!dd->sdma_pad_dma) { |
| dd_dev_err(dd, "failed to allocate SendDMA pad memory\n"); |
| goto bail; |
| } |
| |
| /* assign each engine to different cacheline and init registers */ |
| curr_head = (void *)dd->sdma_heads_dma; |
| for (this_idx = 0; this_idx < num_engines; ++this_idx) { |
| unsigned long phys_offset; |
| |
| sde = &dd->per_sdma[this_idx]; |
| |
| sde->head_dma = curr_head; |
| curr_head += L1_CACHE_BYTES; |
| phys_offset = (unsigned long)sde->head_dma - |
| (unsigned long)dd->sdma_heads_dma; |
| sde->head_phys = dd->sdma_heads_phys + phys_offset; |
| init_sdma_regs(sde, per_sdma_credits, idle_cnt); |
| } |
| dd->flags |= HFI1_HAS_SEND_DMA; |
| dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0; |
| dd->num_sdma = num_engines; |
| ret = sdma_map_init(dd, port, ppd->vls_operational, NULL); |
| if (ret < 0) |
| goto bail; |
| |
| tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL); |
| if (!tmp_sdma_rht) { |
| ret = -ENOMEM; |
| goto bail; |
| } |
| |
| ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params); |
| if (ret < 0) |
| goto bail; |
| dd->sdma_rht = tmp_sdma_rht; |
| |
| dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma); |
| return 0; |
| |
| bail: |
| sdma_clean(dd, num_engines); |
| return ret; |
| } |
| |
| /** |
| * sdma_all_running() - called when the link goes up |
| * @dd: hfi1_devdata |
| * |
| * This routine moves all engines to the running state. |
| */ |
| void sdma_all_running(struct hfi1_devdata *dd) |
| { |
| struct sdma_engine *sde; |
| unsigned int i; |
| |
| /* move all engines to running */ |
| for (i = 0; i < dd->num_sdma; ++i) { |
| sde = &dd->per_sdma[i]; |
| sdma_process_event(sde, sdma_event_e30_go_running); |
| } |
| } |
| |
| /** |
| * sdma_all_idle() - called when the link goes down |
| * @dd: hfi1_devdata |
| * |
| * This routine moves all engines to the idle state. |
| */ |
| void sdma_all_idle(struct hfi1_devdata *dd) |
| { |
| struct sdma_engine *sde; |
| unsigned int i; |
| |
| /* idle all engines */ |
| for (i = 0; i < dd->num_sdma; ++i) { |
| sde = &dd->per_sdma[i]; |
| sdma_process_event(sde, sdma_event_e70_go_idle); |
| } |
| } |
| |
| /** |
| * sdma_start() - called to kick off state processing for all engines |
| * @dd: hfi1_devdata |
| * |
| * This routine is for kicking off the state processing for all required |
| * sdma engines. Interrupts need to be working at this point. |
| * |
| */ |
| void sdma_start(struct hfi1_devdata *dd) |
| { |
| unsigned i; |
| struct sdma_engine *sde; |
| |
| /* kick off the engines state processing */ |
| for (i = 0; i < dd->num_sdma; ++i) { |
| sde = &dd->per_sdma[i]; |
| sdma_process_event(sde, sdma_event_e10_go_hw_start); |
| } |
| } |
| |
| /** |
| * sdma_exit() - used when module is removed |
| * @dd: hfi1_devdata |
| */ |
| void sdma_exit(struct hfi1_devdata *dd) |
| { |
| unsigned this_idx; |
| struct sdma_engine *sde; |
| |
| for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma; |
| ++this_idx) { |
| sde = &dd->per_sdma[this_idx]; |
| if (!list_empty(&sde->dmawait)) |
| dd_dev_err(dd, "sde %u: dmawait list not empty!\n", |
| sde->this_idx); |
| sdma_process_event(sde, sdma_event_e00_go_hw_down); |
| |
| del_timer_sync(&sde->err_progress_check_timer); |
| |
| /* |
| * This waits for the state machine to exit so it is not |
| * necessary to kill the sdma_sw_clean_up_task to make sure |
| * it is not running. |
| */ |
| sdma_finalput(&sde->state); |
| } |
| } |
| |
| /* |
| * unmap the indicated descriptor |
| */ |
| static inline void sdma_unmap_desc( |
| struct hfi1_devdata *dd, |
| struct sdma_desc *descp) |
| { |
| switch (sdma_mapping_type(descp)) { |
| case SDMA_MAP_SINGLE: |
| dma_unmap_single( |
| &dd->pcidev->dev, |
| sdma_mapping_addr(descp), |
| sdma_mapping_len(descp), |
| DMA_TO_DEVICE); |
| break; |
| case SDMA_MAP_PAGE: |
| dma_unmap_page( |
| &dd->pcidev->dev, |
| sdma_mapping_addr(descp), |
| sdma_mapping_len(descp), |
| DMA_TO_DEVICE); |
| break; |
| } |
| } |
| |
| /* |
| * return the mode as indicated by the first |
| * descriptor in the tx. |
| */ |
| static inline u8 ahg_mode(struct sdma_txreq *tx) |
| { |
| return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK) |
| >> SDMA_DESC1_HEADER_MODE_SHIFT; |
| } |
| |
| /** |
| * __sdma_txclean() - clean tx of mappings, descp *kmalloc's |
| * @dd: hfi1_devdata for unmapping |
| * @tx: tx request to clean |
| * |
| * This is used in the progress routine to clean the tx or |
| * by the ULP to toss an in-process tx build. |
| * |
| * The code can be called multiple times without issue. |
| * |
| */ |
| void __sdma_txclean( |
| struct hfi1_devdata *dd, |
| struct sdma_txreq *tx) |
| { |
| u16 i; |
| |
| if (tx->num_desc) { |
| u8 skip = 0, mode = ahg_mode(tx); |
| |
| /* unmap first */ |
| sdma_unmap_desc(dd, &tx->descp[0]); |
| /* determine number of AHG descriptors to skip */ |
| if (mode > SDMA_AHG_APPLY_UPDATE1) |
| skip = mode >> 1; |
| for (i = 1 + skip; i < tx->num_desc; i++) |
| sdma_unmap_desc(dd, &tx->descp[i]); |
| tx->num_desc = 0; |
| } |
| kfree(tx->coalesce_buf); |
| tx->coalesce_buf = NULL; |
| /* kmalloc'ed descp */ |
| if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) { |
| tx->desc_limit = ARRAY_SIZE(tx->descs); |
| kfree(tx->descp); |
| } |
| } |
| |
| static inline u16 sdma_gethead(struct sdma_engine *sde) |
| { |
| struct hfi1_devdata *dd = sde->dd; |
| int use_dmahead; |
| u16 hwhead; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", |
| sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); |
| #endif |
| |
| retry: |
| use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) && |
| (dd->flags & HFI1_HAS_SDMA_TIMEOUT); |
| hwhead = use_dmahead ? |
| (u16)le64_to_cpu(*sde->head_dma) : |
| (u16)read_sde_csr(sde, SD(HEAD)); |
| |
| if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) { |
| u16 cnt; |
| u16 swtail; |
| u16 swhead; |
| int sane; |
| |
| swhead = sde->descq_head & sde->sdma_mask; |
| /* this code is really bad for cache line trading */ |
| swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; |
| cnt = sde->descq_cnt; |
| |
| if (swhead < swtail) |
| /* not wrapped */ |
| sane = (hwhead >= swhead) & (hwhead <= swtail); |
| else if (swhead > swtail) |
| /* wrapped around */ |
| sane = ((hwhead >= swhead) && (hwhead < cnt)) || |
| (hwhead <= swtail); |
| else |
| /* empty */ |
| sane = (hwhead == swhead); |
| |
| if (unlikely(!sane)) { |
| dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n", |
| sde->this_idx, |
| use_dmahead ? "dma" : "kreg", |
| hwhead, swhead, swtail, cnt); |
| if (use_dmahead) { |
| /* try one more time, using csr */ |
| use_dmahead = 0; |
| goto retry; |
| } |
| /* proceed as if no progress */ |
| hwhead = swhead; |
| } |
| } |
| return hwhead; |
| } |
| |
| /* |
| * This is called when there are send DMA descriptors that might be |
| * available. |
| * |
| * This is called with head_lock held. |
| */ |
| static void sdma_desc_avail(struct sdma_engine *sde, uint avail) |
| { |
| struct iowait *wait, *nw, *twait; |
| struct iowait *waits[SDMA_WAIT_BATCH_SIZE]; |
| uint i, n = 0, seq, tidx = 0; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, |
| slashstrip(__FILE__), __LINE__, __func__); |
| dd_dev_err(sde->dd, "avail: %u\n", avail); |
| #endif |
| |
| do { |
| seq = read_seqbegin(&sde->waitlock); |
| if (!list_empty(&sde->dmawait)) { |
| /* at least one item */ |
| write_seqlock(&sde->waitlock); |
| /* Harvest waiters wanting DMA descriptors */ |
| list_for_each_entry_safe( |
| wait, |
| nw, |
| &sde->dmawait, |
| list) { |
| u32 num_desc; |
| |
| if (!wait->wakeup) |
| continue; |
| if (n == ARRAY_SIZE(waits)) |
| break; |
| iowait_init_priority(wait); |
| num_desc = iowait_get_all_desc(wait); |
| if (num_desc > avail) |
| break; |
| avail -= num_desc; |
| /* Find the top-priority wait memeber */ |
| if (n) { |
| twait = waits[tidx]; |
| tidx = |
| iowait_priority_update_top(wait, |
| twait, |
| n, |
| tidx); |
| } |
| list_del_init(&wait->list); |
| waits[n++] = wait; |
| } |
| write_sequnlock(&sde->waitlock); |
| break; |
| } |
| } while (read_seqretry(&sde->waitlock, seq)); |
| |
| /* Schedule the top-priority entry first */ |
| if (n) |
| waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON); |
| |
| for (i = 0; i < n; i++) |
| if (i != tidx) |
| waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON); |
| } |
| |
| /* head_lock must be held */ |
| static void sdma_make_progress(struct sdma_engine *sde, u64 status) |
| { |
| struct sdma_txreq *txp = NULL; |
| int progress = 0; |
| u16 hwhead, swhead; |
| int idle_check_done = 0; |
| |
| hwhead = sdma_gethead(sde); |
| |
| /* The reason for some of the complexity of this code is that |
| * not all descriptors have corresponding txps. So, we have to |
| * be able to skip over descs until we wander into the range of |
| * the next txp on the list. |
| */ |
| |
| retry: |
| txp = get_txhead(sde); |
| swhead = sde->descq_head & sde->sdma_mask; |
| trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); |
| while (swhead != hwhead) { |
| /* advance head, wrap if needed */ |
| swhead = ++sde->descq_head & sde->sdma_mask; |
| |
| /* if now past this txp's descs, do the callback */ |
| if (txp && txp->next_descq_idx == swhead) { |
| /* remove from list */ |
| sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; |
| complete_tx(sde, txp, SDMA_TXREQ_S_OK); |
| /* see if there is another txp */ |
| txp = get_txhead(sde); |
| } |
| trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); |
| progress++; |
| } |
| |
| /* |
| * The SDMA idle interrupt is not guaranteed to be ordered with respect |
| * to updates to the the dma_head location in host memory. The head |
| * value read might not be fully up to date. If there are pending |
| * descriptors and the SDMA idle interrupt fired then read from the |
| * CSR SDMA head instead to get the latest value from the hardware. |
| * The hardware SDMA head should be read at most once in this invocation |
| * of sdma_make_progress(..) which is ensured by idle_check_done flag |
| */ |
| if ((status & sde->idle_mask) && !idle_check_done) { |
| u16 swtail; |
| |
| swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; |
| if (swtail != hwhead) { |
| hwhead = (u16)read_sde_csr(sde, SD(HEAD)); |
| idle_check_done = 1; |
| goto retry; |
| } |
| } |
| |
| sde->last_status = status; |
| if (progress) |
| sdma_desc_avail(sde, sdma_descq_freecnt(sde)); |
| } |
| |
| /* |
| * sdma_engine_interrupt() - interrupt handler for engine |
| * @sde: sdma engine |
| * @status: sdma interrupt reason |
| * |
| * Status is a mask of the 3 possible interrupts for this engine. It will |
| * contain bits _only_ for this SDMA engine. It will contain at least one |
| * bit, it may contain more. |
| */ |
| void sdma_engine_interrupt(struct sdma_engine *sde, u64 status) |
| { |
| trace_hfi1_sdma_engine_interrupt(sde, status); |
| write_seqlock(&sde->head_lock); |
| sdma_set_desc_cnt(sde, sdma_desct_intr); |
| if (status & sde->idle_mask) |
| sde->idle_int_cnt++; |
| else if (status & sde->progress_mask) |
| sde->progress_int_cnt++; |
| else if (status & sde->int_mask) |
| sde->sdma_int_cnt++; |
| sdma_make_progress(sde, status); |
| write_sequnlock(&sde->head_lock); |
| } |
| |
| /** |
| * sdma_engine_error() - error handler for engine |
| * @sde: sdma engine |
| * @status: sdma interrupt reason |
| */ |
| void sdma_engine_error(struct sdma_engine *sde, u64 status) |
| { |
| unsigned long flags; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n", |
| sde->this_idx, |
| (unsigned long long)status, |
| sdma_state_names[sde->state.current_state]); |
| #endif |
| spin_lock_irqsave(&sde->tail_lock, flags); |
| write_seqlock(&sde->head_lock); |
| if (status & ALL_SDMA_ENG_HALT_ERRS) |
| __sdma_process_event(sde, sdma_event_e60_hw_halted); |
| if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) { |
| dd_dev_err(sde->dd, |
| "SDMA (%u) engine error: 0x%llx state %s\n", |
| sde->this_idx, |
| (unsigned long long)status, |
| sdma_state_names[sde->state.current_state]); |
| dump_sdma_state(sde); |
| } |
| write_sequnlock(&sde->head_lock); |
| spin_unlock_irqrestore(&sde->tail_lock, flags); |
| } |
| |
| static void sdma_sendctrl(struct sdma_engine *sde, unsigned op) |
| { |
| u64 set_senddmactrl = 0; |
| u64 clr_senddmactrl = 0; |
| unsigned long flags; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n", |
| sde->this_idx, |
| (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0, |
| (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0, |
| (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0, |
| (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0); |
| #endif |
| |
| if (op & SDMA_SENDCTRL_OP_ENABLE) |
| set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); |
| else |
| clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); |
| |
| if (op & SDMA_SENDCTRL_OP_INTENABLE) |
| set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); |
| else |
| clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); |
| |
| if (op & SDMA_SENDCTRL_OP_HALT) |
| set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); |
| else |
| clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); |
| |
| spin_lock_irqsave(&sde->senddmactrl_lock, flags); |
| |
| sde->p_senddmactrl |= set_senddmactrl; |
| sde->p_senddmactrl &= ~clr_senddmactrl; |
| |
| if (op & SDMA_SENDCTRL_OP_CLEANUP) |
| write_sde_csr(sde, SD(CTRL), |
| sde->p_senddmactrl | |
| SD(CTRL_SDMA_CLEANUP_SMASK)); |
| else |
| write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl); |
| |
| spin_unlock_irqrestore(&sde->senddmactrl_lock, flags); |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| sdma_dumpstate(sde); |
| #endif |
| } |
| |
| static void sdma_setlengen(struct sdma_engine *sde) |
| { |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", |
| sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); |
| #endif |
| |
| /* |
| * Set SendDmaLenGen and clear-then-set the MSB of the generation |
| * count to enable generation checking and load the internal |
| * generation counter. |
| */ |
| write_sde_csr(sde, SD(LEN_GEN), |
| (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)); |
| write_sde_csr(sde, SD(LEN_GEN), |
| ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) | |
| (4ULL << SD(LEN_GEN_GENERATION_SHIFT))); |
| } |
| |
| static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail) |
| { |
| /* Commit writes to memory and advance the tail on the chip */ |
| smp_wmb(); /* see get_txhead() */ |
| writeq(tail, sde->tail_csr); |
| } |
| |
| /* |
| * This is called when changing to state s10_hw_start_up_halt_wait as |
| * a result of send buffer errors or send DMA descriptor errors. |
| */ |
| static void sdma_hw_start_up(struct sdma_engine *sde) |
| { |
| u64 reg; |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", |
| sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); |
| #endif |
| |
| sdma_setlengen(sde); |
| sdma_update_tail(sde, 0); /* Set SendDmaTail */ |
| *sde->head_dma = 0; |
| |
| reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) << |
| SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT); |
| write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg); |
| } |
| |
| /* |
| * set_sdma_integrity |
| * |
| * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'. |
| */ |
| static void set_sdma_integrity(struct sdma_engine *sde) |
| { |
| struct hfi1_devdata *dd = sde->dd; |
| |
| write_sde_csr(sde, SD(CHECK_ENABLE), |
| hfi1_pkt_base_sdma_integrity(dd)); |
| } |
| |
| static void init_sdma_regs( |
| struct sdma_engine *sde, |
| u32 credits, |
| uint idle_cnt) |
| { |
| u8 opval, opmask; |
| #ifdef CONFIG_SDMA_VERBOSITY |
| struct hfi1_devdata *dd = sde->dd; |
| |
| dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", |
| sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); |
| #endif |
| |
| write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys); |
| sdma_setlengen(sde); |
| sdma_update_tail(sde, 0); /* Set SendDmaTail */ |
| write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt); |
| write_sde_csr(sde, SD(DESC_CNT), 0); |
| write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys); |
| write_sde_csr(sde, SD(MEMORY), |
| ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) | |
| ((u64)(credits * sde->this_idx) << |
| SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT))); |
| write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull); |
| set_sdma_integrity(sde); |
| opmask = OPCODE_CHECK_MASK_DISABLED; |
| opval = OPCODE_CHECK_VAL_DISABLED; |
| write_sde_csr(sde, SD(CHECK_OPCODE), |
| (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) | |
| (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT)); |
| } |
| |
| #ifdef CONFIG_SDMA_VERBOSITY |
| |
| #define sdma_dumpstate_helper0(reg) do { \ |
| csr = read_csr(sde->dd, reg); \ |
| dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \ |
| } while (0) |
| |
| #define sdma_dumpstate_helper(reg) do { \ |
| csr = read_sde_csr(sde, reg); \ |
| dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \ |
| #reg, sde->this_idx, csr); \ |
| } while (0) |
| |
| #define sdma_dumpstate_helper2(reg) do { \ |
| csr = read_csr(sde->dd, reg + (8 * i)); \ |
| dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \ |
| #reg, i, csr); \ |
| } while (0) |
| |
| void sdma_dumpstate(struct sdma_engine *sde) |
| { |
| u64 csr; |
| unsigned i; |
| |
| sdma_dumpstate_helper(SD(CTRL)); |
| sdma_dumpstate_helper(SD(STATUS)); |
| sdma_dumpstate_helper0(SD(ERR_STATUS)); |
| sdma_dumpstate_helper0(SD(ERR_MASK)); |
| sdma_dumpstate_helper(SD(ENG_ERR_STATUS)); |
| sdma_dumpstate_helper(SD(ENG_ERR_MASK)); |
| |
| for (i = 0; i < CCE_NUM_INT_CSRS; ++i) { |
| sdma_dumpstate_helper2(CCE_INT_STATUS); |
| sdma_dumpstate_helper2(CCE_INT_MASK); |
| sdma_dumpstate_helper2(CCE_INT_BLOCKED); |
| } |
| |
| sdma_dumpstate_helper(SD(TAIL)); |
| sdma_dumpstate_helper(SD(HEAD)); |
| sdma_dumpstate_helper(SD(PRIORITY_THLD)); |
| sdma_dumpstate_helper(SD(IDLE_CNT)); |
| sdma_dumpstate_helper(SD(RELOAD_CNT)); |
| sdma_dumpstate_helper(SD(DESC_CNT)); |
| sdma_dumpstate_helper(SD(DESC_FETCHED_CNT)); |
| sdma_dumpstate_helper(SD(MEMORY)); |
| sdma_dumpstate_helper0(SD(ENGINES)); |
| sdma_dumpstate_helper0(SD(MEM_SIZE)); |
| /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */ |
| sdma_dumpstate_helper(SD(BASE_ADDR)); |
| sdma_dumpstate_helper(SD(LEN_GEN)); |
| sdma_dumpstate_helper(SD(HEAD_ADDR)); |
| sdma_dumpstate_helper(SD(CHECK_ENABLE)); |
| sdma_dumpstate_helper(SD(CHECK_VL)); |
| sdma_dumpstate_helper(SD(CHECK_JOB_KEY)); |
| sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY)); |
| sdma_dumpstate_helper(SD(CHECK_SLID)); |
| sdma_dumpstate_helper(SD(CHECK_OPCODE)); |
| } |
| #endif |
| |
| static void dump_sdma_state(struct sdma_engine *sde) |
| { |
| struct hw_sdma_desc *descqp; |
| u64 desc[2]; |
| u64 addr; |
| u8 gen; |
| u16 len; |
| u16 head, tail, cnt; |
| |
| head = sde->descq_head & sde->sdma_mask; |
| tail = sde->descq_tail & sde->sdma_mask; |
| cnt = sdma_descq_freecnt(sde); |
| |
| dd_dev_err(sde->dd, |
| "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n", |
| sde->this_idx, head, tail, cnt, |
| !list_empty(&sde->flushlist)); |
| |
| /* print info for each entry in the descriptor queue */ |
| while (head != tail) { |
| char flags[6] = { 'x', 'x', 'x', 'x', 0 }; |
| |
| descqp = &sde->descq[head]; |
| desc[0] = le64_to_cpu(descqp->qw[0]); |
| desc[1] = le64_to_cpu(descqp->qw[1]); |
| flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; |
| flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? |
| 'H' : '-'; |
| flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; |
| flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; |
| addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) |
| & SDMA_DESC0_PHY_ADDR_MASK; |
| gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) |
| & SDMA_DESC1_GENERATION_MASK; |
| len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) |
| & SDMA_DESC0_BYTE_COUNT_MASK; |
| dd_dev_err(sde->dd, |
| "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", |
| head, flags, addr, gen, len); |
| dd_dev_err(sde->dd, |
| "\tdesc0:0x%016llx desc1 0x%016llx\n", |
| desc[0], desc[1]); |
| if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) |
| dd_dev_err(sde->dd, |
| "\taidx: %u amode: %u alen: %u\n", |
| (u8)((desc[1] & |
| SDMA_DESC1_HEADER_INDEX_SMASK) >> |
| SDMA_DESC1_HEADER_INDEX_SHIFT), |
| (u8)((desc[1] & |
| SDMA_DESC1_HEADER_MODE_SMASK) >> |
| SDMA_DESC1_HEADER_MODE_SHIFT), |
| (u8)((desc[1] & |
| SDMA_DESC1_HEADER_DWS_SMASK) >> |
| SDMA_DESC1_HEADER_DWS_SHIFT)); |
| head++; |
| head &= sde->sdma_mask; |
| } |
| } |
| |
| #define SDE_FMT \ |
| "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n" |
| /** |
| * sdma_seqfile_dump_sde() - debugfs dump of sde |
| * @s: seq file |
| * @sde: send dma engine to dump |
| * |
| * This routine dumps the sde to the indicated seq file. |
| */ |
| void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde) |
| { |
| u16 head, tail; |
| struct hw_sdma_desc *descqp; |
| u64 desc[2]; |
| u64 addr; |
| u8 gen; |
| u16 len; |
| |
| head = sde->descq_head & sde->sdma_mask; |
| tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask; |
| seq_printf(s, SDE_FMT, sde->this_idx, |
| sde->cpu, |
| sdma_state_name(sde->state.current_state), |
| (unsigned long long)read_sde_csr(sde, SD(CTRL)), |
| (unsigned long long)read_sde_csr(sde, SD(STATUS)), |
| (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)), |
| (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail, |
| (unsigned long long)read_sde_csr(sde, SD(HEAD)), head, |
| (unsigned long long)le64_to_cpu(*sde->head_dma), |
| (unsigned long long)read_sde_csr(sde, SD(MEMORY)), |
| (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)), |
| (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)), |
| (unsigned long long)sde->last_status, |
| (unsigned long long)sde->ahg_bits, |
| sde->tx_tail, |
| sde->tx_head, |
| sde->descq_tail, |
| sde->descq_head, |
| !list_empty(&sde->flushlist), |
| sde->descq_full_count, |
| (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID)); |
| |
| /* print info for each entry in the descriptor queue */ |
| while (head != tail) { |
| char flags[6] = { 'x', 'x', 'x', 'x', 0 }; |
| |
| descqp = &sde->descq[head]; |
| desc[0] = le64_to_cpu(descqp->qw[0]); |
| desc[1] = le64_to_cpu(descqp->qw[1]); |
| flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; |
| flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? |
| 'H' : '-'; |
| flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; |
| flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; |
| addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) |
| & SDMA_DESC0_PHY_ADDR_MASK; |
| gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) |
| & SDMA_DESC1_GENERATION_MASK; |
| len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) |
| & SDMA_DESC0_BYTE_COUNT_MASK; |
| seq_printf(s, |
| "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", |
| head, flags, addr, gen, len); |
| if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) |
| seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n", |
| (u8)((desc[1] & |
| SDMA_DESC1_HEADER_INDEX_SMASK) >> |
| SDMA_DESC1_HEADER_INDEX_SHIFT), |
| (u8)((desc[1] & |
| SDMA_DESC1_HEADER_MODE_SMASK) >> |
| SDMA_DESC1_HEADER_MODE_SHIFT)); |
| head = (head + 1) & sde->sdma_mask; |
| } |
| } |
| |
| /* |
| * add the generation number into |
| * the qw1 and return |
| */ |
| static inline u64 add_gen(struct sdma_engine *sde, u64 qw1) |
| { |
| u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3; |
| |
| qw1 &= ~SDMA_DESC1_GENERATION_SMASK; |
| qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK) |
| << SDMA_DESC1_GENERATION_SHIFT; |
| return qw1; |
| } |
| |
| /* |
| * This routine submits the indicated tx |
| * |
| * Space has already been guaranteed and |
| * tail side of ring is locked. |
| * |
| * The hardware tail update is done |
| * in the caller and that is facilitated |
| * by returning the new tail. |
| * |
| * There is special case logic for ahg |
| * to not add the generation number for |
| * up to 2 descriptors that follow the |
| * first descriptor. |
| * |
| */ |
| static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx) |
| { |
| int i; |
| u16 tail; |
| struct sdma_desc *descp = tx->descp; |
| u8 skip = 0, mode = ahg_mode(tx); |
| |
| tail = sde->descq_tail & sde->sdma_mask; |
| sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); |
| sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1])); |
| trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1], |
| tail, &sde->descq[tail]); |
| tail = ++sde->descq_tail & sde->sdma_mask; |
| descp++; |
| if (mode > SDMA_AHG_APPLY_UPDATE1) |
| skip = mode >> 1; |
| for (i = 1; i < tx->num_desc; i++, descp++) { |
| u64 qw1; |
| |
| sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); |
| if (skip) { |
| /* edits don't have generation */ |
| qw1 = descp->qw[1]; |
| skip--; |
| } else { |
| /* replace generation with real one for non-edits */ |
| qw1 = add_gen(sde, descp->qw[1]); |
| } |
| sde->descq[tail].qw[1] = cpu_to_le64(qw1); |
| trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1, |
| tail, &sde->descq[tail]); |
| tail = ++sde->descq_tail & sde->sdma_mask; |
| } |
| tx->next_descq_idx = tail; |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| tx->sn = sde->tail_sn++; |
| trace_hfi1_sdma_in_sn(sde, tx->sn); |
| WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]); |
| #endif |
| sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx; |
| sde->desc_avail -= tx->num_desc; |
| return tail; |
| } |
| |
| /* |
| * Check for progress |
| */ |
| static int sdma_check_progress( |
| struct sdma_engine *sde, |
| struct iowait_work *wait, |
| struct sdma_txreq *tx, |
| bool pkts_sent) |
| { |
| int ret; |
| |
| sde->desc_avail = sdma_descq_freecnt(sde); |
| if (tx->num_desc <= sde->desc_avail) |
| return -EAGAIN; |
| /* pulse the head_lock */ |
| if (wait && iowait_ioww_to_iow(wait)->sleep) { |
| unsigned seq; |
| |
| seq = raw_seqcount_begin( |
| (const seqcount_t *)&sde->head_lock.seqcount); |
| ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent); |
| if (ret == -EAGAIN) |
| sde->desc_avail = sdma_descq_freecnt(sde); |
| } else { |
| ret = -EBUSY; |
| } |
| return ret; |
| } |
| |
| /** |
| * sdma_send_txreq() - submit a tx req to ring |
| * @sde: sdma engine to use |
| * @wait: SE wait structure to use when full (may be NULL) |
| * @tx: sdma_txreq to submit |
| * @pkts_sent: has any packet been sent yet? |
| * |
| * The call submits the tx into the ring. If a iowait structure is non-NULL |
| * the packet will be queued to the list in wait. |
| * |
| * Return: |
| * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in |
| * ring (wait == NULL) |
| * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state |
| */ |
| int sdma_send_txreq(struct sdma_engine *sde, |
| struct iowait_work *wait, |
| struct sdma_txreq *tx, |
| bool pkts_sent) |
| { |
| int ret = 0; |
| u16 tail; |
| unsigned long flags; |
| |
| /* user should have supplied entire packet */ |
| if (unlikely(tx->tlen)) |
| return -EINVAL; |
| tx->wait = iowait_ioww_to_iow(wait); |
| spin_lock_irqsave(&sde->tail_lock, flags); |
| retry: |
| if (unlikely(!__sdma_running(sde))) |
| goto unlock_noconn; |
| if (unlikely(tx->num_desc > sde->desc_avail)) |
| goto nodesc; |
| tail = submit_tx(sde, tx); |
| if (wait) |
| iowait_sdma_inc(iowait_ioww_to_iow(wait)); |
| sdma_update_tail(sde, tail); |
| unlock: |
| spin_unlock_irqrestore(&sde->tail_lock, flags); |
| return ret; |
| unlock_noconn: |
| if (wait) |
| iowait_sdma_inc(iowait_ioww_to_iow(wait)); |
| tx->next_descq_idx = 0; |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| tx->sn = sde->tail_sn++; |
| trace_hfi1_sdma_in_sn(sde, tx->sn); |
| #endif |
| spin_lock(&sde->flushlist_lock); |
| list_add_tail(&tx->list, &sde->flushlist); |
| spin_unlock(&sde->flushlist_lock); |
| iowait_inc_wait_count(wait, tx->num_desc); |
| queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker); |
| ret = -ECOMM; |
| goto unlock; |
| nodesc: |
| ret = sdma_check_progress(sde, wait, tx, pkts_sent); |
| if (ret == -EAGAIN) { |
| ret = 0; |
| goto retry; |
| } |
| sde->descq_full_count++; |
| goto unlock; |
| } |
| |
| /** |
| * sdma_send_txlist() - submit a list of tx req to ring |
| * @sde: sdma engine to use |
| * @wait: SE wait structure to use when full (may be NULL) |
| * @tx_list: list of sdma_txreqs to submit |
| * @count: pointer to a u16 which, after return will contain the total number of |
| * sdma_txreqs removed from the tx_list. This will include sdma_txreqs |
| * whose SDMA descriptors are submitted to the ring and the sdma_txreqs |
| * which are added to SDMA engine flush list if the SDMA engine state is |
| * not running. |
| * |
| * The call submits the list into the ring. |
| * |
| * If the iowait structure is non-NULL and not equal to the iowait list |
| * the unprocessed part of the list will be appended to the list in wait. |
| * |
| * In all cases, the tx_list will be updated so the head of the tx_list is |
| * the list of descriptors that have yet to be transmitted. |
| * |
| * The intent of this call is to provide a more efficient |
| * way of submitting multiple packets to SDMA while holding the tail |
| * side locking. |
| * |
| * Return: |
| * 0 - Success, |
| * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL) |
| * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state |
| */ |
| int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait, |
| struct list_head *tx_list, u16 *count_out) |
| { |
| struct sdma_txreq *tx, *tx_next; |
| int ret = 0; |
| unsigned long flags; |
| u16 tail = INVALID_TAIL; |
| u32 submit_count = 0, flush_count = 0, total_count; |
| |
| spin_lock_irqsave(&sde->tail_lock, flags); |
| retry: |
| list_for_each_entry_safe(tx, tx_next, tx_list, list) { |
| tx->wait = iowait_ioww_to_iow(wait); |
| if (unlikely(!__sdma_running(sde))) |
| goto unlock_noconn; |
| if (unlikely(tx->num_desc > sde->desc_avail)) |
| goto nodesc; |
| if (unlikely(tx->tlen)) { |
| ret = -EINVAL; |
| goto update_tail; |
| } |
| list_del_init(&tx->list); |
| tail = submit_tx(sde, tx); |
| submit_count++; |
| if (tail != INVALID_TAIL && |
| (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) { |
| sdma_update_tail(sde, tail); |
| tail = INVALID_TAIL; |
| } |
| } |
| update_tail: |
| total_count = submit_count + flush_count; |
| if (wait) { |
| iowait_sdma_add(iowait_ioww_to_iow(wait), total_count); |
| iowait_starve_clear(submit_count > 0, |
| iowait_ioww_to_iow(wait)); |
| } |
| if (tail != INVALID_TAIL) |
| sdma_update_tail(sde, tail); |
| spin_unlock_irqrestore(&sde->tail_lock, flags); |
| *count_out = total_count; |
| return ret; |
| unlock_noconn: |
| spin_lock(&sde->flushlist_lock); |
| list_for_each_entry_safe(tx, tx_next, tx_list, list) { |
| tx->wait = iowait_ioww_to_iow(wait); |
| list_del_init(&tx->list); |
| tx->next_descq_idx = 0; |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER |
| tx->sn = sde->tail_sn++; |
| trace_hfi1_sdma_in_sn(sde, tx->sn); |
| #endif |
| list_add_tail(&tx->list, &sde->flushlist); |
| flush_count++; |
| iowait_inc_wait_count(wait, tx->num_desc); |
| } |
| spin_unlock(&sde->flushlist_lock); |
| queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker); |
| ret = -ECOMM; |
| goto update_tail; |
| nodesc: |
| ret = sdma_check_progress(sde, wait, tx, submit_count > 0); |
| if (ret == -EAGAIN) { |
| ret = 0; |
| goto retry; |
| } |
| sde->descq_full_count++; |
| goto update_tail; |
| } |
| |
| static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sde->tail_lock, flags); |
| write_seqlock(&sde->head_lock); |
| |
| __sdma_process_event(sde, event); |
| |
| if (sde->state.current_state == sdma_state_s99_running) |
| sdma_desc_avail(sde, sdma_descq_freecnt(sde)); |
| |
| write_sequnlock(&sde->head_lock); |
| spin_unlock_irqrestore(&sde->tail_lock, flags); |
| } |
| |
| static void __sdma_process_event(struct sdma_engine *sde, |
| enum sdma_events event) |
| { |
| struct sdma_state *ss = &sde->state; |
| int need_progress = 0; |
| |
| /* CONFIG SDMA temporary */ |
| #ifdef CONFIG_SDMA_VERBOSITY |
| dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx, |
| sdma_state_names[ss->current_state], |
| sdma_event_names[event]); |
| #endif |
| |
| switch (ss->current_state) { |
| case sdma_state_s00_hw_down: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| break; |
| case sdma_event_e30_go_running: |
| /* |
| * If down, but running requested (usually result |
| * of link up, then we need to start up. |
| * This can happen when hw down is requested while |
| * bringing the link up with traffic active on |
| * 7220, e.g. |
| */ |
| ss->go_s99_running = 1; |
| /* fall through -- and start dma engine */ |
| case sdma_event_e10_go_hw_start: |
| /* This reference means the state machine is started */ |
| sdma_get(&sde->state); |
| sdma_set_state(sde, |
| sdma_state_s10_hw_start_up_halt_wait); |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e40_sw_cleaned: |
| sdma_sw_tear_down(sde); |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s10_hw_start_up_halt_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| sdma_sw_tear_down(sde); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| sdma_set_state(sde, |
| sdma_state_s15_hw_start_up_clean_wait); |
| sdma_start_hw_clean_up(sde); |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| schedule_work(&sde->err_halt_worker); |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s15_hw_start_up_clean_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| sdma_sw_tear_down(sde); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| sdma_hw_start_up(sde); |
| sdma_set_state(sde, ss->go_s99_running ? |
| sdma_state_s99_running : |
| sdma_state_s20_idle); |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s20_idle: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| sdma_sw_tear_down(sde); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| sdma_set_state(sde, sdma_state_s99_running); |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| sdma_set_state(sde, sdma_state_s50_hw_halt_wait); |
| schedule_work(&sde->err_halt_worker); |
| break; |
| case sdma_event_e70_go_idle: |
| break; |
| case sdma_event_e85_link_down: |
| /* fall through */ |
| case sdma_event_e80_hw_freeze: |
| sdma_set_state(sde, sdma_state_s80_hw_freeze); |
| atomic_dec(&sde->dd->sdma_unfreeze_count); |
| wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s30_sw_clean_up_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait); |
| sdma_start_hw_clean_up(sde); |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s40_hw_clean_up_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| sdma_hw_start_up(sde); |
| sdma_set_state(sde, ss->go_s99_running ? |
| sdma_state_s99_running : |
| sdma_state_s20_idle); |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s50_hw_halt_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| schedule_work(&sde->err_halt_worker); |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s60_idle_halt_wait: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| schedule_work(&sde->err_halt_worker); |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s80_hw_freeze: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| sdma_set_state(sde, sdma_state_s82_freeze_sw_clean); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s82_freeze_sw_clean: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| ss->go_s99_running = 1; |
| break; |
| case sdma_event_e40_sw_cleaned: |
| /* notify caller this engine is done cleaning */ |
| atomic_dec(&sde->dd->sdma_unfreeze_count); |
| wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| break; |
| case sdma_event_e70_go_idle: |
| ss->go_s99_running = 0; |
| break; |
| case sdma_event_e80_hw_freeze: |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| sdma_hw_start_up(sde); |
| sdma_set_state(sde, ss->go_s99_running ? |
| sdma_state_s99_running : |
| sdma_state_s20_idle); |
| break; |
| case sdma_event_e85_link_down: |
| break; |
| case sdma_event_e90_sw_halted: |
| break; |
| } |
| break; |
| |
| case sdma_state_s99_running: |
| switch (event) { |
| case sdma_event_e00_go_hw_down: |
| sdma_set_state(sde, sdma_state_s00_hw_down); |
| tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); |
| break; |
| case sdma_event_e10_go_hw_start: |
| break; |
| case sdma_event_e15_hw_halt_done: |
| break; |
| case sdma_event_e25_hw_clean_up_done: |
| break; |
| case sdma_event_e30_go_running: |
| break; |
| case sdma_event_e40_sw_cleaned: |
| break; |
| case sdma_event_e50_hw_cleaned: |
| break; |
| case sdma_event_e60_hw_halted: |
| need_progress = 1; |
| sdma_err_progress_check_schedule(sde); |
| /* fall through */ |
| case sdma_event_e90_sw_halted: |
| /* |
| * SW initiated halt does not perform engines |
| * progress check |
| */ |
| sdma_set_state(sde, sdma_state_s50_hw_halt_wait); |
| schedule_work(&sde->err_halt_worker); |
| break; |
| case sdma_event_e70_go_idle: |
| sdma_set_state(sde, sdma_state_s60_idle_halt_wait); |
| break; |
| case sdma_event_e85_link_down: |
| ss->go_s99_running = 0; |
| /* fall through */ |
| case sdma_event_e80_hw_freeze: |
| sdma_set_state(sde, sdma_state_s80_hw_freeze); |
| atomic_dec(&sde->dd->sdma_unfreeze_count); |
| wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); |
| break; |
| case sdma_event_e81_hw_frozen: |
| break; |
| case sdma_event_e82_hw_unfreeze: |
| break; |
| } |
| break; |
| } |
| |
| ss->last_event = event; |
| if (need_progress) |
| sdma_make_progress(sde, 0); |
| } |
| |
| /* |
| * _extend_sdma_tx_descs() - helper to extend txreq |
| * |
| * This is called once the initial nominal allocation |
| * of descriptors in the sdma_txreq is exhausted. |
| * |
| * The code will bump the allocation up to the max |
| * of MAX_DESC (64) descriptors. There doesn't seem |
| * much point in an interim step. The last descriptor |
| * is reserved for coalesce buffer in order to support |
| * cases where input packet has >MAX_DESC iovecs. |
| * |
| */ |
| static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) |
| { |
| int i; |
| |
| /* Handle last descriptor */ |
| if (unlikely((tx->num_desc == (MAX_DESC - 1)))) { |
| /* if tlen is 0, it is for padding, release last descriptor */ |
| if (!tx->tlen) { |
| tx->desc_limit = MAX_DESC; |
| } else if (!tx->coalesce_buf) { |
| /* allocate coalesce buffer with space for padding */ |
| tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32), |
| GFP_ATOMIC); |
| if (!tx->coalesce_buf) |
| goto enomem; |
| tx->coalesce_idx = 0; |
| } |
| return 0; |
| } |
| |
| if (unlikely(tx->num_desc == MAX_DESC)) |
| goto enomem; |
| |
| tx->descp = kmalloc_array( |
| MAX_DESC, |
| sizeof(struct sdma_desc), |
| GFP_ATOMIC); |
| if (!tx->descp) |
| goto enomem; |
| |
| /* reserve last descriptor for coalescing */ |
| tx->desc_limit = MAX_DESC - 1; |
| /* copy ones already built */ |
| for (i = 0; i < tx->num_desc; i++) |
| tx->descp[i] = tx->descs[i]; |
| return 0; |
| enomem: |
| __sdma_txclean(dd, tx); |
| return -ENOMEM; |
| } |
| |
| /* |
| * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors |
| * |
| * This is called once the initial nominal allocation of descriptors |
| * in the sdma_txreq is exhausted. |
| * |
| * This function calls _extend_sdma_tx_descs to extend or allocate |
| * coalesce buffer. If there is a allocated coalesce buffer, it will |
| * copy the input packet data into the coalesce buffer. It also adds |
| * coalesce buffer descriptor once when whole packet is received. |
| * |
| * Return: |
| * <0 - error |
| * 0 - coalescing, don't populate descriptor |
| * 1 - continue with populating descriptor |
| */ |
| int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, |
| int type, void *kvaddr, struct page *page, |
| unsigned long offset, u16 len) |
| { |
| int pad_len, rval; |
| dma_addr_t addr; |
| |
| rval = _extend_sdma_tx_descs(dd, tx); |
| if (rval) { |
| __sdma_txclean(dd, tx); |
| return rval; |
| } |
| |
| /* If coalesce buffer is allocated, copy data into it */ |
| if (tx->coalesce_buf) { |
| if (type == SDMA_MAP_NONE) { |
| __sdma_txclean(dd, tx); |
| return -EINVAL; |
| } |
| |
| if (type == SDMA_MAP_PAGE) { |
| kvaddr = kmap(page); |
| kvaddr += offset; |
| } else if (WARN_ON(!kvaddr)) { |
| __sdma_txclean(dd, tx); |
| return -EINVAL; |
| } |
| |
| memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len); |
| tx->coalesce_idx += len; |
| if (type == SDMA_MAP_PAGE) |
| kunmap(page); |
| |
| /* If there is more data, return */ |
| if (tx->tlen - tx->coalesce_idx) |
| return 0; |
| |
| /* Whole packet is received; add any padding */ |
| pad_len = tx->packet_len & (sizeof(u32) - 1); |
| if (pad_len) { |
| pad_len = sizeof(u32) - pad_len; |
| memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len); |
| /* padding is taken care of for coalescing case */ |
| tx->packet_len += pad_len; |
| tx->tlen += pad_len; |
| } |
| |
| /* dma map the coalesce buffer */ |
| addr = dma_map_single(&dd->pcidev->dev, |
| tx->coalesce_buf, |
| tx->tlen, |
| DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { |
| __sdma_txclean(dd, tx); |
| return -ENOSPC; |
| } |
| |
| /* Add descriptor for coalesce buffer */ |
| tx->desc_limit = MAX_DESC; |
| return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, |
| addr, tx->tlen); |
| } |
| |
| return 1; |
| } |
| |
| /* Update sdes when the lmc changes */ |
| void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid) |
| { |
| struct sdma_engine *sde; |
| int i; |
| u64 sreg; |
| |
| sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) << |
| SD(CHECK_SLID_MASK_SHIFT)) | |
| (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) << |
| SD(CHECK_SLID_VALUE_SHIFT)); |
| |
| for (i = 0; i < dd->num_sdma; i++) { |
| hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x", |
| i, (u32)sreg); |
| sde = &dd->per_sdma[i]; |
| write_sde_csr(sde, SD(CHECK_SLID), sreg); |
| } |
| } |
| |
| /* tx not dword sized - pad */ |
| int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) |
| { |
| int rval = 0; |
| |
| tx->num_desc++; |
| if ((unlikely(tx->num_desc == tx->desc_limit))) { |
| rval = _extend_sdma_tx_descs(dd, tx); |
| if (rval) { |
| __sdma_txclean(dd, tx); |
| return rval; |
| } |
| } |
| /* finish the one just added */ |
| make_tx_sdma_desc( |
| tx, |
| SDMA_MAP_NONE, |
| dd->sdma_pad_phys, |
| sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1))); |
| _sdma_close_tx(dd, tx); |
| return rval; |
| } |
| |
| /* |
| * Add ahg to the sdma_txreq |
| * |
| * The logic will consume up to 3 |
| * descriptors at the beginning of |
| * sdma_txreq. |
| */ |
| void _sdma_txreq_ahgadd( |
| struct sdma_txreq *tx, |
| u8 num_ahg, |
| u8 ahg_entry, |
| u32 *ahg, |
| u8 ahg_hlen) |
| { |
| u32 i, shift = 0, desc = 0; |
| u8 mode; |
| |
| WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4); |
| /* compute mode */ |
| if (num_ahg == 1) |
| mode = SDMA_AHG_APPLY_UPDATE1; |
| else if (num_ahg <= 5) |
| mode = SDMA_AHG_APPLY_UPDATE2; |
| else |
| mode = SDMA_AHG_APPLY_UPDATE3; |
| tx->num_desc++; |
| /* initialize to consumed descriptors to zero */ |
| switch (mode) { |
| case SDMA_AHG_APPLY_UPDATE3: |
| tx->num_desc++; |
| tx->descs[2].qw[0] = 0; |
| tx->descs[2].qw[1] = 0; |
| /* FALLTHROUGH */ |
| case SDMA_AHG_APPLY_UPDATE2: |
| tx->num_desc++; |
| tx->descs[1].qw[0] = 0; |
| tx->descs[1].qw[1] = 0; |
| break; |
| } |
| ahg_hlen >>= 2; |
| tx->descs[0].qw[1] |= |
| (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) |
| << SDMA_DESC1_HEADER_INDEX_SHIFT) | |
| (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK) |
| << SDMA_DESC1_HEADER_DWS_SHIFT) | |
| (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK) |
| << SDMA_DESC1_HEADER_MODE_SHIFT) | |
| (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK) |
| << SDMA_DESC1_HEADER_UPDATE1_SHIFT); |
| for (i = 0; i < (num_ahg - 1); i++) { |
| if (!shift && !(i & 2)) |
| desc++; |
| tx->descs[desc].qw[!!(i & 2)] |= |
| (((u64)ahg[i + 1]) |
| << shift); |
| shift = (shift + 32) & 63; |
| } |
| } |
| |
| /** |
| * sdma_ahg_alloc - allocate an AHG entry |
| * @sde: engine to allocate from |
| * |
| * Return: |
| * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled, |
| * -ENOSPC if an entry is not available |
| */ |
| int sdma_ahg_alloc(struct sdma_engine *sde) |
| { |
| int nr; |
| int oldbit; |
| |
| if (!sde) { |
| trace_hfi1_ahg_allocate(sde, -EINVAL); |
| return -EINVAL; |
| } |
| while (1) { |
| nr = ffz(READ_ONCE(sde->ahg_bits)); |
| if (nr > 31) { |
| trace_hfi1_ahg_allocate(sde, -ENOSPC); |
| return -ENOSPC; |
| } |
| oldbit = test_and_set_bit(nr, &sde->ahg_bits); |
| if (!oldbit) |
| break; |
| cpu_relax(); |
| } |
| trace_hfi1_ahg_allocate(sde, nr); |
| return nr; |
| } |
| |
| /** |
| * sdma_ahg_free - free an AHG entry |
| * @sde: engine to return AHG entry |
| * @ahg_index: index to free |
| * |
| * This routine frees the indicate AHG entry. |
| */ |
| void sdma_ahg_free(struct sdma_engine *sde, int ahg_index) |
| { |
| if (!sde) |
| return; |
| trace_hfi1_ahg_deallocate(sde, ahg_index); |
| if (ahg_index < 0 || ahg_index > 31) |
| return; |
| clear_bit(ahg_index, &sde->ahg_bits); |
| } |
| |
| /* |
| * SPC freeze handling for SDMA engines. Called when the driver knows |
| * the SPC is going into a freeze but before the freeze is fully |
| * settled. Generally an error interrupt. |
| * |
| * This event will pull the engine out of running so no more entries can be |
| * added to the engine's queue. |
| */ |
| void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down) |
| { |
| int i; |
| enum sdma_events event = link_down ? sdma_event_e85_link_down : |
| sdma_event_e80_hw_freeze; |
| |
| /* set up the wait but do not wait here */ |
| atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); |
| |
| /* tell all engines to stop running and wait */ |
| for (i = 0; i < dd->num_sdma; i++) |
| sdma_process_event(&dd->per_sdma[i], event); |
| |
| /* sdma_freeze() will wait for all engines to have stopped */ |
| } |
| |
| /* |
| * SPC freeze handling for SDMA engines. Called when the driver knows |
| * the SPC is fully frozen. |
| */ |
| void sdma_freeze(struct hfi1_devdata *dd) |
| { |
| int i; |
| int ret; |
| |
| /* |
| * Make sure all engines have moved out of the running state before |
| * continuing. |
| */ |
| ret = wait_event_interruptible(dd->sdma_unfreeze_wq, |
| atomic_read(&dd->sdma_unfreeze_count) <= |
| 0); |
| /* interrupted or count is negative, then unloading - just exit */ |
| if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0) |
| return; |
| |
| /* set up the count for the next wait */ |
| atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); |
| |
| /* tell all engines that the SPC is frozen, they can start cleaning */ |
| for (i = 0; i < dd->num_sdma; i++) |
| sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen); |
| |
| /* |
| * Wait for everyone to finish software clean before exiting. The |
| * software clean will read engine CSRs, so must be completed before |
| * the next step, which will clear the engine CSRs. |
| */ |
| (void)wait_event_interruptible(dd->sdma_unfreeze_wq, |
| atomic_read(&dd->sdma_unfreeze_count) <= 0); |
| /* no need to check results - done no matter what */ |
| } |
| |
| /* |
| * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen. |
| * |
| * The SPC freeze acts like a SDMA halt and a hardware clean combined. All |
| * that is left is a software clean. We could do it after the SPC is fully |
| * frozen, but then we'd have to add another state to wait for the unfreeze. |
| * Instead, just defer the software clean until the unfreeze step. |
| */ |
| void sdma_unfreeze(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| /* tell all engines start freeze clean up */ |
| for (i = 0; i < dd->num_sdma; i++) |
| sdma_process_event(&dd->per_sdma[i], |
| sdma_event_e82_hw_unfreeze); |
| } |
| |
| /** |
| * _sdma_engine_progress_schedule() - schedule progress on engine |
| * @sde: sdma_engine to schedule progress |
| * |
| */ |
| void _sdma_engine_progress_schedule( |
| struct sdma_engine *sde) |
| { |
| trace_hfi1_sdma_engine_progress(sde, sde->progress_mask); |
| /* assume we have selected a good cpu */ |
| write_csr(sde->dd, |
| CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)), |
| sde->progress_mask); |
| } |