| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2018 Intel Corporation |
| */ |
| |
| #include <linux/mutex.h> |
| |
| #include "i915_drv.h" |
| #include "i915_request.h" |
| #include "i915_scheduler.h" |
| |
| static DEFINE_SPINLOCK(schedule_lock); |
| |
| static const struct i915_request * |
| node_to_request(const struct i915_sched_node *node) |
| { |
| return container_of(node, const struct i915_request, sched); |
| } |
| |
| static inline bool node_signaled(const struct i915_sched_node *node) |
| { |
| return i915_request_completed(node_to_request(node)); |
| } |
| |
| void i915_sched_node_init(struct i915_sched_node *node) |
| { |
| INIT_LIST_HEAD(&node->signalers_list); |
| INIT_LIST_HEAD(&node->waiters_list); |
| INIT_LIST_HEAD(&node->link); |
| node->attr.priority = I915_PRIORITY_INVALID; |
| } |
| |
| static struct i915_dependency * |
| i915_dependency_alloc(struct drm_i915_private *i915) |
| { |
| return kmem_cache_alloc(i915->dependencies, GFP_KERNEL); |
| } |
| |
| static void |
| i915_dependency_free(struct drm_i915_private *i915, |
| struct i915_dependency *dep) |
| { |
| kmem_cache_free(i915->dependencies, dep); |
| } |
| |
| bool __i915_sched_node_add_dependency(struct i915_sched_node *node, |
| struct i915_sched_node *signal, |
| struct i915_dependency *dep, |
| unsigned long flags) |
| { |
| bool ret = false; |
| |
| spin_lock(&schedule_lock); |
| |
| if (!node_signaled(signal)) { |
| INIT_LIST_HEAD(&dep->dfs_link); |
| list_add(&dep->wait_link, &signal->waiters_list); |
| list_add(&dep->signal_link, &node->signalers_list); |
| dep->signaler = signal; |
| dep->flags = flags; |
| |
| ret = true; |
| } |
| |
| spin_unlock(&schedule_lock); |
| |
| return ret; |
| } |
| |
| int i915_sched_node_add_dependency(struct drm_i915_private *i915, |
| struct i915_sched_node *node, |
| struct i915_sched_node *signal) |
| { |
| struct i915_dependency *dep; |
| |
| dep = i915_dependency_alloc(i915); |
| if (!dep) |
| return -ENOMEM; |
| |
| if (!__i915_sched_node_add_dependency(node, signal, dep, |
| I915_DEPENDENCY_ALLOC)) |
| i915_dependency_free(i915, dep); |
| |
| return 0; |
| } |
| |
| void i915_sched_node_fini(struct drm_i915_private *i915, |
| struct i915_sched_node *node) |
| { |
| struct i915_dependency *dep, *tmp; |
| |
| GEM_BUG_ON(!list_empty(&node->link)); |
| |
| spin_lock(&schedule_lock); |
| |
| /* |
| * Everyone we depended upon (the fences we wait to be signaled) |
| * should retire before us and remove themselves from our list. |
| * However, retirement is run independently on each timeline and |
| * so we may be called out-of-order. |
| */ |
| list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { |
| GEM_BUG_ON(!node_signaled(dep->signaler)); |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del(&dep->wait_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(i915, dep); |
| } |
| |
| /* Remove ourselves from everyone who depends upon us */ |
| list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { |
| GEM_BUG_ON(dep->signaler != node); |
| GEM_BUG_ON(!list_empty(&dep->dfs_link)); |
| |
| list_del(&dep->signal_link); |
| if (dep->flags & I915_DEPENDENCY_ALLOC) |
| i915_dependency_free(i915, dep); |
| } |
| |
| spin_unlock(&schedule_lock); |
| } |
| |
| static inline struct i915_priolist *to_priolist(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct i915_priolist, node); |
| } |
| |
| static void assert_priolists(struct intel_engine_execlists * const execlists) |
| { |
| struct rb_node *rb; |
| long last_prio, i; |
| |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return; |
| |
| GEM_BUG_ON(rb_first_cached(&execlists->queue) != |
| rb_first(&execlists->queue.rb_root)); |
| |
| last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; |
| for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { |
| const struct i915_priolist *p = to_priolist(rb); |
| |
| GEM_BUG_ON(p->priority >= last_prio); |
| last_prio = p->priority; |
| |
| GEM_BUG_ON(!p->used); |
| for (i = 0; i < ARRAY_SIZE(p->requests); i++) { |
| if (list_empty(&p->requests[i])) |
| continue; |
| |
| GEM_BUG_ON(!(p->used & BIT(i))); |
| } |
| } |
| } |
| |
| struct list_head * |
| i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) |
| { |
| struct intel_engine_execlists * const execlists = &engine->execlists; |
| struct i915_priolist *p; |
| struct rb_node **parent, *rb; |
| bool first = true; |
| int idx, i; |
| |
| lockdep_assert_held(&engine->timeline.lock); |
| assert_priolists(execlists); |
| |
| /* buckets sorted from highest [in slot 0] to lowest priority */ |
| idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; |
| prio >>= I915_USER_PRIORITY_SHIFT; |
| if (unlikely(execlists->no_priolist)) |
| prio = I915_PRIORITY_NORMAL; |
| |
| find_priolist: |
| /* most positive priority is scheduled first, equal priorities fifo */ |
| rb = NULL; |
| parent = &execlists->queue.rb_root.rb_node; |
| while (*parent) { |
| rb = *parent; |
| p = to_priolist(rb); |
| if (prio > p->priority) { |
| parent = &rb->rb_left; |
| } else if (prio < p->priority) { |
| parent = &rb->rb_right; |
| first = false; |
| } else { |
| goto out; |
| } |
| } |
| |
| if (prio == I915_PRIORITY_NORMAL) { |
| p = &execlists->default_priolist; |
| } else { |
| p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC); |
| /* Convert an allocation failure to a priority bump */ |
| if (unlikely(!p)) { |
| prio = I915_PRIORITY_NORMAL; /* recurses just once */ |
| |
| /* To maintain ordering with all rendering, after an |
| * allocation failure we have to disable all scheduling. |
| * Requests will then be executed in fifo, and schedule |
| * will ensure that dependencies are emitted in fifo. |
| * There will be still some reordering with existing |
| * requests, so if userspace lied about their |
| * dependencies that reordering may be visible. |
| */ |
| execlists->no_priolist = true; |
| goto find_priolist; |
| } |
| } |
| |
| p->priority = prio; |
| for (i = 0; i < ARRAY_SIZE(p->requests); i++) |
| INIT_LIST_HEAD(&p->requests[i]); |
| rb_link_node(&p->node, rb, parent); |
| rb_insert_color_cached(&p->node, &execlists->queue, first); |
| p->used = 0; |
| |
| out: |
| p->used |= BIT(idx); |
| return &p->requests[idx]; |
| } |
| |
| static struct intel_engine_cs * |
| sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked) |
| { |
| struct intel_engine_cs *engine = node_to_request(node)->engine; |
| |
| GEM_BUG_ON(!locked); |
| |
| if (engine != locked) { |
| spin_unlock(&locked->timeline.lock); |
| spin_lock(&engine->timeline.lock); |
| } |
| |
| return engine; |
| } |
| |
| static bool inflight(const struct i915_request *rq, |
| const struct intel_engine_cs *engine) |
| { |
| const struct i915_request *active; |
| |
| if (!i915_request_is_active(rq)) |
| return false; |
| |
| active = port_request(engine->execlists.port); |
| return active->hw_context == rq->hw_context; |
| } |
| |
| static void __i915_schedule(struct i915_request *rq, |
| const struct i915_sched_attr *attr) |
| { |
| struct list_head *uninitialized_var(pl); |
| struct intel_engine_cs *engine, *last; |
| struct i915_dependency *dep, *p; |
| struct i915_dependency stack; |
| const int prio = attr->priority; |
| LIST_HEAD(dfs); |
| |
| /* Needed in order to use the temporary link inside i915_dependency */ |
| lockdep_assert_held(&schedule_lock); |
| GEM_BUG_ON(prio == I915_PRIORITY_INVALID); |
| |
| if (i915_request_completed(rq)) |
| return; |
| |
| if (prio <= READ_ONCE(rq->sched.attr.priority)) |
| return; |
| |
| stack.signaler = &rq->sched; |
| list_add(&stack.dfs_link, &dfs); |
| |
| /* |
| * Recursively bump all dependent priorities to match the new request. |
| * |
| * A naive approach would be to use recursion: |
| * static void update_priorities(struct i915_sched_node *node, prio) { |
| * list_for_each_entry(dep, &node->signalers_list, signal_link) |
| * update_priorities(dep->signal, prio) |
| * queue_request(node); |
| * } |
| * but that may have unlimited recursion depth and so runs a very |
| * real risk of overunning the kernel stack. Instead, we build |
| * a flat list of all dependencies starting with the current request. |
| * As we walk the list of dependencies, we add all of its dependencies |
| * to the end of the list (this may include an already visited |
| * request) and continue to walk onwards onto the new dependencies. The |
| * end result is a topological list of requests in reverse order, the |
| * last element in the list is the request we must execute first. |
| */ |
| list_for_each_entry(dep, &dfs, dfs_link) { |
| struct i915_sched_node *node = dep->signaler; |
| |
| /* |
| * Within an engine, there can be no cycle, but we may |
| * refer to the same dependency chain multiple times |
| * (redundant dependencies are not eliminated) and across |
| * engines. |
| */ |
| list_for_each_entry(p, &node->signalers_list, signal_link) { |
| GEM_BUG_ON(p == dep); /* no cycles! */ |
| |
| if (node_signaled(p->signaler)) |
| continue; |
| |
| GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority); |
| if (prio > READ_ONCE(p->signaler->attr.priority)) |
| list_move_tail(&p->dfs_link, &dfs); |
| } |
| } |
| |
| /* |
| * If we didn't need to bump any existing priorities, and we haven't |
| * yet submitted this request (i.e. there is no potential race with |
| * execlists_submit_request()), we can set our own priority and skip |
| * acquiring the engine locks. |
| */ |
| if (rq->sched.attr.priority == I915_PRIORITY_INVALID) { |
| GEM_BUG_ON(!list_empty(&rq->sched.link)); |
| rq->sched.attr = *attr; |
| |
| if (stack.dfs_link.next == stack.dfs_link.prev) |
| return; |
| |
| __list_del_entry(&stack.dfs_link); |
| } |
| |
| last = NULL; |
| engine = rq->engine; |
| spin_lock_irq(&engine->timeline.lock); |
| |
| /* Fifo and depth-first replacement ensure our deps execute before us */ |
| list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { |
| struct i915_sched_node *node = dep->signaler; |
| |
| INIT_LIST_HEAD(&dep->dfs_link); |
| |
| engine = sched_lock_engine(node, engine); |
| lockdep_assert_held(&engine->timeline.lock); |
| |
| /* Recheck after acquiring the engine->timeline.lock */ |
| if (prio <= node->attr.priority || node_signaled(node)) |
| continue; |
| |
| node->attr.priority = prio; |
| if (!list_empty(&node->link)) { |
| if (last != engine) { |
| pl = i915_sched_lookup_priolist(engine, prio); |
| last = engine; |
| } |
| list_move_tail(&node->link, pl); |
| } else { |
| /* |
| * If the request is not in the priolist queue because |
| * it is not yet runnable, then it doesn't contribute |
| * to our preemption decisions. On the other hand, |
| * if the request is on the HW, it too is not in the |
| * queue; but in that case we may still need to reorder |
| * the inflight requests. |
| */ |
| if (!i915_sw_fence_done(&node_to_request(node)->submit)) |
| continue; |
| } |
| |
| if (prio <= engine->execlists.queue_priority_hint) |
| continue; |
| |
| engine->execlists.queue_priority_hint = prio; |
| |
| /* |
| * If we are already the currently executing context, don't |
| * bother evaluating if we should preempt ourselves. |
| */ |
| if (inflight(node_to_request(node), engine)) |
| continue; |
| |
| /* Defer (tasklet) submission until after all of our updates. */ |
| tasklet_hi_schedule(&engine->execlists.tasklet); |
| } |
| |
| spin_unlock_irq(&engine->timeline.lock); |
| } |
| |
| void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) |
| { |
| spin_lock(&schedule_lock); |
| __i915_schedule(rq, attr); |
| spin_unlock(&schedule_lock); |
| } |
| |
| void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) |
| { |
| struct i915_sched_attr attr; |
| |
| GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); |
| |
| if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID) |
| return; |
| |
| spin_lock_bh(&schedule_lock); |
| |
| attr = rq->sched.attr; |
| attr.priority |= bump; |
| __i915_schedule(rq, &attr); |
| |
| spin_unlock_bh(&schedule_lock); |
| } |