blob: bf13d47c26cf70bf9ac6242cc58fb53bb00d361a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ9477 switch driver main logic
*
* Copyright (C) 2017-2019 Microchip Technology Inc.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz9477_reg.h"
#include "ksz_common.h"
#include "ksz9477.h"
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
}
static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
u32 bits, bool set)
{
regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
{
u16 frame_size;
if (!dsa_is_cpu_port(dev->ds, port))
return 0;
frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
REG_SW_MTU_MASK, frame_size);
}
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
val, !(val & VLAN_START), 10, 1000);
}
static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read vlan table\n");
goto exit;
}
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to write vlan table\n");
goto exit;
}
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
/* update vlan cache table */
dev->vlan_cache[vid].table[0] = vlan_table[0];
dev->vlan_cache[vid].table[1] = vlan_table[1];
dev->vlan_cache[vid].table[2] = vlan_table[2];
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}
static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
val, !(val & ALU_START), 10, 1000);
}
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[2],
REG_SW_ALU_STAT_CTRL__4,
val, !(val & ALU_STAT_START),
10, 1000);
}
int ksz9477_reset_switch(struct ksz_device *dev)
{
u8 data8;
u32 data32;
/* reset switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
/* turn off SPI DO Edge select */
regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
SPI_AUTO_EDGE_DETECTION, 0);
/* default configuration */
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
/* disable interrupts */
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
/* KSZ9893 compatible chips do not support refclk configuration */
if (dev->chip_id == KSZ9893_CHIP_ID ||
dev->chip_id == KSZ8563_CHIP_ID ||
dev->chip_id == KSZ9563_CHIP_ID)
return 0;
data8 = SW_ENABLE_REFCLKO;
if (dev->synclko_disable)
data8 = 0;
else if (dev->synclko_125)
data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
return 0;
}
void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
{
struct ksz_port *p = &dev->ports[port];
unsigned int val;
u32 data;
int ret;
/* retain the flush/freeze bit */
data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
data |= MIB_COUNTER_READ;
data |= (addr << MIB_COUNTER_INDEX_S);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
ret = regmap_read_poll_timeout(dev->regmap[2],
PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
val, !(val & MIB_COUNTER_READ), 10, 1000);
/* failed to read MIB. get out of loop */
if (ret) {
dev_dbg(dev->dev, "Failed to get MIB\n");
return;
}
/* count resets upon read */
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
*cnt += data;
}
void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
addr = dev->info->mib_names[addr].index;
ksz9477_r_mib_cnt(dev, port, addr, cnt);
}
void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
struct ksz_port *p = &dev->ports[port];
/* enable/disable the port for flush/freeze function */
mutex_lock(&p->mib.cnt_mutex);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
/* used by MIB counter reading code to know freeze is enabled */
p->freeze = freeze;
mutex_unlock(&p->mib.cnt_mutex);
}
void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
/* flush all enabled port MIB counters */
mutex_lock(&mib->cnt_mutex);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
MIB_COUNTER_FLUSH_FREEZE);
ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
mutex_unlock(&mib->cnt_mutex);
}
static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
u16 *data)
{
/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
* BMSR_ERCAP bits are set.
*/
if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
}
int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
{
u16 val = 0xffff;
int ret;
/* No real PHY after this. Simulate the PHY.
* A fixed PHY can be setup in the device tree, but this function is
* still called for that port during initialization.
* For RGMII PHY there is no way to access it so the fixed PHY should
* be used. For SGMII PHY the supporting code will be added later.
*/
if (!dev->info->internal_phy[addr]) {
struct ksz_port *p = &dev->ports[addr];
switch (reg) {
case MII_BMCR:
val = 0x1140;
break;
case MII_BMSR:
val = 0x796d;
break;
case MII_PHYSID1:
val = 0x0022;
break;
case MII_PHYSID2:
val = 0x1631;
break;
case MII_ADVERTISE:
val = 0x05e1;
break;
case MII_LPA:
val = 0xc5e1;
break;
case MII_CTRL1000:
val = 0x0700;
break;
case MII_STAT1000:
if (p->phydev.speed == SPEED_1000)
val = 0x3800;
else
val = 0;
break;
}
} else {
ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
if (ret)
return ret;
ksz9477_r_phy_quirks(dev, addr, reg, &val);
}
*data = val;
return 0;
}
int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
{
/* No real PHY after this. */
if (!dev->info->internal_phy[addr])
return 0;
return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
}
void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
{
ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
}
void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
const u16 *regs = dev->info->regs;
u8 data;
regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
if (port < dev->info->port_cnt) {
/* flush individual port */
ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
if (!(data & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, port, regs[P_STP_CTRL],
data | PORT_LEARN_DISABLE);
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
} else {
/* flush all */
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
}
}
int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
bool flag, struct netlink_ext_ack *extack)
{
if (flag) {
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, true);
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
} else {
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, false);
}
return 0;
}
int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
u32 vlan_table[3];
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
int err;
err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
return err;
}
vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
if (untagged)
vlan_table[1] |= BIT(port);
else
vlan_table[1] &= ~BIT(port);
vlan_table[1] &= ~(BIT(dev->cpu_port));
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
return err;
}
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
return 0;
}
int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
u32 vlan_table[3];
u16 pvid;
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
pvid = pvid & 0xFFF;
if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return -ETIMEDOUT;
}
vlan_table[2] &= ~BIT(port);
if (pvid == vlan->vid)
pvid = 1;
if (untagged)
vlan_table[1] &= ~BIT(port);
if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return -ETIMEDOUT;
}
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
return 0;
}
int ksz9477_fdb_add(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* find any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
/* read ALU entry */
ksz9477_read_table(dev, alu_table);
/* update ALU entry */
alu_table[0] = ALU_V_STATIC_VALID;
alu_table[1] |= BIT(port);
if (vid)
alu_table[1] |= ALU_V_USE_FID;
alu_table[2] = (vid << ALU_V_FID_S);
alu_table[2] |= ((addr[0] << 8) | addr[1]);
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
alu_table[3] |= ((addr[4] << 8) | addr[5]);
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
int ksz9477_fdb_del(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* read any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
if (alu_table[0] & ALU_V_STATIC_VALID) {
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
/* clear forwarding port */
alu_table[1] &= ~BIT(port);
/* if there is no port to forward, clear table */
if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
} else {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
ALU_V_PRIO_AGE_CNT_M;
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
alu->mac[1] = alu_table[2] & 0xFF;
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
alu->mac[5] = alu_table[3] & 0xFF;
}
int ksz9477_fdb_dump(struct ksz_device *dev, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
int ret = 0;
u32 ksz_data;
u32 alu_table[4];
struct alu_struct alu;
int timeout;
mutex_lock(&dev->alu_mutex);
/* start ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
do {
timeout = 1000;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (!timeout) {
dev_dbg(dev->dev, "Failed to search ALU\n");
ret = -ETIMEDOUT;
goto exit;
}
if (!(ksz_data & ALU_VALID))
continue;
/* read ALU table */
ksz9477_read_table(dev, alu_table);
ksz9477_convert_alu(&alu, alu_table);
if (alu.port_forward & BIT(port)) {
ret = cb(alu.mac, alu.fid, alu.is_static, data);
if (ret)
goto exit;
}
} while (ksz_data & ALU_START);
exit:
/* stop ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
mutex_unlock(&dev->alu_mutex);
return ret;
}
int ksz9477_mdb_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
u32 static_table[4];
const u8 *shifts;
const u32 *masks;
u32 data;
int index;
u32 mac_hi, mac_lo;
int err = 0;
shifts = dev->info->shifts;
masks = dev->info->masks;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->info->num_statics; index++) {
/* find empty slot first */
data = (index << shifts[ALU_STAT_INDEX]) |
masks[ALU_STAT_READ] | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
err = ksz9477_wait_alu_sta_ready(dev);
if (err) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
} else {
/* found empty one */
break;
}
}
/* no available entry */
if (index == dev->info->num_statics) {
err = -ENOSPC;
goto exit;
}
/* add entry */
static_table[0] = ALU_V_STATIC_VALID;
static_table[1] |= BIT(port);
if (mdb->vid)
static_table[1] |= ALU_V_USE_FID;
static_table[2] = (mdb->vid << ALU_V_FID_S);
static_table[2] |= mac_hi;
static_table[3] = mac_lo;
ksz9477_write_table(dev, static_table);
data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (ksz9477_wait_alu_sta_ready(dev))
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
return err;
}
int ksz9477_mdb_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
u32 static_table[4];
const u8 *shifts;
const u32 *masks;
u32 data;
int index;
int ret = 0;
u32 mac_hi, mac_lo;
shifts = dev->info->shifts;
masks = dev->info->masks;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->info->num_statics; index++) {
/* find empty slot first */
data = (index << shifts[ALU_STAT_INDEX]) |
masks[ALU_STAT_READ] | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
}
}
/* no available entry */
if (index == dev->info->num_statics)
goto exit;
/* clear port */
static_table[1] &= ~BIT(port);
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
/* delete entry */
static_table[0] = 0;
static_table[1] = 0;
static_table[2] = 0;
static_table[3] = 0;
}
ksz9477_write_table(dev, static_table);
data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
u8 data;
int p;
/* Limit to one sniffer port
* Check if any of the port is already set for sniffing
* If yes, instruct the user to remove the previous entry & exit
*/
for (p = 0; p < dev->info->port_cnt; p++) {
/* Skip the current sniffing port */
if (p == mirror->to_local_port)
continue;
ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
if (data & PORT_MIRROR_SNIFFER) {
NL_SET_ERR_MSG_MOD(extack,
"Sniffer port is already configured, delete existing rules & retry");
return -EBUSY;
}
}
if (ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
/* configure mirror port */
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
return 0;
}
void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
bool in_use = false;
u8 data;
int p;
if (mirror->ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
/* Check if any of the port is still referring to sniffer port */
for (p = 0; p < dev->info->port_cnt; p++) {
ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
in_use = true;
break;
}
}
/* delete sniffing if there are no other mirroring rules */
if (!in_use)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
phy_interface_t interface;
bool gbit;
if (dev->info->internal_phy[port])
return PHY_INTERFACE_MODE_NA;
gbit = ksz_get_gbit(dev, port);
interface = ksz_get_xmii(dev, port, gbit);
return interface;
}
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
u8 dev_addr, u16 reg_addr, u16 val)
{
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}
static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
/* Apply PHY settings to address errata listed in
* KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
* Silicon Errata and Data Sheet Clarification documents:
*
* Register settings are needed to improve PHY receive performance
*/
ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
/* Transmit waveform amplitude can be improved
* (1000BASE-T, 100BASE-TX, 10BASE-Te)
*/
ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
/* Energy Efficient Ethernet (EEE) feature select must
* be manually disabled (except on KSZ8565 which is 100Mbit)
*/
if (dev->info->gbit_capable[port])
ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
/* Register settings are required to meet data sheet
* supply current specifications
*/
ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}
void ksz9477_get_caps(struct ksz_device *dev, int port,
struct phylink_config *config)
{
config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
MAC_SYM_PAUSE;
if (dev->info->gbit_capable[port])
config->mac_capabilities |= MAC_1000FD;
}
int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
{
u32 secs = msecs / 1000;
u8 value;
u8 data;
int ret;
value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
if (ret < 0)
return ret;
data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
if (ret < 0)
return ret;
value &= ~SW_AGE_CNT_M;
value |= FIELD_PREP(SW_AGE_CNT_M, data);
return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
}
void ksz9477_port_queue_split(struct ksz_device *dev, int port)
{
u8 data;
if (dev->info->num_tx_queues == 8)
data = PORT_EIGHT_QUEUE;
else if (dev->info->num_tx_queues == 4)
data = PORT_FOUR_QUEUE;
else if (dev->info->num_tx_queues == 2)
data = PORT_TWO_QUEUE;
else
data = PORT_SINGLE_QUEUE;
ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
}
void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct dsa_switch *ds = dev->ds;
u16 data16;
u8 member;
/* enable tag tail for host port */
if (cpu_port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
true);
ksz9477_port_queue_split(dev, port);
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
/* set back pressure */
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
false);
ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
MTI_PVID_REPLACE, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
if (dev->info->internal_phy[port]) {
/* do not force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
false);
if (dev->info->phy_errata_9477)
ksz9477_phy_errata_setup(dev, port);
} else {
/* force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
true);
}
if (cpu_port)
member = dsa_user_ports(ds);
else
member = BIT(dsa_upstream_port(ds, port));
ksz9477_cfg_port_member(dev, port, member);
/* clear pending interrupts */
if (dev->info->internal_phy[port])
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}
void ksz9477_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
int i;
for (i = 0; i < dev->info->port_cnt; i++) {
if (dsa_is_cpu_port(ds, i) &&
(dev->info->cpu_ports & (1 << i))) {
phy_interface_t interface;
const char *prev_msg;
const char *prev_mode;
dev->cpu_port = i;
p = &dev->ports[i];
/* Read from XMII register to determine host port
* interface. If set specifically in device tree
* note the difference to help debugging.
*/
interface = ksz9477_get_interface(dev, i);
if (!p->interface) {
if (dev->compat_interface) {
dev_warn(dev->dev,
"Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
"Please update your device tree.\n",
i);
p->interface = dev->compat_interface;
} else {
p->interface = interface;
}
}
if (interface && interface != p->interface) {
prev_msg = " instead of ";
prev_mode = phy_modes(interface);
} else {
prev_msg = "";
prev_mode = "";
}
dev_info(dev->dev,
"Port%d: using phy mode %s%s%s\n",
i,
phy_modes(p->interface),
prev_msg,
prev_mode);
/* enable cpu port */
ksz9477_port_setup(dev, i, true);
}
}
for (i = 0; i < dev->info->port_cnt; i++) {
if (i == dev->cpu_port)
continue;
ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
}
}
int ksz9477_enable_stp_addr(struct ksz_device *dev)
{
const u32 *masks;
u32 data;
int ret;
masks = dev->info->masks;
/* Enable Reserved multicast table */
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
/* Set the Override bit for forwarding BPDU packet to CPU */
ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
ALU_V_OVERRIDE | BIT(dev->cpu_port));
if (ret < 0)
return ret;
data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
if (ret < 0)
return ret;
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev);
if (ret < 0) {
dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
return ret;
}
return 0;
}
int ksz9477_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
ds->mtu_enforcement_ingress = true;
/* Required for port partitioning. */
ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
true);
/* Do not work correctly with tail tagging. */
ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
/* Now we can configure default MTU value */
ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
if (ret)
return ret;
/* queue based egress rate limit */
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
/* enable global MIB counter freeze function */
ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
return 0;
}
u32 ksz9477_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
{
val = val >> 8;
return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
}
int ksz9477_switch_init(struct ksz_device *dev)
{
u8 data8;
int ret;
dev->port_mask = (1 << dev->info->port_cnt) - 1;
/* turn off SPI DO Edge select */
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
if (ret)
return ret;
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
if (ret)
return ret;
return 0;
}
void ksz9477_switch_exit(struct ksz_device *dev)
{
ksz9477_reset_switch(dev);
}
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");