| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Test module for stress and analyze performance of vmalloc allocator. |
| * (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com> |
| */ |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/random.h> |
| #include <linux/kthread.h> |
| #include <linux/moduleparam.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/rwsem.h> |
| #include <linux/mm.h> |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| |
| #define __param(type, name, init, msg) \ |
| static type name = init; \ |
| module_param(name, type, 0444); \ |
| MODULE_PARM_DESC(name, msg) \ |
| |
| __param(int, nr_threads, 0, |
| "Number of workers to perform tests(min: 1 max: USHRT_MAX)"); |
| |
| __param(bool, sequential_test_order, false, |
| "Use sequential stress tests order"); |
| |
| __param(int, test_repeat_count, 1, |
| "Set test repeat counter"); |
| |
| __param(int, test_loop_count, 1000000, |
| "Set test loop counter"); |
| |
| __param(int, nr_pages, 0, |
| "Set number of pages for fix_size_alloc_test(default: 1)"); |
| |
| __param(bool, use_huge, false, |
| "Use vmalloc_huge in fix_size_alloc_test"); |
| |
| __param(int, run_test_mask, INT_MAX, |
| "Set tests specified in the mask.\n\n" |
| "\t\tid: 1, name: fix_size_alloc_test\n" |
| "\t\tid: 2, name: full_fit_alloc_test\n" |
| "\t\tid: 4, name: long_busy_list_alloc_test\n" |
| "\t\tid: 8, name: random_size_alloc_test\n" |
| "\t\tid: 16, name: fix_align_alloc_test\n" |
| "\t\tid: 32, name: random_size_align_alloc_test\n" |
| "\t\tid: 64, name: align_shift_alloc_test\n" |
| "\t\tid: 128, name: pcpu_alloc_test\n" |
| "\t\tid: 256, name: kvfree_rcu_1_arg_vmalloc_test\n" |
| "\t\tid: 512, name: kvfree_rcu_2_arg_vmalloc_test\n" |
| "\t\tid: 1024, name: vm_map_ram_test\n" |
| /* Add a new test case description here. */ |
| ); |
| |
| /* |
| * Read write semaphore for synchronization of setup |
| * phase that is done in main thread and workers. |
| */ |
| static DECLARE_RWSEM(prepare_for_test_rwsem); |
| |
| /* |
| * Completion tracking for worker threads. |
| */ |
| static DECLARE_COMPLETION(test_all_done_comp); |
| static atomic_t test_n_undone = ATOMIC_INIT(0); |
| |
| static inline void |
| test_report_one_done(void) |
| { |
| if (atomic_dec_and_test(&test_n_undone)) |
| complete(&test_all_done_comp); |
| } |
| |
| static int random_size_align_alloc_test(void) |
| { |
| unsigned long size, align; |
| unsigned int rnd; |
| void *ptr; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| rnd = get_random_u8(); |
| |
| /* |
| * Maximum 1024 pages, if PAGE_SIZE is 4096. |
| */ |
| align = 1 << (rnd % 23); |
| |
| /* |
| * Maximum 10 pages. |
| */ |
| size = ((rnd % 10) + 1) * PAGE_SIZE; |
| |
| ptr = __vmalloc_node(size, align, GFP_KERNEL | __GFP_ZERO, 0, |
| __builtin_return_address(0)); |
| if (!ptr) |
| return -1; |
| |
| vfree(ptr); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This test case is supposed to be failed. |
| */ |
| static int align_shift_alloc_test(void) |
| { |
| unsigned long align; |
| void *ptr; |
| int i; |
| |
| for (i = 0; i < BITS_PER_LONG; i++) { |
| align = ((unsigned long) 1) << i; |
| |
| ptr = __vmalloc_node(PAGE_SIZE, align, GFP_KERNEL|__GFP_ZERO, 0, |
| __builtin_return_address(0)); |
| if (!ptr) |
| return -1; |
| |
| vfree(ptr); |
| } |
| |
| return 0; |
| } |
| |
| static int fix_align_alloc_test(void) |
| { |
| void *ptr; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| ptr = __vmalloc_node(5 * PAGE_SIZE, THREAD_ALIGN << 1, |
| GFP_KERNEL | __GFP_ZERO, 0, |
| __builtin_return_address(0)); |
| if (!ptr) |
| return -1; |
| |
| vfree(ptr); |
| } |
| |
| return 0; |
| } |
| |
| static int random_size_alloc_test(void) |
| { |
| unsigned int n; |
| void *p; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| n = get_random_u32_inclusive(1, 100); |
| p = vmalloc(n * PAGE_SIZE); |
| |
| if (!p) |
| return -1; |
| |
| *((__u8 *)p) = 1; |
| vfree(p); |
| } |
| |
| return 0; |
| } |
| |
| static int long_busy_list_alloc_test(void) |
| { |
| void *ptr_1, *ptr_2; |
| void **ptr; |
| int rv = -1; |
| int i; |
| |
| ptr = vmalloc(sizeof(void *) * 15000); |
| if (!ptr) |
| return rv; |
| |
| for (i = 0; i < 15000; i++) |
| ptr[i] = vmalloc(1 * PAGE_SIZE); |
| |
| for (i = 0; i < test_loop_count; i++) { |
| ptr_1 = vmalloc(100 * PAGE_SIZE); |
| if (!ptr_1) |
| goto leave; |
| |
| ptr_2 = vmalloc(1 * PAGE_SIZE); |
| if (!ptr_2) { |
| vfree(ptr_1); |
| goto leave; |
| } |
| |
| *((__u8 *)ptr_1) = 0; |
| *((__u8 *)ptr_2) = 1; |
| |
| vfree(ptr_1); |
| vfree(ptr_2); |
| } |
| |
| /* Success */ |
| rv = 0; |
| |
| leave: |
| for (i = 0; i < 15000; i++) |
| vfree(ptr[i]); |
| |
| vfree(ptr); |
| return rv; |
| } |
| |
| static int full_fit_alloc_test(void) |
| { |
| void **ptr, **junk_ptr, *tmp; |
| int junk_length; |
| int rv = -1; |
| int i; |
| |
| junk_length = fls(num_online_cpus()); |
| junk_length *= (32 * 1024 * 1024 / PAGE_SIZE); |
| |
| ptr = vmalloc(sizeof(void *) * junk_length); |
| if (!ptr) |
| return rv; |
| |
| junk_ptr = vmalloc(sizeof(void *) * junk_length); |
| if (!junk_ptr) { |
| vfree(ptr); |
| return rv; |
| } |
| |
| for (i = 0; i < junk_length; i++) { |
| ptr[i] = vmalloc(1 * PAGE_SIZE); |
| junk_ptr[i] = vmalloc(1 * PAGE_SIZE); |
| } |
| |
| for (i = 0; i < junk_length; i++) |
| vfree(junk_ptr[i]); |
| |
| for (i = 0; i < test_loop_count; i++) { |
| tmp = vmalloc(1 * PAGE_SIZE); |
| |
| if (!tmp) |
| goto error; |
| |
| *((__u8 *)tmp) = 1; |
| vfree(tmp); |
| } |
| |
| /* Success */ |
| rv = 0; |
| |
| error: |
| for (i = 0; i < junk_length; i++) |
| vfree(ptr[i]); |
| |
| vfree(ptr); |
| vfree(junk_ptr); |
| |
| return rv; |
| } |
| |
| static int fix_size_alloc_test(void) |
| { |
| void *ptr; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| if (use_huge) |
| ptr = vmalloc_huge((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE, GFP_KERNEL); |
| else |
| ptr = vmalloc((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE); |
| |
| if (!ptr) |
| return -1; |
| |
| *((__u8 *)ptr) = 0; |
| |
| vfree(ptr); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| pcpu_alloc_test(void) |
| { |
| int rv = 0; |
| #ifndef CONFIG_NEED_PER_CPU_KM |
| void __percpu **pcpu; |
| size_t size, align; |
| int i; |
| |
| pcpu = vmalloc(sizeof(void __percpu *) * 35000); |
| if (!pcpu) |
| return -1; |
| |
| for (i = 0; i < 35000; i++) { |
| size = get_random_u32_inclusive(1, PAGE_SIZE / 4); |
| |
| /* |
| * Maximum PAGE_SIZE |
| */ |
| align = 1 << get_random_u32_inclusive(1, 11); |
| |
| pcpu[i] = __alloc_percpu(size, align); |
| if (!pcpu[i]) |
| rv = -1; |
| } |
| |
| for (i = 0; i < 35000; i++) |
| free_percpu(pcpu[i]); |
| |
| vfree(pcpu); |
| #endif |
| return rv; |
| } |
| |
| struct test_kvfree_rcu { |
| struct rcu_head rcu; |
| unsigned char array[20]; |
| }; |
| |
| static int |
| kvfree_rcu_1_arg_vmalloc_test(void) |
| { |
| struct test_kvfree_rcu *p; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| p = vmalloc(1 * PAGE_SIZE); |
| if (!p) |
| return -1; |
| |
| p->array[0] = 'a'; |
| kvfree_rcu_mightsleep(p); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| kvfree_rcu_2_arg_vmalloc_test(void) |
| { |
| struct test_kvfree_rcu *p; |
| int i; |
| |
| for (i = 0; i < test_loop_count; i++) { |
| p = vmalloc(1 * PAGE_SIZE); |
| if (!p) |
| return -1; |
| |
| p->array[0] = 'a'; |
| kvfree_rcu(p, rcu); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| vm_map_ram_test(void) |
| { |
| unsigned long nr_allocated; |
| unsigned int map_nr_pages; |
| unsigned char *v_ptr; |
| struct page **pages; |
| int i; |
| |
| map_nr_pages = nr_pages > 0 ? nr_pages:1; |
| pages = kmalloc(map_nr_pages * sizeof(struct page), GFP_KERNEL); |
| if (!pages) |
| return -1; |
| |
| nr_allocated = alloc_pages_bulk_array(GFP_KERNEL, map_nr_pages, pages); |
| if (nr_allocated != map_nr_pages) |
| goto cleanup; |
| |
| /* Run the test loop. */ |
| for (i = 0; i < test_loop_count; i++) { |
| v_ptr = vm_map_ram(pages, map_nr_pages, NUMA_NO_NODE); |
| *v_ptr = 'a'; |
| vm_unmap_ram(v_ptr, map_nr_pages); |
| } |
| |
| cleanup: |
| for (i = 0; i < nr_allocated; i++) |
| __free_page(pages[i]); |
| |
| kfree(pages); |
| |
| /* 0 indicates success. */ |
| return nr_allocated != map_nr_pages; |
| } |
| |
| struct test_case_desc { |
| const char *test_name; |
| int (*test_func)(void); |
| }; |
| |
| static struct test_case_desc test_case_array[] = { |
| { "fix_size_alloc_test", fix_size_alloc_test }, |
| { "full_fit_alloc_test", full_fit_alloc_test }, |
| { "long_busy_list_alloc_test", long_busy_list_alloc_test }, |
| { "random_size_alloc_test", random_size_alloc_test }, |
| { "fix_align_alloc_test", fix_align_alloc_test }, |
| { "random_size_align_alloc_test", random_size_align_alloc_test }, |
| { "align_shift_alloc_test", align_shift_alloc_test }, |
| { "pcpu_alloc_test", pcpu_alloc_test }, |
| { "kvfree_rcu_1_arg_vmalloc_test", kvfree_rcu_1_arg_vmalloc_test }, |
| { "kvfree_rcu_2_arg_vmalloc_test", kvfree_rcu_2_arg_vmalloc_test }, |
| { "vm_map_ram_test", vm_map_ram_test }, |
| /* Add a new test case here. */ |
| }; |
| |
| struct test_case_data { |
| int test_failed; |
| int test_passed; |
| u64 time; |
| }; |
| |
| static struct test_driver { |
| struct task_struct *task; |
| struct test_case_data data[ARRAY_SIZE(test_case_array)]; |
| |
| unsigned long start; |
| unsigned long stop; |
| } *tdriver; |
| |
| static void shuffle_array(int *arr, int n) |
| { |
| int i, j; |
| |
| for (i = n - 1; i > 0; i--) { |
| /* Cut the range. */ |
| j = get_random_u32_below(i); |
| |
| /* Swap indexes. */ |
| swap(arr[i], arr[j]); |
| } |
| } |
| |
| static int test_func(void *private) |
| { |
| struct test_driver *t = private; |
| int random_array[ARRAY_SIZE(test_case_array)]; |
| int index, i, j; |
| ktime_t kt; |
| u64 delta; |
| |
| for (i = 0; i < ARRAY_SIZE(test_case_array); i++) |
| random_array[i] = i; |
| |
| if (!sequential_test_order) |
| shuffle_array(random_array, ARRAY_SIZE(test_case_array)); |
| |
| /* |
| * Block until initialization is done. |
| */ |
| down_read(&prepare_for_test_rwsem); |
| |
| t->start = get_cycles(); |
| for (i = 0; i < ARRAY_SIZE(test_case_array); i++) { |
| index = random_array[i]; |
| |
| /* |
| * Skip tests if run_test_mask has been specified. |
| */ |
| if (!((run_test_mask & (1 << index)) >> index)) |
| continue; |
| |
| kt = ktime_get(); |
| for (j = 0; j < test_repeat_count; j++) { |
| if (!test_case_array[index].test_func()) |
| t->data[index].test_passed++; |
| else |
| t->data[index].test_failed++; |
| } |
| |
| /* |
| * Take an average time that test took. |
| */ |
| delta = (u64) ktime_us_delta(ktime_get(), kt); |
| do_div(delta, (u32) test_repeat_count); |
| |
| t->data[index].time = delta; |
| } |
| t->stop = get_cycles(); |
| |
| up_read(&prepare_for_test_rwsem); |
| test_report_one_done(); |
| |
| /* |
| * Wait for the kthread_stop() call. |
| */ |
| while (!kthread_should_stop()) |
| msleep(10); |
| |
| return 0; |
| } |
| |
| static int |
| init_test_configurtion(void) |
| { |
| /* |
| * A maximum number of workers is defined as hard-coded |
| * value and set to USHRT_MAX. We add such gap just in |
| * case and for potential heavy stressing. |
| */ |
| nr_threads = clamp(nr_threads, 1, (int) USHRT_MAX); |
| |
| /* Allocate the space for test instances. */ |
| tdriver = kvcalloc(nr_threads, sizeof(*tdriver), GFP_KERNEL); |
| if (tdriver == NULL) |
| return -1; |
| |
| if (test_repeat_count <= 0) |
| test_repeat_count = 1; |
| |
| if (test_loop_count <= 0) |
| test_loop_count = 1; |
| |
| return 0; |
| } |
| |
| static void do_concurrent_test(void) |
| { |
| int i, ret; |
| |
| /* |
| * Set some basic configurations plus sanity check. |
| */ |
| ret = init_test_configurtion(); |
| if (ret < 0) |
| return; |
| |
| /* |
| * Put on hold all workers. |
| */ |
| down_write(&prepare_for_test_rwsem); |
| |
| for (i = 0; i < nr_threads; i++) { |
| struct test_driver *t = &tdriver[i]; |
| |
| t->task = kthread_run(test_func, t, "vmalloc_test/%d", i); |
| |
| if (!IS_ERR(t->task)) |
| /* Success. */ |
| atomic_inc(&test_n_undone); |
| else |
| pr_err("Failed to start %d kthread\n", i); |
| } |
| |
| /* |
| * Now let the workers do their job. |
| */ |
| up_write(&prepare_for_test_rwsem); |
| |
| /* |
| * Sleep quiet until all workers are done with 1 second |
| * interval. Since the test can take a lot of time we |
| * can run into a stack trace of the hung task. That is |
| * why we go with completion_timeout and HZ value. |
| */ |
| do { |
| ret = wait_for_completion_timeout(&test_all_done_comp, HZ); |
| } while (!ret); |
| |
| for (i = 0; i < nr_threads; i++) { |
| struct test_driver *t = &tdriver[i]; |
| int j; |
| |
| if (!IS_ERR(t->task)) |
| kthread_stop(t->task); |
| |
| for (j = 0; j < ARRAY_SIZE(test_case_array); j++) { |
| if (!((run_test_mask & (1 << j)) >> j)) |
| continue; |
| |
| pr_info( |
| "Summary: %s passed: %d failed: %d repeat: %d loops: %d avg: %llu usec\n", |
| test_case_array[j].test_name, |
| t->data[j].test_passed, |
| t->data[j].test_failed, |
| test_repeat_count, test_loop_count, |
| t->data[j].time); |
| } |
| |
| pr_info("All test took worker%d=%lu cycles\n", |
| i, t->stop - t->start); |
| } |
| |
| kvfree(tdriver); |
| } |
| |
| static int vmalloc_test_init(void) |
| { |
| do_concurrent_test(); |
| return -EAGAIN; /* Fail will directly unload the module */ |
| } |
| |
| static void vmalloc_test_exit(void) |
| { |
| } |
| |
| module_init(vmalloc_test_init) |
| module_exit(vmalloc_test_exit) |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Uladzislau Rezki"); |
| MODULE_DESCRIPTION("vmalloc test module"); |