blob: 62c2b10fbf1d2e4166600437ebabcdf408f7d09d [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_devcoredump.h"
#include "xe_devcoredump_types.h"
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>
#include <drm/drm_managed.h>
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_ct.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine.h"
#include "xe_sched_job.h"
#include "xe_vm.h"
/**
* DOC: Xe device coredump
*
* Devices overview:
* Xe uses dev_coredump infrastructure for exposing the crash errors in a
* standardized way.
* devcoredump exposes a temporary device under /sys/class/devcoredump/
* which is linked with our card device directly.
* The core dump can be accessed either from
* /sys/class/drm/card<n>/device/devcoredump/ or from
* /sys/class/devcoredump/devcd<m> where
* /sys/class/devcoredump/devcd<m>/failing_device is a link to
* /sys/class/drm/card<n>/device/.
*
* Snapshot at hang:
* The 'data' file is printed with a drm_printer pointer at devcoredump read
* time. For this reason, we need to take snapshots from when the hang has
* happened, and not only when the user is reading the file. Otherwise the
* information is outdated since the resets might have happened in between.
*
* 'First' failure snapshot:
* In general, the first hang is the most critical one since the following hangs
* can be a consequence of the initial hang. For this reason we only take the
* snapshot of the 'first' failure and ignore subsequent calls of this function,
* at least while the coredump device is alive. Dev_coredump has a delayed work
* queue that will eventually delete the device and free all the dump
* information.
*/
#ifdef CONFIG_DEV_COREDUMP
/* 1 hour timeout */
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
{
return container_of(coredump, struct xe_device, devcoredump);
}
static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
{
return &q->gt->uc.guc;
}
static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
{
struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
/* keep going if fw fails as we still want to save the memory and SW data */
if (xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
xe_vm_snapshot_capture_delayed(ss->vm);
xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
xe_force_wake_put(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
}
static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct xe_devcoredump *coredump = data;
struct xe_device *xe;
struct xe_devcoredump_snapshot *ss;
struct drm_printer p;
struct drm_print_iterator iter;
struct timespec64 ts;
int i;
if (!coredump)
return -ENODEV;
xe = coredump_to_xe(coredump);
ss = &coredump->snapshot;
/* Ensure delayed work is captured before continuing */
flush_work(&ss->work);
iter.data = buffer;
iter.offset = 0;
iter.start = offset;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_printf(&p, "**** Xe Device Coredump ****\n");
drm_printf(&p, "kernel: " UTS_RELEASE "\n");
drm_printf(&p, "module: " KBUILD_MODNAME "\n");
ts = ktime_to_timespec64(ss->snapshot_time);
drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
ts = ktime_to_timespec64(ss->boot_time);
drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
drm_printf(&p, "Process: %s\n", ss->process_name);
xe_device_snapshot_print(xe, &p);
drm_printf(&p, "\n**** GuC CT ****\n");
xe_guc_ct_snapshot_print(coredump->snapshot.ct, &p);
xe_guc_exec_queue_snapshot_print(coredump->snapshot.ge, &p);
drm_printf(&p, "\n**** Job ****\n");
xe_sched_job_snapshot_print(coredump->snapshot.job, &p);
drm_printf(&p, "\n**** HW Engines ****\n");
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (coredump->snapshot.hwe[i])
xe_hw_engine_snapshot_print(coredump->snapshot.hwe[i],
&p);
drm_printf(&p, "\n**** VM state ****\n");
xe_vm_snapshot_print(coredump->snapshot.vm, &p);
return count - iter.remain;
}
static void xe_devcoredump_free(void *data)
{
struct xe_devcoredump *coredump = data;
int i;
/* Our device is gone. Nothing to do... */
if (!data || !coredump_to_xe(coredump))
return;
cancel_work_sync(&coredump->snapshot.work);
xe_guc_ct_snapshot_free(coredump->snapshot.ct);
xe_guc_exec_queue_snapshot_free(coredump->snapshot.ge);
xe_sched_job_snapshot_free(coredump->snapshot.job);
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (coredump->snapshot.hwe[i])
xe_hw_engine_snapshot_free(coredump->snapshot.hwe[i]);
xe_vm_snapshot_free(coredump->snapshot.vm);
/* To prevent stale data on next snapshot, clear everything */
memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
coredump->captured = false;
drm_info(&coredump_to_xe(coredump)->drm,
"Xe device coredump has been deleted.\n");
}
static void devcoredump_snapshot(struct xe_devcoredump *coredump,
struct xe_sched_job *job)
{
struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
struct xe_exec_queue *q = job->q;
struct xe_guc *guc = exec_queue_to_guc(q);
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
u32 adj_logical_mask = q->logical_mask;
u32 width_mask = (0x1 << q->width) - 1;
const char *process_name = "no process";
struct task_struct *task = NULL;
int i;
bool cookie;
ss->snapshot_time = ktime_get_real();
ss->boot_time = ktime_get_boottime();
if (q->vm && q->vm->xef) {
task = get_pid_task(q->vm->xef->drm->pid, PIDTYPE_PID);
if (task)
process_name = task->comm;
}
strscpy(ss->process_name, process_name);
if (task)
put_task_struct(task);
ss->gt = q->gt;
INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
cookie = dma_fence_begin_signalling();
for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
if (adj_logical_mask & BIT(i)) {
adj_logical_mask |= width_mask << i;
i += q->width;
} else {
++i;
}
}
/* keep going if fw fails as we still want to save the memory and SW data */
if (xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
coredump->snapshot.ct = xe_guc_ct_snapshot_capture(&guc->ct, true);
coredump->snapshot.ge = xe_guc_exec_queue_snapshot_capture(q);
coredump->snapshot.job = xe_sched_job_snapshot_capture(job);
coredump->snapshot.vm = xe_vm_snapshot_capture(q->vm);
for_each_hw_engine(hwe, q->gt, id) {
if (hwe->class != q->hwe->class ||
!(BIT(hwe->logical_instance) & adj_logical_mask)) {
coredump->snapshot.hwe[id] = NULL;
continue;
}
coredump->snapshot.hwe[id] = xe_hw_engine_snapshot_capture(hwe);
}
queue_work(system_unbound_wq, &ss->work);
xe_force_wake_put(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
dma_fence_end_signalling(cookie);
}
/**
* xe_devcoredump - Take the required snapshots and initialize coredump device.
* @job: The faulty xe_sched_job, where the issue was detected.
*
* This function should be called at the crash time within the serialized
* gt_reset. It is skipped if we still have the core dump device available
* with the information of the 'first' snapshot.
*/
void xe_devcoredump(struct xe_sched_job *job)
{
struct xe_device *xe = gt_to_xe(job->q->gt);
struct xe_devcoredump *coredump = &xe->devcoredump;
if (coredump->captured) {
drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
return;
}
coredump->captured = true;
devcoredump_snapshot(coredump, job);
drm_info(&xe->drm, "Xe device coredump has been created\n");
drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
xe->drm.primary->index);
dev_coredumpm_timeout(xe->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
xe_devcoredump_read, xe_devcoredump_free,
XE_COREDUMP_TIMEOUT_JIFFIES);
}
static void xe_driver_devcoredump_fini(void *arg)
{
struct drm_device *drm = arg;
dev_coredump_put(drm->dev);
}
int xe_devcoredump_init(struct xe_device *xe)
{
return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
}
#endif