| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Network filesystem high-level read support. |
| * |
| * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/uio.h> |
| #include <linux/sched/mm.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include "internal.h" |
| |
| /* |
| * Clear the unread part of an I/O request. |
| */ |
| static void netfs_clear_unread(struct netfs_io_subrequest *subreq) |
| { |
| iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter); |
| } |
| |
| static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, |
| bool was_async) |
| { |
| struct netfs_io_subrequest *subreq = priv; |
| |
| netfs_subreq_terminated(subreq, transferred_or_error, was_async); |
| } |
| |
| /* |
| * Issue a read against the cache. |
| * - Eats the caller's ref on subreq. |
| */ |
| static void netfs_read_from_cache(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq, |
| enum netfs_read_from_hole read_hole) |
| { |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| |
| netfs_stat(&netfs_n_rh_read); |
| cres->ops->read(cres, subreq->start, &subreq->io_iter, read_hole, |
| netfs_cache_read_terminated, subreq); |
| } |
| |
| /* |
| * Fill a subrequest region with zeroes. |
| */ |
| static void netfs_fill_with_zeroes(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq) |
| { |
| netfs_stat(&netfs_n_rh_zero); |
| __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); |
| netfs_subreq_terminated(subreq, 0, false); |
| } |
| |
| /* |
| * Ask the netfs to issue a read request to the server for us. |
| * |
| * The netfs is expected to read from subreq->pos + subreq->transferred to |
| * subreq->pos + subreq->len - 1. It may not backtrack and write data into the |
| * buffer prior to the transferred point as it might clobber dirty data |
| * obtained from the cache. |
| * |
| * Alternatively, the netfs is allowed to indicate one of two things: |
| * |
| * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and |
| * make progress. |
| * |
| * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be |
| * cleared. |
| */ |
| static void netfs_read_from_server(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq) |
| { |
| netfs_stat(&netfs_n_rh_download); |
| |
| if (rreq->origin != NETFS_DIO_READ && |
| iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred) |
| pr_warn("R=%08x[%u] ITER PRE-MISMATCH %zx != %zx-%zx %lx\n", |
| rreq->debug_id, subreq->debug_index, |
| iov_iter_count(&subreq->io_iter), subreq->len, |
| subreq->transferred, subreq->flags); |
| rreq->netfs_ops->issue_read(subreq); |
| } |
| |
| /* |
| * Release those waiting. |
| */ |
| static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async) |
| { |
| trace_netfs_rreq(rreq, netfs_rreq_trace_done); |
| netfs_clear_subrequests(rreq, was_async); |
| netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete); |
| } |
| |
| /* |
| * [DEPRECATED] Deal with the completion of writing the data to the cache. We |
| * have to clear the PG_fscache bits on the folios involved and release the |
| * caller's ref. |
| * |
| * May be called in softirq mode and we inherit a ref from the caller. |
| */ |
| static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq, |
| bool was_async) |
| { |
| struct netfs_io_subrequest *subreq; |
| struct folio *folio; |
| pgoff_t unlocked = 0; |
| bool have_unlocked = false; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); |
| |
| xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) { |
| if (xas_retry(&xas, folio)) |
| continue; |
| |
| /* We might have multiple writes from the same huge |
| * folio, but we mustn't unlock a folio more than once. |
| */ |
| if (have_unlocked && folio->index <= unlocked) |
| continue; |
| unlocked = folio_next_index(folio) - 1; |
| trace_netfs_folio(folio, netfs_folio_trace_end_copy); |
| folio_end_private_2(folio); |
| have_unlocked = true; |
| } |
| } |
| |
| rcu_read_unlock(); |
| netfs_rreq_completed(rreq, was_async); |
| } |
| |
| static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, |
| bool was_async) /* [DEPRECATED] */ |
| { |
| struct netfs_io_subrequest *subreq = priv; |
| struct netfs_io_request *rreq = subreq->rreq; |
| |
| if (IS_ERR_VALUE(transferred_or_error)) { |
| netfs_stat(&netfs_n_rh_write_failed); |
| trace_netfs_failure(rreq, subreq, transferred_or_error, |
| netfs_fail_copy_to_cache); |
| } else { |
| netfs_stat(&netfs_n_rh_write_done); |
| } |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); |
| |
| /* If we decrement nr_copy_ops to 0, the ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_copy_ops)) |
| netfs_rreq_unmark_after_write(rreq, was_async); |
| |
| netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); |
| } |
| |
| /* |
| * [DEPRECATED] Perform any outstanding writes to the cache. We inherit a ref |
| * from the caller. |
| */ |
| static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq) |
| { |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| struct netfs_io_subrequest *subreq, *next, *p; |
| struct iov_iter iter; |
| int ret; |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_copy); |
| |
| /* We don't want terminating writes trying to wake us up whilst we're |
| * still going through the list. |
| */ |
| atomic_inc(&rreq->nr_copy_ops); |
| |
| list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { |
| if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) { |
| list_del_init(&subreq->rreq_link); |
| netfs_put_subrequest(subreq, false, |
| netfs_sreq_trace_put_no_copy); |
| } |
| } |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| /* Amalgamate adjacent writes */ |
| while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { |
| next = list_next_entry(subreq, rreq_link); |
| if (next->start != subreq->start + subreq->len) |
| break; |
| subreq->len += next->len; |
| list_del_init(&next->rreq_link); |
| netfs_put_subrequest(next, false, |
| netfs_sreq_trace_put_merged); |
| } |
| |
| ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, |
| subreq->len, rreq->i_size, true); |
| if (ret < 0) { |
| trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); |
| continue; |
| } |
| |
| iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages, |
| subreq->start, subreq->len); |
| |
| atomic_inc(&rreq->nr_copy_ops); |
| netfs_stat(&netfs_n_rh_write); |
| netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_write); |
| cres->ops->write(cres, subreq->start, &iter, |
| netfs_rreq_copy_terminated, subreq); |
| } |
| |
| /* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_copy_ops)) |
| netfs_rreq_unmark_after_write(rreq, false); |
| } |
| |
| static void netfs_rreq_write_to_cache_work(struct work_struct *work) /* [DEPRECATED] */ |
| { |
| struct netfs_io_request *rreq = |
| container_of(work, struct netfs_io_request, work); |
| |
| netfs_rreq_do_write_to_cache(rreq); |
| } |
| |
| static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) /* [DEPRECATED] */ |
| { |
| rreq->work.func = netfs_rreq_write_to_cache_work; |
| if (!queue_work(system_unbound_wq, &rreq->work)) |
| BUG(); |
| } |
| |
| /* |
| * Handle a short read. |
| */ |
| static void netfs_rreq_short_read(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq) |
| { |
| __clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); |
| __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); |
| |
| netfs_stat(&netfs_n_rh_short_read); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); |
| |
| netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read); |
| atomic_inc(&rreq->nr_outstanding); |
| if (subreq->source == NETFS_READ_FROM_CACHE) |
| netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR); |
| else |
| netfs_read_from_server(rreq, subreq); |
| } |
| |
| /* |
| * Reset the subrequest iterator prior to resubmission. |
| */ |
| static void netfs_reset_subreq_iter(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq) |
| { |
| size_t remaining = subreq->len - subreq->transferred; |
| size_t count = iov_iter_count(&subreq->io_iter); |
| |
| if (count == remaining) |
| return; |
| |
| _debug("R=%08x[%u] ITER RESUB-MISMATCH %zx != %zx-%zx-%llx %x\n", |
| rreq->debug_id, subreq->debug_index, |
| iov_iter_count(&subreq->io_iter), subreq->transferred, |
| subreq->len, rreq->i_size, |
| subreq->io_iter.iter_type); |
| |
| if (count < remaining) |
| iov_iter_revert(&subreq->io_iter, remaining - count); |
| else |
| iov_iter_advance(&subreq->io_iter, count - remaining); |
| } |
| |
| /* |
| * Resubmit any short or failed operations. Returns true if we got the rreq |
| * ref back. |
| */ |
| static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq) |
| { |
| struct netfs_io_subrequest *subreq; |
| |
| WARN_ON(in_interrupt()); |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); |
| |
| /* We don't want terminating submissions trying to wake us up whilst |
| * we're still going through the list. |
| */ |
| atomic_inc(&rreq->nr_outstanding); |
| |
| __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| if (subreq->error) { |
| if (subreq->source != NETFS_READ_FROM_CACHE) |
| break; |
| subreq->source = NETFS_DOWNLOAD_FROM_SERVER; |
| subreq->error = 0; |
| netfs_stat(&netfs_n_rh_download_instead); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); |
| netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); |
| atomic_inc(&rreq->nr_outstanding); |
| netfs_reset_subreq_iter(rreq, subreq); |
| netfs_read_from_server(rreq, subreq); |
| } else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) { |
| netfs_rreq_short_read(rreq, subreq); |
| } |
| } |
| |
| /* If we decrement nr_outstanding to 0, the usage ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_outstanding)) |
| return true; |
| |
| wake_up_var(&rreq->nr_outstanding); |
| return false; |
| } |
| |
| /* |
| * Check to see if the data read is still valid. |
| */ |
| static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq) |
| { |
| struct netfs_io_subrequest *subreq; |
| |
| if (!rreq->netfs_ops->is_still_valid || |
| rreq->netfs_ops->is_still_valid(rreq)) |
| return; |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| if (subreq->source == NETFS_READ_FROM_CACHE) { |
| subreq->error = -ESTALE; |
| __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| } |
| } |
| } |
| |
| /* |
| * Determine how much we can admit to having read from a DIO read. |
| */ |
| static void netfs_rreq_assess_dio(struct netfs_io_request *rreq) |
| { |
| struct netfs_io_subrequest *subreq; |
| unsigned int i; |
| size_t transferred = 0; |
| |
| for (i = 0; i < rreq->direct_bv_count; i++) { |
| flush_dcache_page(rreq->direct_bv[i].bv_page); |
| // TODO: cifs marks pages in the destination buffer |
| // dirty under some circumstances after a read. Do we |
| // need to do that too? |
| set_page_dirty(rreq->direct_bv[i].bv_page); |
| } |
| |
| list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { |
| if (subreq->error || subreq->transferred == 0) |
| break; |
| transferred += subreq->transferred; |
| if (subreq->transferred < subreq->len) |
| break; |
| } |
| |
| for (i = 0; i < rreq->direct_bv_count; i++) |
| flush_dcache_page(rreq->direct_bv[i].bv_page); |
| |
| rreq->transferred = transferred; |
| task_io_account_read(transferred); |
| |
| if (rreq->iocb) { |
| rreq->iocb->ki_pos += transferred; |
| if (rreq->iocb->ki_complete) |
| rreq->iocb->ki_complete( |
| rreq->iocb, rreq->error ? rreq->error : transferred); |
| } |
| if (rreq->netfs_ops->done) |
| rreq->netfs_ops->done(rreq); |
| inode_dio_end(rreq->inode); |
| } |
| |
| /* |
| * Assess the state of a read request and decide what to do next. |
| * |
| * Note that we could be in an ordinary kernel thread, on a workqueue or in |
| * softirq context at this point. We inherit a ref from the caller. |
| */ |
| static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async) |
| { |
| trace_netfs_rreq(rreq, netfs_rreq_trace_assess); |
| |
| again: |
| netfs_rreq_is_still_valid(rreq); |
| |
| if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && |
| test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { |
| if (netfs_rreq_perform_resubmissions(rreq)) |
| goto again; |
| return; |
| } |
| |
| if (rreq->origin != NETFS_DIO_READ) |
| netfs_rreq_unlock_folios(rreq); |
| else |
| netfs_rreq_assess_dio(rreq); |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip); |
| clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); |
| wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); |
| |
| if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags) && |
| test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) |
| return netfs_rreq_write_to_cache(rreq); |
| |
| netfs_rreq_completed(rreq, was_async); |
| } |
| |
| static void netfs_rreq_work(struct work_struct *work) |
| { |
| struct netfs_io_request *rreq = |
| container_of(work, struct netfs_io_request, work); |
| netfs_rreq_assess(rreq, false); |
| } |
| |
| /* |
| * Handle the completion of all outstanding I/O operations on a read request. |
| * We inherit a ref from the caller. |
| */ |
| static void netfs_rreq_terminated(struct netfs_io_request *rreq, |
| bool was_async) |
| { |
| if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && |
| was_async) { |
| if (!queue_work(system_unbound_wq, &rreq->work)) |
| BUG(); |
| } else { |
| netfs_rreq_assess(rreq, was_async); |
| } |
| } |
| |
| /** |
| * netfs_subreq_terminated - Note the termination of an I/O operation. |
| * @subreq: The I/O request that has terminated. |
| * @transferred_or_error: The amount of data transferred or an error code. |
| * @was_async: The termination was asynchronous |
| * |
| * This tells the read helper that a contributory I/O operation has terminated, |
| * one way or another, and that it should integrate the results. |
| * |
| * The caller indicates in @transferred_or_error the outcome of the operation, |
| * supplying a positive value to indicate the number of bytes transferred, 0 to |
| * indicate a failure to transfer anything that should be retried or a negative |
| * error code. The helper will look after reissuing I/O operations as |
| * appropriate and writing downloaded data to the cache. |
| * |
| * If @was_async is true, the caller might be running in softirq or interrupt |
| * context and we can't sleep. |
| */ |
| void netfs_subreq_terminated(struct netfs_io_subrequest *subreq, |
| ssize_t transferred_or_error, |
| bool was_async) |
| { |
| struct netfs_io_request *rreq = subreq->rreq; |
| int u; |
| |
| _enter("R=%x[%x]{%llx,%lx},%zd", |
| rreq->debug_id, subreq->debug_index, |
| subreq->start, subreq->flags, transferred_or_error); |
| |
| switch (subreq->source) { |
| case NETFS_READ_FROM_CACHE: |
| netfs_stat(&netfs_n_rh_read_done); |
| break; |
| case NETFS_DOWNLOAD_FROM_SERVER: |
| netfs_stat(&netfs_n_rh_download_done); |
| break; |
| default: |
| break; |
| } |
| |
| if (IS_ERR_VALUE(transferred_or_error)) { |
| subreq->error = transferred_or_error; |
| trace_netfs_failure(rreq, subreq, transferred_or_error, |
| netfs_fail_read); |
| goto failed; |
| } |
| |
| if (WARN(transferred_or_error > subreq->len - subreq->transferred, |
| "Subreq overread: R%x[%x] %zd > %zu - %zu", |
| rreq->debug_id, subreq->debug_index, |
| transferred_or_error, subreq->len, subreq->transferred)) |
| transferred_or_error = subreq->len - subreq->transferred; |
| |
| subreq->error = 0; |
| subreq->transferred += transferred_or_error; |
| if (subreq->transferred < subreq->len) |
| goto incomplete; |
| |
| complete: |
| __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); |
| if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) |
| set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags); |
| |
| out: |
| trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); |
| |
| /* If we decrement nr_outstanding to 0, the ref belongs to us. */ |
| u = atomic_dec_return(&rreq->nr_outstanding); |
| if (u == 0) |
| netfs_rreq_terminated(rreq, was_async); |
| else if (u == 1) |
| wake_up_var(&rreq->nr_outstanding); |
| |
| netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); |
| return; |
| |
| incomplete: |
| if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { |
| netfs_clear_unread(subreq); |
| subreq->transferred = subreq->len; |
| goto complete; |
| } |
| |
| if (transferred_or_error == 0) { |
| if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { |
| if (rreq->origin != NETFS_DIO_READ) |
| subreq->error = -ENODATA; |
| goto failed; |
| } |
| } else { |
| __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); |
| } |
| |
| __set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); |
| set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| goto out; |
| |
| failed: |
| if (subreq->source == NETFS_READ_FROM_CACHE) { |
| netfs_stat(&netfs_n_rh_read_failed); |
| set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); |
| } else { |
| netfs_stat(&netfs_n_rh_download_failed); |
| set_bit(NETFS_RREQ_FAILED, &rreq->flags); |
| rreq->error = subreq->error; |
| } |
| goto out; |
| } |
| EXPORT_SYMBOL(netfs_subreq_terminated); |
| |
| static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq, |
| loff_t i_size) |
| { |
| struct netfs_io_request *rreq = subreq->rreq; |
| struct netfs_cache_resources *cres = &rreq->cache_resources; |
| |
| if (cres->ops) |
| return cres->ops->prepare_read(subreq, i_size); |
| if (subreq->start >= rreq->i_size) |
| return NETFS_FILL_WITH_ZEROES; |
| return NETFS_DOWNLOAD_FROM_SERVER; |
| } |
| |
| /* |
| * Work out what sort of subrequest the next one will be. |
| */ |
| static enum netfs_io_source |
| netfs_rreq_prepare_read(struct netfs_io_request *rreq, |
| struct netfs_io_subrequest *subreq, |
| struct iov_iter *io_iter) |
| { |
| enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER; |
| struct netfs_inode *ictx = netfs_inode(rreq->inode); |
| size_t lsize; |
| |
| _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); |
| |
| if (rreq->origin != NETFS_DIO_READ) { |
| source = netfs_cache_prepare_read(subreq, rreq->i_size); |
| if (source == NETFS_INVALID_READ) |
| goto out; |
| } |
| |
| if (source == NETFS_DOWNLOAD_FROM_SERVER) { |
| /* Call out to the netfs to let it shrink the request to fit |
| * its own I/O sizes and boundaries. If it shinks it here, it |
| * will be called again to make simultaneous calls; if it wants |
| * to make serial calls, it can indicate a short read and then |
| * we will call it again. |
| */ |
| if (rreq->origin != NETFS_DIO_READ) { |
| if (subreq->start >= ictx->zero_point) { |
| source = NETFS_FILL_WITH_ZEROES; |
| goto set; |
| } |
| if (subreq->len > ictx->zero_point - subreq->start) |
| subreq->len = ictx->zero_point - subreq->start; |
| |
| /* We limit buffered reads to the EOF, but let the |
| * server deal with larger-than-EOF DIO/unbuffered |
| * reads. |
| */ |
| if (subreq->len > rreq->i_size - subreq->start) |
| subreq->len = rreq->i_size - subreq->start; |
| } |
| if (rreq->rsize && subreq->len > rreq->rsize) |
| subreq->len = rreq->rsize; |
| |
| if (rreq->netfs_ops->clamp_length && |
| !rreq->netfs_ops->clamp_length(subreq)) { |
| source = NETFS_INVALID_READ; |
| goto out; |
| } |
| |
| if (subreq->max_nr_segs) { |
| lsize = netfs_limit_iter(io_iter, 0, subreq->len, |
| subreq->max_nr_segs); |
| if (subreq->len > lsize) { |
| subreq->len = lsize; |
| trace_netfs_sreq(subreq, netfs_sreq_trace_limited); |
| } |
| } |
| } |
| |
| set: |
| if (subreq->len > rreq->len) |
| pr_warn("R=%08x[%u] SREQ>RREQ %zx > %llx\n", |
| rreq->debug_id, subreq->debug_index, |
| subreq->len, rreq->len); |
| |
| if (WARN_ON(subreq->len == 0)) { |
| source = NETFS_INVALID_READ; |
| goto out; |
| } |
| |
| subreq->source = source; |
| trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); |
| |
| subreq->io_iter = *io_iter; |
| iov_iter_truncate(&subreq->io_iter, subreq->len); |
| iov_iter_advance(io_iter, subreq->len); |
| out: |
| subreq->source = source; |
| trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); |
| return source; |
| } |
| |
| /* |
| * Slice off a piece of a read request and submit an I/O request for it. |
| */ |
| static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq, |
| struct iov_iter *io_iter) |
| { |
| struct netfs_io_subrequest *subreq; |
| enum netfs_io_source source; |
| |
| subreq = netfs_alloc_subrequest(rreq); |
| if (!subreq) |
| return false; |
| |
| subreq->start = rreq->start + rreq->submitted; |
| subreq->len = io_iter->count; |
| |
| _debug("slice %llx,%zx,%llx", subreq->start, subreq->len, rreq->submitted); |
| list_add_tail(&subreq->rreq_link, &rreq->subrequests); |
| |
| /* Call out to the cache to find out what it can do with the remaining |
| * subset. It tells us in subreq->flags what it decided should be done |
| * and adjusts subreq->len down if the subset crosses a cache boundary. |
| * |
| * Then when we hand the subset, it can choose to take a subset of that |
| * (the starts must coincide), in which case, we go around the loop |
| * again and ask it to download the next piece. |
| */ |
| source = netfs_rreq_prepare_read(rreq, subreq, io_iter); |
| if (source == NETFS_INVALID_READ) |
| goto subreq_failed; |
| |
| atomic_inc(&rreq->nr_outstanding); |
| |
| rreq->submitted += subreq->len; |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_submit); |
| switch (source) { |
| case NETFS_FILL_WITH_ZEROES: |
| netfs_fill_with_zeroes(rreq, subreq); |
| break; |
| case NETFS_DOWNLOAD_FROM_SERVER: |
| netfs_read_from_server(rreq, subreq); |
| break; |
| case NETFS_READ_FROM_CACHE: |
| netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return true; |
| |
| subreq_failed: |
| rreq->error = subreq->error; |
| netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed); |
| return false; |
| } |
| |
| /* |
| * Begin the process of reading in a chunk of data, where that data may be |
| * stitched together from multiple sources, including multiple servers and the |
| * local cache. |
| */ |
| int netfs_begin_read(struct netfs_io_request *rreq, bool sync) |
| { |
| struct iov_iter io_iter; |
| int ret; |
| |
| _enter("R=%x %llx-%llx", |
| rreq->debug_id, rreq->start, rreq->start + rreq->len - 1); |
| |
| if (rreq->len == 0) { |
| pr_err("Zero-sized read [R=%x]\n", rreq->debug_id); |
| return -EIO; |
| } |
| |
| if (rreq->origin == NETFS_DIO_READ) |
| inode_dio_begin(rreq->inode); |
| |
| // TODO: Use bounce buffer if requested |
| rreq->io_iter = rreq->iter; |
| |
| INIT_WORK(&rreq->work, netfs_rreq_work); |
| |
| /* Chop the read into slices according to what the cache and the netfs |
| * want and submit each one. |
| */ |
| netfs_get_request(rreq, netfs_rreq_trace_get_for_outstanding); |
| atomic_set(&rreq->nr_outstanding, 1); |
| io_iter = rreq->io_iter; |
| do { |
| _debug("submit %llx + %llx >= %llx", |
| rreq->start, rreq->submitted, rreq->i_size); |
| if (!netfs_rreq_submit_slice(rreq, &io_iter)) |
| break; |
| if (test_bit(NETFS_SREQ_NO_PROGRESS, &rreq->flags)) |
| break; |
| if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) && |
| test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags)) |
| break; |
| |
| } while (rreq->submitted < rreq->len); |
| |
| if (!rreq->submitted) { |
| netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit); |
| if (rreq->origin == NETFS_DIO_READ) |
| inode_dio_end(rreq->inode); |
| ret = 0; |
| goto out; |
| } |
| |
| if (sync) { |
| /* Keep nr_outstanding incremented so that the ref always |
| * belongs to us, and the service code isn't punted off to a |
| * random thread pool to process. Note that this might start |
| * further work, such as writing to the cache. |
| */ |
| wait_var_event(&rreq->nr_outstanding, |
| atomic_read(&rreq->nr_outstanding) == 1); |
| if (atomic_dec_and_test(&rreq->nr_outstanding)) |
| netfs_rreq_assess(rreq, false); |
| |
| trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip); |
| wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS, |
| TASK_UNINTERRUPTIBLE); |
| |
| ret = rreq->error; |
| if (ret == 0 && rreq->submitted < rreq->len && |
| rreq->origin != NETFS_DIO_READ) { |
| trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read); |
| ret = -EIO; |
| } |
| } else { |
| /* If we decrement nr_outstanding to 0, the ref belongs to us. */ |
| if (atomic_dec_and_test(&rreq->nr_outstanding)) |
| netfs_rreq_assess(rreq, false); |
| ret = -EIOCBQUEUED; |
| } |
| |
| out: |
| return ret; |
| } |