| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| #ifndef __ASM_PGTABLE_H |
| #define __ASM_PGTABLE_H |
| |
| #include <asm/bug.h> |
| #include <asm/proc-fns.h> |
| |
| #include <asm/memory.h> |
| #include <asm/mte.h> |
| #include <asm/pgtable-hwdef.h> |
| #include <asm/pgtable-prot.h> |
| #include <asm/tlbflush.h> |
| |
| /* |
| * VMALLOC range. |
| * |
| * VMALLOC_START: beginning of the kernel vmalloc space |
| * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space |
| * and fixed mappings |
| */ |
| #define VMALLOC_START (MODULES_END) |
| #define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K) |
| |
| #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) |
| |
| #define FIRST_USER_ADDRESS 0UL |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <asm/cmpxchg.h> |
| #include <asm/fixmap.h> |
| #include <linux/mmdebug.h> |
| #include <linux/mm_types.h> |
| #include <linux/sched.h> |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE |
| |
| /* Set stride and tlb_level in flush_*_tlb_range */ |
| #define flush_pmd_tlb_range(vma, addr, end) \ |
| __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) |
| #define flush_pud_tlb_range(vma, addr, end) \ |
| __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * Outside of a few very special situations (e.g. hibernation), we always |
| * use broadcast TLB invalidation instructions, therefore a spurious page |
| * fault on one CPU which has been handled concurrently by another CPU |
| * does not need to perform additional invalidation. |
| */ |
| #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; |
| #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) |
| |
| /* |
| * Macros to convert between a physical address and its placement in a |
| * page table entry, taking care of 52-bit addresses. |
| */ |
| #ifdef CONFIG_ARM64_PA_BITS_52 |
| #define __pte_to_phys(pte) \ |
| ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36)) |
| #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK) |
| #else |
| #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) |
| #define __phys_to_pte_val(phys) (phys) |
| #endif |
| |
| #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) |
| #define pfn_pte(pfn,prot) \ |
| __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| |
| #define pte_none(pte) (!pte_val(pte)) |
| #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) |
| #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| |
| /* |
| * The following only work if pte_present(). Undefined behaviour otherwise. |
| */ |
| #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) |
| #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) |
| #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) |
| #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) |
| #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) |
| #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) |
| #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) |
| #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ |
| PTE_ATTRINDX(MT_NORMAL_TAGGED)) |
| |
| #define pte_cont_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ |
| (__boundary - 1 < (end) - 1) ? __boundary : (end); \ |
| }) |
| |
| #define pmd_cont_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ |
| (__boundary - 1 < (end) - 1) ? __boundary : (end); \ |
| }) |
| |
| #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) |
| #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) |
| #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) |
| |
| #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) |
| #define pte_valid_not_user(pte) \ |
| ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID) |
| #define pte_valid_young(pte) \ |
| ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF)) |
| #define pte_valid_user(pte) \ |
| ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) |
| |
| /* |
| * Could the pte be present in the TLB? We must check mm_tlb_flush_pending |
| * so that we don't erroneously return false for pages that have been |
| * remapped as PROT_NONE but are yet to be flushed from the TLB. |
| */ |
| #define pte_accessible(mm, pte) \ |
| (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte)) |
| |
| /* |
| * p??_access_permitted() is true for valid user mappings (subject to the |
| * write permission check). PROT_NONE mappings do not have the PTE_VALID bit |
| * set. |
| */ |
| #define pte_access_permitted(pte, write) \ |
| (pte_valid_user(pte) && (!(write) || pte_write(pte))) |
| #define pmd_access_permitted(pmd, write) \ |
| (pte_access_permitted(pmd_pte(pmd), (write))) |
| #define pud_access_permitted(pud, write) \ |
| (pte_access_permitted(pud_pte(pud), (write))) |
| |
| static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) |
| { |
| pte_val(pte) &= ~pgprot_val(prot); |
| return pte; |
| } |
| |
| static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) |
| { |
| pte_val(pte) |= pgprot_val(prot); |
| return pte; |
| } |
| |
| static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) |
| { |
| pmd_val(pmd) &= ~pgprot_val(prot); |
| return pmd; |
| } |
| |
| static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) |
| { |
| pmd_val(pmd) |= pgprot_val(prot); |
| return pmd; |
| } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); |
| pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); |
| return pte; |
| } |
| |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); |
| pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); |
| return pte; |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); |
| pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); |
| |
| return pte; |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); |
| |
| if (pte_write(pte)) |
| pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); |
| |
| return pte; |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return clear_pte_bit(pte, __pgprot(PTE_AF)); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return set_pte_bit(pte, __pgprot(PTE_AF)); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); |
| } |
| |
| static inline pte_t pte_mkcont(pte_t pte) |
| { |
| pte = set_pte_bit(pte, __pgprot(PTE_CONT)); |
| return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); |
| } |
| |
| static inline pte_t pte_mknoncont(pte_t pte) |
| { |
| return clear_pte_bit(pte, __pgprot(PTE_CONT)); |
| } |
| |
| static inline pte_t pte_mkpresent(pte_t pte) |
| { |
| return set_pte_bit(pte, __pgprot(PTE_VALID)); |
| } |
| |
| static inline pmd_t pmd_mkcont(pmd_t pmd) |
| { |
| return __pmd(pmd_val(pmd) | PMD_SECT_CONT); |
| } |
| |
| static inline pte_t pte_mkdevmap(pte_t pte) |
| { |
| return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); |
| } |
| |
| static inline void set_pte(pte_t *ptep, pte_t pte) |
| { |
| WRITE_ONCE(*ptep, pte); |
| |
| /* |
| * Only if the new pte is valid and kernel, otherwise TLB maintenance |
| * or update_mmu_cache() have the necessary barriers. |
| */ |
| if (pte_valid_not_user(pte)) { |
| dsb(ishst); |
| isb(); |
| } |
| } |
| |
| extern void __sync_icache_dcache(pte_t pteval); |
| |
| /* |
| * PTE bits configuration in the presence of hardware Dirty Bit Management |
| * (PTE_WRITE == PTE_DBM): |
| * |
| * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) |
| * 0 0 | 1 0 0 |
| * 0 1 | 1 1 0 |
| * 1 0 | 1 0 1 |
| * 1 1 | 0 1 x |
| * |
| * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via |
| * the page fault mechanism. Checking the dirty status of a pte becomes: |
| * |
| * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) |
| */ |
| |
| static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, |
| pte_t pte) |
| { |
| pte_t old_pte; |
| |
| if (!IS_ENABLED(CONFIG_DEBUG_VM)) |
| return; |
| |
| old_pte = READ_ONCE(*ptep); |
| |
| if (!pte_valid(old_pte) || !pte_valid(pte)) |
| return; |
| if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) |
| return; |
| |
| /* |
| * Check for potential race with hardware updates of the pte |
| * (ptep_set_access_flags safely changes valid ptes without going |
| * through an invalid entry). |
| */ |
| VM_WARN_ONCE(!pte_young(pte), |
| "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", |
| __func__, pte_val(old_pte), pte_val(pte)); |
| VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), |
| "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", |
| __func__, pte_val(old_pte), pte_val(pte)); |
| } |
| |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) |
| __sync_icache_dcache(pte); |
| |
| if (system_supports_mte() && |
| pte_present(pte) && pte_tagged(pte) && !pte_special(pte)) |
| mte_sync_tags(ptep, pte); |
| |
| __check_racy_pte_update(mm, ptep, pte); |
| |
| set_pte(ptep, pte); |
| } |
| |
| /* |
| * Huge pte definitions. |
| */ |
| #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) |
| |
| /* |
| * Hugetlb definitions. |
| */ |
| #define HUGE_MAX_HSTATE 4 |
| #define HPAGE_SHIFT PMD_SHIFT |
| #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) |
| #define HPAGE_MASK (~(HPAGE_SIZE - 1)) |
| #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) |
| |
| static inline pte_t pgd_pte(pgd_t pgd) |
| { |
| return __pte(pgd_val(pgd)); |
| } |
| |
| static inline pte_t p4d_pte(p4d_t p4d) |
| { |
| return __pte(p4d_val(p4d)); |
| } |
| |
| static inline pte_t pud_pte(pud_t pud) |
| { |
| return __pte(pud_val(pud)); |
| } |
| |
| static inline pud_t pte_pud(pte_t pte) |
| { |
| return __pud(pte_val(pte)); |
| } |
| |
| static inline pmd_t pud_pmd(pud_t pud) |
| { |
| return __pmd(pud_val(pud)); |
| } |
| |
| static inline pte_t pmd_pte(pmd_t pmd) |
| { |
| return __pte(pmd_val(pmd)); |
| } |
| |
| static inline pmd_t pte_pmd(pte_t pte) |
| { |
| return __pmd(pte_val(pte)); |
| } |
| |
| static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); |
| } |
| |
| static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* |
| * See the comment in include/linux/pgtable.h |
| */ |
| static inline int pte_protnone(pte_t pte) |
| { |
| return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return pte_protnone(pmd_pte(pmd)); |
| } |
| #endif |
| |
| #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID)) |
| |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd); |
| } |
| |
| /* |
| * THP definitions. |
| */ |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) |
| #define pmd_young(pmd) pte_young(pmd_pte(pmd)) |
| #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) |
| #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) |
| #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) |
| #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) |
| #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) |
| #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) |
| #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) |
| |
| static inline pmd_t pmd_mkinvalid(pmd_t pmd) |
| { |
| pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID)); |
| pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID)); |
| |
| return pmd; |
| } |
| |
| #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) |
| |
| #define pmd_write(pmd) pte_write(pmd_pte(pmd)) |
| |
| #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) |
| #endif |
| static inline pmd_t pmd_mkdevmap(pmd_t pmd) |
| { |
| return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); |
| } |
| |
| #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) |
| #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) |
| #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) |
| #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) |
| |
| #define pud_young(pud) pte_young(pud_pte(pud)) |
| #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) |
| #define pud_write(pud) pte_write(pud_pte(pud)) |
| |
| #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) |
| |
| #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) |
| #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) |
| #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) |
| #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| |
| #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) |
| |
| #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) |
| #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) |
| |
| #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) |
| #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) |
| |
| #define __pgprot_modify(prot,mask,bits) \ |
| __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) |
| |
| #define pgprot_nx(prot) \ |
| __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) |
| |
| /* |
| * Mark the prot value as uncacheable and unbufferable. |
| */ |
| #define pgprot_noncached(prot) \ |
| __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) |
| #define pgprot_writecombine(prot) \ |
| __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) |
| #define pgprot_device(prot) \ |
| __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) |
| /* |
| * DMA allocations for non-coherent devices use what the Arm architecture calls |
| * "Normal non-cacheable" memory, which permits speculation, unaligned accesses |
| * and merging of writes. This is different from "Device-nGnR[nE]" memory which |
| * is intended for MMIO and thus forbids speculation, preserves access size, |
| * requires strict alignment and can also force write responses to come from the |
| * endpoint. |
| */ |
| #define pgprot_dmacoherent(prot) \ |
| __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ |
| PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) |
| |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| |
| #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT)) |
| |
| #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ |
| PMD_TYPE_TABLE) |
| #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ |
| PMD_TYPE_SECT) |
| #define pmd_leaf(pmd) pmd_sect(pmd) |
| |
| #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 |
| static inline bool pud_sect(pud_t pud) { return false; } |
| static inline bool pud_table(pud_t pud) { return true; } |
| #else |
| #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ |
| PUD_TYPE_SECT) |
| #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ |
| PUD_TYPE_TABLE) |
| #endif |
| |
| extern pgd_t init_pg_dir[PTRS_PER_PGD]; |
| extern pgd_t init_pg_end[]; |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; |
| extern pgd_t idmap_pg_end[]; |
| extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; |
| |
| extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); |
| |
| static inline bool in_swapper_pgdir(void *addr) |
| { |
| return ((unsigned long)addr & PAGE_MASK) == |
| ((unsigned long)swapper_pg_dir & PAGE_MASK); |
| } |
| |
| static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| #ifdef __PAGETABLE_PMD_FOLDED |
| if (in_swapper_pgdir(pmdp)) { |
| set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); |
| return; |
| } |
| #endif /* __PAGETABLE_PMD_FOLDED */ |
| |
| WRITE_ONCE(*pmdp, pmd); |
| |
| if (pmd_valid(pmd)) { |
| dsb(ishst); |
| isb(); |
| } |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| set_pmd(pmdp, __pmd(0)); |
| } |
| |
| static inline phys_addr_t pmd_page_paddr(pmd_t pmd) |
| { |
| return __pmd_to_phys(pmd); |
| } |
| |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| return (unsigned long)__va(pmd_page_paddr(pmd)); |
| } |
| |
| /* Find an entry in the third-level page table. */ |
| #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) |
| |
| #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) |
| #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) |
| #define pte_clear_fixmap() clear_fixmap(FIX_PTE) |
| |
| #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) |
| |
| /* use ONLY for statically allocated translation tables */ |
| #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) |
| |
| #if CONFIG_PGTABLE_LEVELS > 2 |
| |
| #define pmd_ERROR(e) \ |
| pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) |
| |
| #define pud_none(pud) (!pud_val(pud)) |
| #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT)) |
| #define pud_present(pud) pte_present(pud_pte(pud)) |
| #define pud_leaf(pud) pud_sect(pud) |
| #define pud_valid(pud) pte_valid(pud_pte(pud)) |
| |
| static inline void set_pud(pud_t *pudp, pud_t pud) |
| { |
| #ifdef __PAGETABLE_PUD_FOLDED |
| if (in_swapper_pgdir(pudp)) { |
| set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); |
| return; |
| } |
| #endif /* __PAGETABLE_PUD_FOLDED */ |
| |
| WRITE_ONCE(*pudp, pud); |
| |
| if (pud_valid(pud)) { |
| dsb(ishst); |
| isb(); |
| } |
| } |
| |
| static inline void pud_clear(pud_t *pudp) |
| { |
| set_pud(pudp, __pud(0)); |
| } |
| |
| static inline phys_addr_t pud_page_paddr(pud_t pud) |
| { |
| return __pud_to_phys(pud); |
| } |
| |
| static inline unsigned long pud_page_vaddr(pud_t pud) |
| { |
| return (unsigned long)__va(pud_page_paddr(pud)); |
| } |
| |
| /* Find an entry in the second-level page table. */ |
| #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) |
| |
| #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) |
| #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) |
| #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) |
| |
| #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) |
| |
| /* use ONLY for statically allocated translation tables */ |
| #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) |
| |
| #else |
| |
| #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) |
| |
| /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ |
| #define pmd_set_fixmap(addr) NULL |
| #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) |
| #define pmd_clear_fixmap() |
| |
| #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) |
| |
| #endif /* CONFIG_PGTABLE_LEVELS > 2 */ |
| |
| #if CONFIG_PGTABLE_LEVELS > 3 |
| |
| #define pud_ERROR(e) \ |
| pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) |
| |
| #define p4d_none(p4d) (!p4d_val(p4d)) |
| #define p4d_bad(p4d) (!(p4d_val(p4d) & 2)) |
| #define p4d_present(p4d) (p4d_val(p4d)) |
| |
| static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) |
| { |
| if (in_swapper_pgdir(p4dp)) { |
| set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); |
| return; |
| } |
| |
| WRITE_ONCE(*p4dp, p4d); |
| dsb(ishst); |
| isb(); |
| } |
| |
| static inline void p4d_clear(p4d_t *p4dp) |
| { |
| set_p4d(p4dp, __p4d(0)); |
| } |
| |
| static inline phys_addr_t p4d_page_paddr(p4d_t p4d) |
| { |
| return __p4d_to_phys(p4d); |
| } |
| |
| static inline unsigned long p4d_page_vaddr(p4d_t p4d) |
| { |
| return (unsigned long)__va(p4d_page_paddr(p4d)); |
| } |
| |
| /* Find an entry in the frst-level page table. */ |
| #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) |
| |
| #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) |
| #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr)) |
| #define pud_clear_fixmap() clear_fixmap(FIX_PUD) |
| |
| #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) |
| |
| /* use ONLY for statically allocated translation tables */ |
| #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) |
| |
| #else |
| |
| #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) |
| #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) |
| |
| /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ |
| #define pud_set_fixmap(addr) NULL |
| #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) |
| #define pud_clear_fixmap() |
| |
| #define pud_offset_kimg(dir,addr) ((pud_t *)dir) |
| |
| #endif /* CONFIG_PGTABLE_LEVELS > 3 */ |
| |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) |
| #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| /* |
| * Normal and Normal-Tagged are two different memory types and indices |
| * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. |
| */ |
| const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | |
| PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP | |
| PTE_ATTRINDX_MASK; |
| /* preserve the hardware dirty information */ |
| if (pte_hw_dirty(pte)) |
| pte = pte_mkdirty(pte); |
| pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); |
| return pte; |
| } |
| |
| static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) |
| { |
| return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| extern int ptep_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, |
| pte_t entry, int dirty); |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| static inline int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty) |
| { |
| return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); |
| } |
| |
| static inline int pud_devmap(pud_t pud) |
| { |
| return 0; |
| } |
| |
| static inline int pgd_devmap(pgd_t pgd) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Atomic pte/pmd modifications. |
| */ |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int __ptep_test_and_clear_young(pte_t *ptep) |
| { |
| pte_t old_pte, pte; |
| |
| pte = READ_ONCE(*ptep); |
| do { |
| old_pte = pte; |
| pte = pte_mkold(pte); |
| pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), |
| pte_val(old_pte), pte_val(pte)); |
| } while (pte_val(pte) != pte_val(old_pte)); |
| |
| return pte_young(pte); |
| } |
| |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| return __ptep_test_and_clear_young(ptep); |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| static inline int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| int young = ptep_test_and_clear_young(vma, address, ptep); |
| |
| if (young) { |
| /* |
| * We can elide the trailing DSB here since the worst that can |
| * happen is that a CPU continues to use the young entry in its |
| * TLB and we mistakenly reclaim the associated page. The |
| * window for such an event is bounded by the next |
| * context-switch, which provides a DSB to complete the TLB |
| * invalidation. |
| */ |
| flush_tlb_page_nosync(vma, address); |
| } |
| |
| return young; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pmd_t *pmdp) |
| { |
| return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| return __pte(xchg_relaxed(&pte_val(*ptep), 0)); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * ptep_set_wrprotect - mark read-only while trasferring potential hardware |
| * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. |
| */ |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| { |
| pte_t old_pte, pte; |
| |
| pte = READ_ONCE(*ptep); |
| do { |
| old_pte = pte; |
| /* |
| * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY |
| * clear), set the PTE_DIRTY bit. |
| */ |
| if (pte_hw_dirty(pte)) |
| pte = pte_mkdirty(pte); |
| pte = pte_wrprotect(pte); |
| pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), |
| pte_val(old_pte), pte_val(pte)); |
| } while (pte_val(pte) != pte_val(old_pte)); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| ptep_set_wrprotect(mm, address, (pte_t *)pmdp); |
| } |
| |
| #define pmdp_establish pmdp_establish |
| static inline pmd_t pmdp_establish(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| { |
| return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); |
| } |
| #endif |
| |
| /* |
| * Encode and decode a swap entry: |
| * bits 0-1: present (must be zero) |
| * bits 2-7: swap type |
| * bits 8-57: swap offset |
| * bit 58: PTE_PROT_NONE (must be zero) |
| */ |
| #define __SWP_TYPE_SHIFT 2 |
| #define __SWP_TYPE_BITS 6 |
| #define __SWP_OFFSET_BITS 50 |
| #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) |
| #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) |
| #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) |
| |
| #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) |
| #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) |
| |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) |
| #define __swp_entry_to_pmd(swp) __pmd((swp).val) |
| #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ |
| |
| /* |
| * Ensure that there are not more swap files than can be encoded in the kernel |
| * PTEs. |
| */ |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) |
| |
| extern int kern_addr_valid(unsigned long addr); |
| |
| #ifdef CONFIG_ARM64_MTE |
| |
| #define __HAVE_ARCH_PREPARE_TO_SWAP |
| static inline int arch_prepare_to_swap(struct page *page) |
| { |
| if (system_supports_mte()) |
| return mte_save_tags(page); |
| return 0; |
| } |
| |
| #define __HAVE_ARCH_SWAP_INVALIDATE |
| static inline void arch_swap_invalidate_page(int type, pgoff_t offset) |
| { |
| if (system_supports_mte()) |
| mte_invalidate_tags(type, offset); |
| } |
| |
| static inline void arch_swap_invalidate_area(int type) |
| { |
| if (system_supports_mte()) |
| mte_invalidate_tags_area(type); |
| } |
| |
| #define __HAVE_ARCH_SWAP_RESTORE |
| static inline void arch_swap_restore(swp_entry_t entry, struct page *page) |
| { |
| if (system_supports_mte() && mte_restore_tags(entry, page)) |
| set_bit(PG_mte_tagged, &page->flags); |
| } |
| |
| #endif /* CONFIG_ARM64_MTE */ |
| |
| /* |
| * On AArch64, the cache coherency is handled via the set_pte_at() function. |
| */ |
| static inline void update_mmu_cache(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep) |
| { |
| /* |
| * We don't do anything here, so there's a very small chance of |
| * us retaking a user fault which we just fixed up. The alternative |
| * is doing a dsb(ishst), but that penalises the fastpath. |
| */ |
| } |
| |
| #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) |
| |
| #ifdef CONFIG_ARM64_PA_BITS_52 |
| #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) |
| #else |
| #define phys_to_ttbr(addr) (addr) |
| #endif |
| |
| /* |
| * On arm64 without hardware Access Flag, copying from user will fail because |
| * the pte is old and cannot be marked young. So we always end up with zeroed |
| * page after fork() + CoW for pfn mappings. We don't always have a |
| * hardware-managed access flag on arm64. |
| */ |
| static inline bool arch_faults_on_old_pte(void) |
| { |
| WARN_ON(preemptible()); |
| |
| return !cpu_has_hw_af(); |
| } |
| #define arch_faults_on_old_pte arch_faults_on_old_pte |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ASM_PGTABLE_H */ |