| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. |
| * No bombay mix was harmed in the writing of this file. |
| * |
| * Copyright (C) 2020 Google LLC |
| * Author: Will Deacon <will@kernel.org> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <asm/kvm_pgtable.h> |
| |
| #define KVM_PGTABLE_MAX_LEVELS 4U |
| |
| #define KVM_PTE_VALID BIT(0) |
| |
| #define KVM_PTE_TYPE BIT(1) |
| #define KVM_PTE_TYPE_BLOCK 0 |
| #define KVM_PTE_TYPE_PAGE 1 |
| #define KVM_PTE_TYPE_TABLE 1 |
| |
| #define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT) |
| #define KVM_PTE_ADDR_51_48 GENMASK(15, 12) |
| |
| #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) |
| |
| #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) |
| #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) |
| #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 |
| #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 |
| #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) |
| #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 |
| #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) |
| |
| #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) |
| #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) |
| #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) |
| #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) |
| #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 |
| #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) |
| |
| #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) |
| |
| #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) |
| |
| #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) |
| |
| struct kvm_pgtable_walk_data { |
| struct kvm_pgtable *pgt; |
| struct kvm_pgtable_walker *walker; |
| |
| u64 addr; |
| u64 end; |
| }; |
| |
| static u64 kvm_granule_shift(u32 level) |
| { |
| /* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */ |
| return ARM64_HW_PGTABLE_LEVEL_SHIFT(level); |
| } |
| |
| static u64 kvm_granule_size(u32 level) |
| { |
| return BIT(kvm_granule_shift(level)); |
| } |
| |
| static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) |
| { |
| u64 granule = kvm_granule_size(level); |
| |
| /* |
| * Reject invalid block mappings and don't bother with 4TB mappings for |
| * 52-bit PAs. |
| */ |
| if (level == 0 || (PAGE_SIZE != SZ_4K && level == 1)) |
| return false; |
| |
| if (granule > (end - addr)) |
| return false; |
| |
| return IS_ALIGNED(addr, granule) && IS_ALIGNED(phys, granule); |
| } |
| |
| static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) |
| { |
| u64 shift = kvm_granule_shift(level); |
| u64 mask = BIT(PAGE_SHIFT - 3) - 1; |
| |
| return (data->addr >> shift) & mask; |
| } |
| |
| static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) |
| { |
| u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ |
| u64 mask = BIT(pgt->ia_bits) - 1; |
| |
| return (addr & mask) >> shift; |
| } |
| |
| static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) |
| { |
| return __kvm_pgd_page_idx(data->pgt, data->addr); |
| } |
| |
| static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) |
| { |
| struct kvm_pgtable pgt = { |
| .ia_bits = ia_bits, |
| .start_level = start_level, |
| }; |
| |
| return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; |
| } |
| |
| static bool kvm_pte_valid(kvm_pte_t pte) |
| { |
| return pte & KVM_PTE_VALID; |
| } |
| |
| static bool kvm_pte_table(kvm_pte_t pte, u32 level) |
| { |
| if (level == KVM_PGTABLE_MAX_LEVELS - 1) |
| return false; |
| |
| if (!kvm_pte_valid(pte)) |
| return false; |
| |
| return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; |
| } |
| |
| static u64 kvm_pte_to_phys(kvm_pte_t pte) |
| { |
| u64 pa = pte & KVM_PTE_ADDR_MASK; |
| |
| if (PAGE_SHIFT == 16) |
| pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48; |
| |
| return pa; |
| } |
| |
| static kvm_pte_t kvm_phys_to_pte(u64 pa) |
| { |
| kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK; |
| |
| if (PAGE_SHIFT == 16) |
| pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48); |
| |
| return pte; |
| } |
| |
| static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte) |
| { |
| return __va(kvm_pte_to_phys(pte)); |
| } |
| |
| static void kvm_set_invalid_pte(kvm_pte_t *ptep) |
| { |
| kvm_pte_t pte = *ptep; |
| WRITE_ONCE(*ptep, pte & ~KVM_PTE_VALID); |
| } |
| |
| static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp) |
| { |
| kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(__pa(childp)); |
| |
| pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); |
| pte |= KVM_PTE_VALID; |
| |
| WARN_ON(kvm_pte_valid(old)); |
| smp_store_release(ptep, pte); |
| } |
| |
| static bool kvm_set_valid_leaf_pte(kvm_pte_t *ptep, u64 pa, kvm_pte_t attr, |
| u32 level) |
| { |
| kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(pa); |
| u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : |
| KVM_PTE_TYPE_BLOCK; |
| |
| pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); |
| pte |= FIELD_PREP(KVM_PTE_TYPE, type); |
| pte |= KVM_PTE_VALID; |
| |
| /* Tolerate KVM recreating the exact same mapping. */ |
| if (kvm_pte_valid(old)) |
| return old == pte; |
| |
| smp_store_release(ptep, pte); |
| return true; |
| } |
| |
| static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, |
| u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag) |
| { |
| struct kvm_pgtable_walker *walker = data->walker; |
| return walker->cb(addr, data->end, level, ptep, flag, walker->arg); |
| } |
| |
| static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *pgtable, u32 level); |
| |
| static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *ptep, u32 level) |
| { |
| int ret = 0; |
| u64 addr = data->addr; |
| kvm_pte_t *childp, pte = *ptep; |
| bool table = kvm_pte_table(pte, level); |
| enum kvm_pgtable_walk_flags flags = data->walker->flags; |
| |
| if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_TABLE_PRE); |
| } |
| |
| if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_LEAF); |
| pte = *ptep; |
| table = kvm_pte_table(pte, level); |
| } |
| |
| if (ret) |
| goto out; |
| |
| if (!table) { |
| data->addr += kvm_granule_size(level); |
| goto out; |
| } |
| |
| childp = kvm_pte_follow(pte); |
| ret = __kvm_pgtable_walk(data, childp, level + 1); |
| if (ret) |
| goto out; |
| |
| if (flags & KVM_PGTABLE_WALK_TABLE_POST) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_TABLE_POST); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *pgtable, u32 level) |
| { |
| u32 idx; |
| int ret = 0; |
| |
| if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) |
| return -EINVAL; |
| |
| for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { |
| kvm_pte_t *ptep = &pgtable[idx]; |
| |
| if (data->addr >= data->end) |
| break; |
| |
| ret = __kvm_pgtable_visit(data, ptep, level); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) |
| { |
| u32 idx; |
| int ret = 0; |
| struct kvm_pgtable *pgt = data->pgt; |
| u64 limit = BIT(pgt->ia_bits); |
| |
| if (data->addr > limit || data->end > limit) |
| return -ERANGE; |
| |
| if (!pgt->pgd) |
| return -EINVAL; |
| |
| for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { |
| kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; |
| |
| ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| struct kvm_pgtable_walker *walker) |
| { |
| struct kvm_pgtable_walk_data walk_data = { |
| .pgt = pgt, |
| .addr = ALIGN_DOWN(addr, PAGE_SIZE), |
| .end = PAGE_ALIGN(walk_data.addr + size), |
| .walker = walker, |
| }; |
| |
| return _kvm_pgtable_walk(&walk_data); |
| } |
| |
| struct hyp_map_data { |
| u64 phys; |
| kvm_pte_t attr; |
| }; |
| |
| static int hyp_map_set_prot_attr(enum kvm_pgtable_prot prot, |
| struct hyp_map_data *data) |
| { |
| bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; |
| kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); |
| u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; |
| u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : |
| KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; |
| |
| if (!(prot & KVM_PGTABLE_PROT_R)) |
| return -EINVAL; |
| |
| if (prot & KVM_PGTABLE_PROT_X) { |
| if (prot & KVM_PGTABLE_PROT_W) |
| return -EINVAL; |
| |
| if (device) |
| return -EINVAL; |
| } else { |
| attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; |
| } |
| |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); |
| attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; |
| data->attr = attr; |
| return 0; |
| } |
| |
| static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, struct hyp_map_data *data) |
| { |
| u64 granule = kvm_granule_size(level), phys = data->phys; |
| |
| if (!kvm_block_mapping_supported(addr, end, phys, level)) |
| return false; |
| |
| WARN_ON(!kvm_set_valid_leaf_pte(ptep, phys, data->attr, level)); |
| data->phys += granule; |
| return true; |
| } |
| |
| static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| kvm_pte_t *childp; |
| |
| if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) |
| return 0; |
| |
| if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| return -EINVAL; |
| |
| childp = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL); |
| if (!childp) |
| return -ENOMEM; |
| |
| kvm_set_table_pte(ptep, childp); |
| return 0; |
| } |
| |
| int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, |
| enum kvm_pgtable_prot prot) |
| { |
| int ret; |
| struct hyp_map_data map_data = { |
| .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = hyp_map_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = &map_data, |
| }; |
| |
| ret = hyp_map_set_prot_attr(prot, &map_data); |
| if (ret) |
| return ret; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| dsb(ishst); |
| isb(); |
| return ret; |
| } |
| |
| int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits) |
| { |
| u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); |
| |
| pgt->pgd = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL); |
| if (!pgt->pgd) |
| return -ENOMEM; |
| |
| pgt->ia_bits = va_bits; |
| pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; |
| pgt->mmu = NULL; |
| return 0; |
| } |
| |
| static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| free_page((unsigned long)kvm_pte_follow(*ptep)); |
| return 0; |
| } |
| |
| void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = hyp_free_walker, |
| .flags = KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| free_page((unsigned long)pgt->pgd); |
| pgt->pgd = NULL; |
| } |
| |
| struct stage2_map_data { |
| u64 phys; |
| kvm_pte_t attr; |
| |
| kvm_pte_t *anchor; |
| |
| struct kvm_s2_mmu *mmu; |
| struct kvm_mmu_memory_cache *memcache; |
| }; |
| |
| static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot, |
| struct stage2_map_data *data) |
| { |
| bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) : |
| PAGE_S2_MEMATTR(NORMAL); |
| u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; |
| |
| if (!(prot & KVM_PGTABLE_PROT_X)) |
| attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; |
| else if (device) |
| return -EINVAL; |
| |
| if (prot & KVM_PGTABLE_PROT_R) |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| |
| if (prot & KVM_PGTABLE_PROT_W) |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| data->attr = attr; |
| return 0; |
| } |
| |
| static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| u64 granule = kvm_granule_size(level), phys = data->phys; |
| |
| if (!kvm_block_mapping_supported(addr, end, phys, level)) |
| return false; |
| |
| if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level)) |
| goto out; |
| |
| /* There's an existing valid leaf entry, so perform break-before-make */ |
| kvm_set_invalid_pte(ptep); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); |
| kvm_set_valid_leaf_pte(ptep, phys, data->attr, level); |
| out: |
| data->phys += granule; |
| return true; |
| } |
| |
| static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| if (data->anchor) |
| return 0; |
| |
| if (!kvm_block_mapping_supported(addr, end, data->phys, level)) |
| return 0; |
| |
| kvm_set_invalid_pte(ptep); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, 0); |
| data->anchor = ptep; |
| return 0; |
| } |
| |
| static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| kvm_pte_t *childp, pte = *ptep; |
| struct page *page = virt_to_page(ptep); |
| |
| if (data->anchor) { |
| if (kvm_pte_valid(pte)) |
| put_page(page); |
| |
| return 0; |
| } |
| |
| if (stage2_map_walker_try_leaf(addr, end, level, ptep, data)) |
| goto out_get_page; |
| |
| if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| return -EINVAL; |
| |
| if (!data->memcache) |
| return -ENOMEM; |
| |
| childp = kvm_mmu_memory_cache_alloc(data->memcache); |
| if (!childp) |
| return -ENOMEM; |
| |
| /* |
| * If we've run into an existing block mapping then replace it with |
| * a table. Accesses beyond 'end' that fall within the new table |
| * will be mapped lazily. |
| */ |
| if (kvm_pte_valid(pte)) { |
| kvm_set_invalid_pte(ptep); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); |
| put_page(page); |
| } |
| |
| kvm_set_table_pte(ptep, childp); |
| |
| out_get_page: |
| get_page(page); |
| return 0; |
| } |
| |
| static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| int ret = 0; |
| |
| if (!data->anchor) |
| return 0; |
| |
| free_page((unsigned long)kvm_pte_follow(*ptep)); |
| put_page(virt_to_page(ptep)); |
| |
| if (data->anchor == ptep) { |
| data->anchor = NULL; |
| ret = stage2_map_walk_leaf(addr, end, level, ptep, data); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This is a little fiddly, as we use all three of the walk flags. The idea |
| * is that the TABLE_PRE callback runs for table entries on the way down, |
| * looking for table entries which we could conceivably replace with a |
| * block entry for this mapping. If it finds one, then it sets the 'anchor' |
| * field in 'struct stage2_map_data' to point at the table entry, before |
| * clearing the entry to zero and descending into the now detached table. |
| * |
| * The behaviour of the LEAF callback then depends on whether or not the |
| * anchor has been set. If not, then we're not using a block mapping higher |
| * up the table and we perform the mapping at the existing leaves instead. |
| * If, on the other hand, the anchor _is_ set, then we drop references to |
| * all valid leaves so that the pages beneath the anchor can be freed. |
| * |
| * Finally, the TABLE_POST callback does nothing if the anchor has not |
| * been set, but otherwise frees the page-table pages while walking back up |
| * the page-table, installing the block entry when it revisits the anchor |
| * pointer and clearing the anchor to NULL. |
| */ |
| static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| struct stage2_map_data *data = arg; |
| |
| switch (flag) { |
| case KVM_PGTABLE_WALK_TABLE_PRE: |
| return stage2_map_walk_table_pre(addr, end, level, ptep, data); |
| case KVM_PGTABLE_WALK_LEAF: |
| return stage2_map_walk_leaf(addr, end, level, ptep, data); |
| case KVM_PGTABLE_WALK_TABLE_POST: |
| return stage2_map_walk_table_post(addr, end, level, ptep, data); |
| } |
| |
| return -EINVAL; |
| } |
| |
| int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| u64 phys, enum kvm_pgtable_prot prot, |
| struct kvm_mmu_memory_cache *mc) |
| { |
| int ret; |
| struct stage2_map_data map_data = { |
| .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| .mmu = pgt->mmu, |
| .memcache = mc, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_map_walker, |
| .flags = KVM_PGTABLE_WALK_TABLE_PRE | |
| KVM_PGTABLE_WALK_LEAF | |
| KVM_PGTABLE_WALK_TABLE_POST, |
| .arg = &map_data, |
| }; |
| |
| ret = stage2_map_set_prot_attr(prot, &map_data); |
| if (ret) |
| return ret; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| dsb(ishst); |
| return ret; |
| } |
| |
| static void stage2_flush_dcache(void *addr, u64 size) |
| { |
| if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| return; |
| |
| __flush_dcache_area(addr, size); |
| } |
| |
| static bool stage2_pte_cacheable(kvm_pte_t pte) |
| { |
| u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; |
| return memattr == PAGE_S2_MEMATTR(NORMAL); |
| } |
| |
| static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| struct kvm_s2_mmu *mmu = arg; |
| kvm_pte_t pte = *ptep, *childp = NULL; |
| bool need_flush = false; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| if (kvm_pte_table(pte, level)) { |
| childp = kvm_pte_follow(pte); |
| |
| if (page_count(virt_to_page(childp)) != 1) |
| return 0; |
| } else if (stage2_pte_cacheable(pte)) { |
| need_flush = true; |
| } |
| |
| /* |
| * This is similar to the map() path in that we unmap the entire |
| * block entry and rely on the remaining portions being faulted |
| * back lazily. |
| */ |
| kvm_set_invalid_pte(ptep); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); |
| put_page(virt_to_page(ptep)); |
| |
| if (need_flush) { |
| stage2_flush_dcache(kvm_pte_follow(pte), |
| kvm_granule_size(level)); |
| } |
| |
| if (childp) |
| free_page((unsigned long)childp); |
| |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_unmap_walker, |
| .arg = pgt->mmu, |
| .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| struct stage2_attr_data { |
| kvm_pte_t attr_set; |
| kvm_pte_t attr_clr; |
| kvm_pte_t pte; |
| u32 level; |
| }; |
| |
| static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| struct stage2_attr_data *data = arg; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| data->level = level; |
| data->pte = pte; |
| pte &= ~data->attr_clr; |
| pte |= data->attr_set; |
| |
| /* |
| * We may race with the CPU trying to set the access flag here, |
| * but worst-case the access flag update gets lost and will be |
| * set on the next access instead. |
| */ |
| if (data->pte != pte) |
| WRITE_ONCE(*ptep, pte); |
| |
| return 0; |
| } |
| |
| static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, |
| u64 size, kvm_pte_t attr_set, |
| kvm_pte_t attr_clr, kvm_pte_t *orig_pte, |
| u32 *level) |
| { |
| int ret; |
| kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; |
| struct stage2_attr_data data = { |
| .attr_set = attr_set & attr_mask, |
| .attr_clr = attr_clr & attr_mask, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_attr_walker, |
| .arg = &data, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| }; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| if (ret) |
| return ret; |
| |
| if (orig_pte) |
| *orig_pte = data.pte; |
| |
| if (level) |
| *level = data.level; |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| return stage2_update_leaf_attrs(pgt, addr, size, 0, |
| KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, |
| NULL, NULL); |
| } |
| |
| kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, |
| &pte, NULL); |
| dsb(ishst); |
| return pte; |
| } |
| |
| kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, |
| &pte, NULL); |
| /* |
| * "But where's the TLBI?!", you scream. |
| * "Over in the core code", I sigh. |
| * |
| * See the '->clear_flush_young()' callback on the KVM mmu notifier. |
| */ |
| return pte; |
| } |
| |
| bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); |
| return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| } |
| |
| int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, |
| enum kvm_pgtable_prot prot) |
| { |
| int ret; |
| u32 level; |
| kvm_pte_t set = 0, clr = 0; |
| |
| if (prot & KVM_PGTABLE_PROT_R) |
| set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| |
| if (prot & KVM_PGTABLE_PROT_W) |
| set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| |
| if (prot & KVM_PGTABLE_PROT_X) |
| clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; |
| |
| ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); |
| if (!ret) |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); |
| return ret; |
| } |
| |
| static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| |
| if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pte)) |
| return 0; |
| |
| stage2_flush_dcache(kvm_pte_follow(pte), kvm_granule_size(level)); |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_flush_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| }; |
| |
| if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| return 0; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm) |
| { |
| size_t pgd_sz; |
| u64 vtcr = kvm->arch.vtcr; |
| u32 ia_bits = VTCR_EL2_IPA(vtcr); |
| u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; |
| |
| pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; |
| pgt->pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!pgt->pgd) |
| return -ENOMEM; |
| |
| pgt->ia_bits = ia_bits; |
| pgt->start_level = start_level; |
| pgt->mmu = &kvm->arch.mmu; |
| |
| /* Ensure zeroed PGD pages are visible to the hardware walker */ |
| dsb(ishst); |
| return 0; |
| } |
| |
| static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| put_page(virt_to_page(ptep)); |
| |
| if (kvm_pte_table(pte, level)) |
| free_page((unsigned long)kvm_pte_follow(pte)); |
| |
| return 0; |
| } |
| |
| void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) |
| { |
| size_t pgd_sz; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_free_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF | |
| KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; |
| free_pages_exact(pgt->pgd, pgd_sz); |
| pgt->pgd = NULL; |
| } |