| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Keith Packard <keithp@keithp.com> |
| * |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_dp_helper.h> |
| #include <drm/drm_simple_kms_helper.h> |
| |
| #include "gma_display.h" |
| #include "psb_drv.h" |
| #include "psb_intel_drv.h" |
| #include "psb_intel_reg.h" |
| |
| /** |
| * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp |
| * aux algorithm |
| * @running: set by the algo indicating whether an i2c is ongoing or whether |
| * the i2c bus is quiescent |
| * @address: i2c target address for the currently ongoing transfer |
| * @aux_ch: driver callback to transfer a single byte of the i2c payload |
| */ |
| struct i2c_algo_dp_aux_data { |
| bool running; |
| u16 address; |
| int (*aux_ch) (struct i2c_adapter *adapter, |
| int mode, uint8_t write_byte, |
| uint8_t *read_byte); |
| }; |
| |
| /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */ |
| static int |
| i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode, |
| uint8_t write_byte, uint8_t *read_byte) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| int ret; |
| |
| ret = (*algo_data->aux_ch)(adapter, mode, |
| write_byte, read_byte); |
| return ret; |
| } |
| |
| /* |
| * I2C over AUX CH |
| */ |
| |
| /* |
| * Send the address. If the I2C link is running, this 'restarts' |
| * the connection with the new address, this is used for doing |
| * a write followed by a read (as needed for DDC) |
| */ |
| static int |
| i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| int mode = MODE_I2C_START; |
| int ret; |
| |
| if (reading) |
| mode |= MODE_I2C_READ; |
| else |
| mode |= MODE_I2C_WRITE; |
| algo_data->address = address; |
| algo_data->running = true; |
| ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); |
| return ret; |
| } |
| |
| /* |
| * Stop the I2C transaction. This closes out the link, sending |
| * a bare address packet with the MOT bit turned off |
| */ |
| static void |
| i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| int mode = MODE_I2C_STOP; |
| |
| if (reading) |
| mode |= MODE_I2C_READ; |
| else |
| mode |= MODE_I2C_WRITE; |
| if (algo_data->running) { |
| (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); |
| algo_data->running = false; |
| } |
| } |
| |
| /* |
| * Write a single byte to the current I2C address, the |
| * the I2C link must be running or this returns -EIO |
| */ |
| static int |
| i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| int ret; |
| |
| if (!algo_data->running) |
| return -EIO; |
| |
| ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL); |
| return ret; |
| } |
| |
| /* |
| * Read a single byte from the current I2C address, the |
| * I2C link must be running or this returns -EIO |
| */ |
| static int |
| i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| int ret; |
| |
| if (!algo_data->running) |
| return -EIO; |
| |
| ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret); |
| return ret; |
| } |
| |
| static int |
| i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter, |
| struct i2c_msg *msgs, |
| int num) |
| { |
| int ret = 0; |
| bool reading = false; |
| int m; |
| int b; |
| |
| for (m = 0; m < num; m++) { |
| u16 len = msgs[m].len; |
| u8 *buf = msgs[m].buf; |
| reading = (msgs[m].flags & I2C_M_RD) != 0; |
| ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading); |
| if (ret < 0) |
| break; |
| if (reading) { |
| for (b = 0; b < len; b++) { |
| ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]); |
| if (ret < 0) |
| break; |
| } |
| } else { |
| for (b = 0; b < len; b++) { |
| ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]); |
| if (ret < 0) |
| break; |
| } |
| } |
| if (ret < 0) |
| break; |
| } |
| if (ret >= 0) |
| ret = num; |
| i2c_algo_dp_aux_stop(adapter, reading); |
| DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret); |
| return ret; |
| } |
| |
| static u32 |
| i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | |
| I2C_FUNC_SMBUS_READ_BLOCK_DATA | |
| I2C_FUNC_SMBUS_BLOCK_PROC_CALL | |
| I2C_FUNC_10BIT_ADDR; |
| } |
| |
| static const struct i2c_algorithm i2c_dp_aux_algo = { |
| .master_xfer = i2c_algo_dp_aux_xfer, |
| .functionality = i2c_algo_dp_aux_functionality, |
| }; |
| |
| static void |
| i2c_dp_aux_reset_bus(struct i2c_adapter *adapter) |
| { |
| (void) i2c_algo_dp_aux_address(adapter, 0, false); |
| (void) i2c_algo_dp_aux_stop(adapter, false); |
| } |
| |
| static int |
| i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter) |
| { |
| adapter->algo = &i2c_dp_aux_algo; |
| adapter->retries = 3; |
| i2c_dp_aux_reset_bus(adapter); |
| return 0; |
| } |
| |
| /* |
| * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to |
| * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon. |
| */ |
| static int |
| i2c_dp_aux_add_bus(struct i2c_adapter *adapter) |
| { |
| int error; |
| |
| error = i2c_dp_aux_prepare_bus(adapter); |
| if (error) |
| return error; |
| error = i2c_add_adapter(adapter); |
| return error; |
| } |
| |
| #define _wait_for(COND, MS, W) ({ \ |
| unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ |
| int ret__ = 0; \ |
| while (! (COND)) { \ |
| if (time_after(jiffies, timeout__)) { \ |
| ret__ = -ETIMEDOUT; \ |
| break; \ |
| } \ |
| if (W && !in_dbg_master()) msleep(W); \ |
| } \ |
| ret__; \ |
| }) |
| |
| #define wait_for(COND, MS) _wait_for(COND, MS, 1) |
| |
| #define DP_LINK_CHECK_TIMEOUT (10 * 1000) |
| |
| #define DP_LINK_CONFIGURATION_SIZE 9 |
| |
| #define CDV_FAST_LINK_TRAIN 1 |
| |
| struct cdv_intel_dp { |
| uint32_t output_reg; |
| uint32_t DP; |
| uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; |
| bool has_audio; |
| int force_audio; |
| uint32_t color_range; |
| uint8_t link_bw; |
| uint8_t lane_count; |
| uint8_t dpcd[4]; |
| struct gma_encoder *encoder; |
| struct i2c_adapter adapter; |
| struct i2c_algo_dp_aux_data algo; |
| uint8_t train_set[4]; |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| int panel_power_up_delay; |
| int panel_power_down_delay; |
| int panel_power_cycle_delay; |
| int backlight_on_delay; |
| int backlight_off_delay; |
| struct drm_display_mode *panel_fixed_mode; /* for eDP */ |
| bool panel_on; |
| }; |
| |
| struct ddi_regoff { |
| uint32_t PreEmph1; |
| uint32_t PreEmph2; |
| uint32_t VSwing1; |
| uint32_t VSwing2; |
| uint32_t VSwing3; |
| uint32_t VSwing4; |
| uint32_t VSwing5; |
| }; |
| |
| static struct ddi_regoff ddi_DP_train_table[] = { |
| {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154, |
| .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150, |
| .VSwing5 = 0x8158,}, |
| {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254, |
| .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250, |
| .VSwing5 = 0x8258,}, |
| }; |
| |
| static uint32_t dp_vswing_premph_table[] = { |
| 0x55338954, 0x4000, |
| 0x554d8954, 0x2000, |
| 0x55668954, 0, |
| 0x559ac0d4, 0x6000, |
| }; |
| /** |
| * is_edp - is the given port attached to an eDP panel (either CPU or PCH) |
| * @intel_dp: DP struct |
| * |
| * If a CPU or PCH DP output is attached to an eDP panel, this function |
| * will return true, and false otherwise. |
| */ |
| static bool is_edp(struct gma_encoder *encoder) |
| { |
| return encoder->type == INTEL_OUTPUT_EDP; |
| } |
| |
| |
| static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder); |
| static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder); |
| static void cdv_intel_dp_link_down(struct gma_encoder *encoder); |
| |
| static int |
| cdv_intel_dp_max_lane_count(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int max_lane_count = 4; |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { |
| max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; |
| switch (max_lane_count) { |
| case 1: case 2: case 4: |
| break; |
| default: |
| max_lane_count = 4; |
| } |
| } |
| return max_lane_count; |
| } |
| |
| static int |
| cdv_intel_dp_max_link_bw(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; |
| |
| switch (max_link_bw) { |
| case DP_LINK_BW_1_62: |
| case DP_LINK_BW_2_7: |
| break; |
| default: |
| max_link_bw = DP_LINK_BW_1_62; |
| break; |
| } |
| return max_link_bw; |
| } |
| |
| static int |
| cdv_intel_dp_link_clock(uint8_t link_bw) |
| { |
| if (link_bw == DP_LINK_BW_2_7) |
| return 270000; |
| else |
| return 162000; |
| } |
| |
| static int |
| cdv_intel_dp_link_required(int pixel_clock, int bpp) |
| { |
| return (pixel_clock * bpp + 7) / 8; |
| } |
| |
| static int |
| cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes) |
| { |
| return (max_link_clock * max_lanes * 19) / 20; |
| } |
| |
| static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| u32 pp; |
| |
| if (intel_dp->panel_on) { |
| DRM_DEBUG_KMS("Skip VDD on because of panel on\n"); |
| return; |
| } |
| DRM_DEBUG_KMS("\n"); |
| |
| pp = REG_READ(PP_CONTROL); |
| |
| pp |= EDP_FORCE_VDD; |
| REG_WRITE(PP_CONTROL, pp); |
| REG_READ(PP_CONTROL); |
| msleep(intel_dp->panel_power_up_delay); |
| } |
| |
| static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| u32 pp; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = REG_READ(PP_CONTROL); |
| |
| pp &= ~EDP_FORCE_VDD; |
| REG_WRITE(PP_CONTROL, pp); |
| REG_READ(PP_CONTROL); |
| |
| } |
| |
| /* Returns true if the panel was already on when called */ |
| static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE; |
| |
| if (intel_dp->panel_on) |
| return true; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = REG_READ(PP_CONTROL); |
| pp &= ~PANEL_UNLOCK_MASK; |
| |
| pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON); |
| REG_WRITE(PP_CONTROL, pp); |
| REG_READ(PP_CONTROL); |
| |
| if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) { |
| DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS)); |
| intel_dp->panel_on = false; |
| } else |
| intel_dp->panel_on = true; |
| msleep(intel_dp->panel_power_up_delay); |
| |
| return false; |
| } |
| |
| static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| u32 pp, idle_off_mask = PP_ON ; |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| pp = REG_READ(PP_CONTROL); |
| |
| if ((pp & POWER_TARGET_ON) == 0) |
| return; |
| |
| intel_dp->panel_on = false; |
| pp &= ~PANEL_UNLOCK_MASK; |
| /* ILK workaround: disable reset around power sequence */ |
| |
| pp &= ~POWER_TARGET_ON; |
| pp &= ~EDP_FORCE_VDD; |
| pp &= ~EDP_BLC_ENABLE; |
| REG_WRITE(PP_CONTROL, pp); |
| REG_READ(PP_CONTROL); |
| DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS)); |
| |
| if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) { |
| DRM_DEBUG_KMS("Error in turning off Panel\n"); |
| } |
| |
| msleep(intel_dp->panel_power_cycle_delay); |
| DRM_DEBUG_KMS("Over\n"); |
| } |
| |
| static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| u32 pp; |
| |
| DRM_DEBUG_KMS("\n"); |
| /* |
| * If we enable the backlight right away following a panel power |
| * on, we may see slight flicker as the panel syncs with the eDP |
| * link. So delay a bit to make sure the image is solid before |
| * allowing it to appear. |
| */ |
| msleep(300); |
| pp = REG_READ(PP_CONTROL); |
| |
| pp |= EDP_BLC_ENABLE; |
| REG_WRITE(PP_CONTROL, pp); |
| gma_backlight_enable(dev); |
| } |
| |
| static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| u32 pp; |
| |
| DRM_DEBUG_KMS("\n"); |
| gma_backlight_disable(dev); |
| msleep(10); |
| pp = REG_READ(PP_CONTROL); |
| |
| pp &= ~EDP_BLC_ENABLE; |
| REG_WRITE(PP_CONTROL, pp); |
| msleep(intel_dp->backlight_off_delay); |
| } |
| |
| static enum drm_mode_status |
| cdv_intel_dp_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct gma_encoder *encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder)); |
| int max_lanes = cdv_intel_dp_max_lane_count(encoder); |
| struct drm_psb_private *dev_priv = connector->dev->dev_private; |
| |
| if (is_edp(encoder) && intel_dp->panel_fixed_mode) { |
| if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay) |
| return MODE_PANEL; |
| if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay) |
| return MODE_PANEL; |
| } |
| |
| /* only refuse the mode on non eDP since we have seen some weird eDP panels |
| which are outside spec tolerances but somehow work by magic */ |
| if (!is_edp(encoder) && |
| (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp) |
| > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))) |
| return MODE_CLOCK_HIGH; |
| |
| if (is_edp(encoder)) { |
| if (cdv_intel_dp_link_required(mode->clock, 24) |
| > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)) |
| return MODE_CLOCK_HIGH; |
| |
| } |
| if (mode->clock < 10000) |
| return MODE_CLOCK_LOW; |
| |
| return MODE_OK; |
| } |
| |
| static uint32_t |
| pack_aux(uint8_t *src, int src_bytes) |
| { |
| int i; |
| uint32_t v = 0; |
| |
| if (src_bytes > 4) |
| src_bytes = 4; |
| for (i = 0; i < src_bytes; i++) |
| v |= ((uint32_t) src[i]) << ((3-i) * 8); |
| return v; |
| } |
| |
| static void |
| unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) |
| { |
| int i; |
| if (dst_bytes > 4) |
| dst_bytes = 4; |
| for (i = 0; i < dst_bytes; i++) |
| dst[i] = src >> ((3-i) * 8); |
| } |
| |
| static int |
| cdv_intel_dp_aux_ch(struct gma_encoder *encoder, |
| uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_size) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| uint32_t output_reg = intel_dp->output_reg; |
| struct drm_device *dev = encoder->base.dev; |
| uint32_t ch_ctl = output_reg + 0x10; |
| uint32_t ch_data = ch_ctl + 4; |
| int i; |
| int recv_bytes; |
| uint32_t status; |
| uint32_t aux_clock_divider; |
| int try, precharge; |
| |
| /* The clock divider is based off the hrawclk, |
| * and would like to run at 2MHz. So, take the |
| * hrawclk value and divide by 2 and use that |
| * On CDV platform it uses 200MHz as hrawclk. |
| * |
| */ |
| aux_clock_divider = 200 / 2; |
| |
| precharge = 4; |
| if (is_edp(encoder)) |
| precharge = 10; |
| |
| if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) { |
| DRM_ERROR("dp_aux_ch not started status 0x%08x\n", |
| REG_READ(ch_ctl)); |
| return -EBUSY; |
| } |
| |
| /* Must try at least 3 times according to DP spec */ |
| for (try = 0; try < 5; try++) { |
| /* Load the send data into the aux channel data registers */ |
| for (i = 0; i < send_bytes; i += 4) |
| REG_WRITE(ch_data + i, |
| pack_aux(send + i, send_bytes - i)); |
| |
| /* Send the command and wait for it to complete */ |
| REG_WRITE(ch_ctl, |
| DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_TIME_OUT_400us | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| for (;;) { |
| status = REG_READ(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| udelay(100); |
| } |
| |
| /* Clear done status and any errors */ |
| REG_WRITE(ch_ctl, |
| status | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| |
| if ((status & DP_AUX_CH_CTL_DONE) == 0) { |
| DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); |
| return -EBUSY; |
| } |
| |
| /* Check for timeout or receive error. |
| * Timeouts occur when the sink is not connected |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); |
| return -EIO; |
| } |
| |
| /* Timeouts occur when the device isn't connected, so they're |
| * "normal" -- don't fill the kernel log with these */ |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { |
| DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); |
| return -ETIMEDOUT; |
| } |
| |
| /* Unload any bytes sent back from the other side */ |
| recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> |
| DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| if (recv_bytes > recv_size) |
| recv_bytes = recv_size; |
| |
| for (i = 0; i < recv_bytes; i += 4) |
| unpack_aux(REG_READ(ch_data + i), |
| recv + i, recv_bytes - i); |
| |
| return recv_bytes; |
| } |
| |
| /* Write data to the aux channel in native mode */ |
| static int |
| cdv_intel_dp_aux_native_write(struct gma_encoder *encoder, |
| uint16_t address, uint8_t *send, int send_bytes) |
| { |
| int ret; |
| uint8_t msg[20]; |
| int msg_bytes; |
| uint8_t ack; |
| |
| if (send_bytes > 16) |
| return -1; |
| msg[0] = DP_AUX_NATIVE_WRITE << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = send_bytes - 1; |
| memcpy(&msg[4], send, send_bytes); |
| msg_bytes = send_bytes + 4; |
| for (;;) { |
| ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1); |
| if (ret < 0) |
| return ret; |
| ack >>= 4; |
| if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) |
| break; |
| else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| return send_bytes; |
| } |
| |
| /* Write a single byte to the aux channel in native mode */ |
| static int |
| cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder, |
| uint16_t address, uint8_t byte) |
| { |
| return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1); |
| } |
| |
| /* read bytes from a native aux channel */ |
| static int |
| cdv_intel_dp_aux_native_read(struct gma_encoder *encoder, |
| uint16_t address, uint8_t *recv, int recv_bytes) |
| { |
| uint8_t msg[4]; |
| int msg_bytes; |
| uint8_t reply[20]; |
| int reply_bytes; |
| uint8_t ack; |
| int ret; |
| |
| msg[0] = DP_AUX_NATIVE_READ << 4; |
| msg[1] = address >> 8; |
| msg[2] = address & 0xff; |
| msg[3] = recv_bytes - 1; |
| |
| msg_bytes = 4; |
| reply_bytes = recv_bytes + 1; |
| |
| for (;;) { |
| ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, |
| reply, reply_bytes); |
| if (ret == 0) |
| return -EPROTO; |
| if (ret < 0) |
| return ret; |
| ack = reply[0] >> 4; |
| if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) { |
| memcpy(recv, reply + 1, ret - 1); |
| return ret - 1; |
| } |
| else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) |
| udelay(100); |
| else |
| return -EIO; |
| } |
| } |
| |
| static int |
| cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, |
| uint8_t write_byte, uint8_t *read_byte) |
| { |
| struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; |
| struct cdv_intel_dp *intel_dp = container_of(adapter, |
| struct cdv_intel_dp, |
| adapter); |
| struct gma_encoder *encoder = intel_dp->encoder; |
| uint16_t address = algo_data->address; |
| uint8_t msg[5]; |
| uint8_t reply[2]; |
| unsigned retry; |
| int msg_bytes; |
| int reply_bytes; |
| int ret; |
| |
| /* Set up the command byte */ |
| if (mode & MODE_I2C_READ) |
| msg[0] = DP_AUX_I2C_READ << 4; |
| else |
| msg[0] = DP_AUX_I2C_WRITE << 4; |
| |
| if (!(mode & MODE_I2C_STOP)) |
| msg[0] |= DP_AUX_I2C_MOT << 4; |
| |
| msg[1] = address >> 8; |
| msg[2] = address; |
| |
| switch (mode) { |
| case MODE_I2C_WRITE: |
| msg[3] = 0; |
| msg[4] = write_byte; |
| msg_bytes = 5; |
| reply_bytes = 1; |
| break; |
| case MODE_I2C_READ: |
| msg[3] = 0; |
| msg_bytes = 4; |
| reply_bytes = 2; |
| break; |
| default: |
| msg_bytes = 3; |
| reply_bytes = 1; |
| break; |
| } |
| |
| for (retry = 0; retry < 5; retry++) { |
| ret = cdv_intel_dp_aux_ch(encoder, |
| msg, msg_bytes, |
| reply, reply_bytes); |
| if (ret < 0) { |
| DRM_DEBUG_KMS("aux_ch failed %d\n", ret); |
| return ret; |
| } |
| |
| switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) { |
| case DP_AUX_NATIVE_REPLY_ACK: |
| /* I2C-over-AUX Reply field is only valid |
| * when paired with AUX ACK. |
| */ |
| break; |
| case DP_AUX_NATIVE_REPLY_NACK: |
| DRM_DEBUG_KMS("aux_ch native nack\n"); |
| return -EREMOTEIO; |
| case DP_AUX_NATIVE_REPLY_DEFER: |
| udelay(100); |
| continue; |
| default: |
| DRM_ERROR("aux_ch invalid native reply 0x%02x\n", |
| reply[0]); |
| return -EREMOTEIO; |
| } |
| |
| switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) { |
| case DP_AUX_I2C_REPLY_ACK: |
| if (mode == MODE_I2C_READ) { |
| *read_byte = reply[1]; |
| } |
| return reply_bytes - 1; |
| case DP_AUX_I2C_REPLY_NACK: |
| DRM_DEBUG_KMS("aux_i2c nack\n"); |
| return -EREMOTEIO; |
| case DP_AUX_I2C_REPLY_DEFER: |
| DRM_DEBUG_KMS("aux_i2c defer\n"); |
| udelay(100); |
| break; |
| default: |
| DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); |
| return -EREMOTEIO; |
| } |
| } |
| |
| DRM_ERROR("too many retries, giving up\n"); |
| return -EREMOTEIO; |
| } |
| |
| static int |
| cdv_intel_dp_i2c_init(struct gma_connector *connector, |
| struct gma_encoder *encoder, const char *name) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int ret; |
| |
| DRM_DEBUG_KMS("i2c_init %s\n", name); |
| |
| intel_dp->algo.running = false; |
| intel_dp->algo.address = 0; |
| intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch; |
| |
| memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter)); |
| intel_dp->adapter.owner = THIS_MODULE; |
| intel_dp->adapter.class = I2C_CLASS_DDC; |
| strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); |
| intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; |
| intel_dp->adapter.algo_data = &intel_dp->algo; |
| intel_dp->adapter.dev.parent = connector->base.kdev; |
| |
| if (is_edp(encoder)) |
| cdv_intel_edp_panel_vdd_on(encoder); |
| ret = i2c_dp_aux_add_bus(&intel_dp->adapter); |
| if (is_edp(encoder)) |
| cdv_intel_edp_panel_vdd_off(encoder); |
| |
| return ret; |
| } |
| |
| static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| adjusted_mode->hdisplay = fixed_mode->hdisplay; |
| adjusted_mode->hsync_start = fixed_mode->hsync_start; |
| adjusted_mode->hsync_end = fixed_mode->hsync_end; |
| adjusted_mode->htotal = fixed_mode->htotal; |
| |
| adjusted_mode->vdisplay = fixed_mode->vdisplay; |
| adjusted_mode->vsync_start = fixed_mode->vsync_start; |
| adjusted_mode->vsync_end = fixed_mode->vsync_end; |
| adjusted_mode->vtotal = fixed_mode->vtotal; |
| |
| adjusted_mode->clock = fixed_mode->clock; |
| |
| drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); |
| } |
| |
| static bool |
| cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_psb_private *dev_priv = encoder->dev->dev_private; |
| struct gma_encoder *intel_encoder = to_gma_encoder(encoder); |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| int lane_count, clock; |
| int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder); |
| int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0; |
| static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; |
| int refclock = mode->clock; |
| int bpp = 24; |
| |
| if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) { |
| cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode); |
| refclock = intel_dp->panel_fixed_mode->clock; |
| bpp = dev_priv->edp.bpp; |
| } |
| |
| for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { |
| for (clock = max_clock; clock >= 0; clock--) { |
| int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count); |
| |
| if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) { |
| intel_dp->link_bw = bws[clock]; |
| intel_dp->lane_count = lane_count; |
| adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); |
| DRM_DEBUG_KMS("Display port link bw %02x lane " |
| "count %d clock %d\n", |
| intel_dp->link_bw, intel_dp->lane_count, |
| adjusted_mode->clock); |
| return true; |
| } |
| } |
| } |
| if (is_edp(intel_encoder)) { |
| /* okay we failed just pick the highest */ |
| intel_dp->lane_count = max_lane_count; |
| intel_dp->link_bw = bws[max_clock]; |
| adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); |
| DRM_DEBUG_KMS("Force picking display port link bw %02x lane " |
| "count %d clock %d\n", |
| intel_dp->link_bw, intel_dp->lane_count, |
| adjusted_mode->clock); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| struct cdv_intel_dp_m_n { |
| uint32_t tu; |
| uint32_t gmch_m; |
| uint32_t gmch_n; |
| uint32_t link_m; |
| uint32_t link_n; |
| }; |
| |
| static void |
| cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den) |
| { |
| /* |
| while (*num > 0xffffff || *den > 0xffffff) { |
| *num >>= 1; |
| *den >>= 1; |
| }*/ |
| uint64_t value, m; |
| m = *num; |
| value = m * (0x800000); |
| m = do_div(value, *den); |
| *num = value; |
| *den = 0x800000; |
| } |
| |
| static void |
| cdv_intel_dp_compute_m_n(int bpp, |
| int nlanes, |
| int pixel_clock, |
| int link_clock, |
| struct cdv_intel_dp_m_n *m_n) |
| { |
| m_n->tu = 64; |
| m_n->gmch_m = (pixel_clock * bpp + 7) >> 3; |
| m_n->gmch_n = link_clock * nlanes; |
| cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); |
| m_n->link_m = pixel_clock; |
| m_n->link_n = link_clock; |
| cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n); |
| } |
| |
| void |
| cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_encoder *encoder; |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| int lane_count = 4, bpp = 24; |
| struct cdv_intel_dp_m_n m_n; |
| int pipe = gma_crtc->pipe; |
| |
| /* |
| * Find the lane count in the intel_encoder private |
| */ |
| list_for_each_entry(encoder, &mode_config->encoder_list, head) { |
| struct gma_encoder *intel_encoder; |
| struct cdv_intel_dp *intel_dp; |
| |
| if (encoder->crtc != crtc) |
| continue; |
| |
| intel_encoder = to_gma_encoder(encoder); |
| intel_dp = intel_encoder->dev_priv; |
| if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { |
| lane_count = intel_dp->lane_count; |
| break; |
| } else if (is_edp(intel_encoder)) { |
| lane_count = intel_dp->lane_count; |
| bpp = dev_priv->edp.bpp; |
| break; |
| } |
| } |
| |
| /* |
| * Compute the GMCH and Link ratios. The '3' here is |
| * the number of bytes_per_pixel post-LUT, which we always |
| * set up for 8-bits of R/G/B, or 3 bytes total. |
| */ |
| cdv_intel_dp_compute_m_n(bpp, lane_count, |
| mode->clock, adjusted_mode->clock, &m_n); |
| |
| { |
| REG_WRITE(PIPE_GMCH_DATA_M(pipe), |
| ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | |
| m_n.gmch_m); |
| REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); |
| REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); |
| REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); |
| } |
| } |
| |
| static void |
| cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct gma_encoder *intel_encoder = to_gma_encoder(encoder); |
| struct drm_crtc *crtc = encoder->crtc; |
| struct gma_crtc *gma_crtc = to_gma_crtc(crtc); |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| struct drm_device *dev = encoder->dev; |
| |
| intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; |
| intel_dp->DP |= intel_dp->color_range; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| |
| intel_dp->DP |= DP_LINK_TRAIN_OFF; |
| |
| switch (intel_dp->lane_count) { |
| case 1: |
| intel_dp->DP |= DP_PORT_WIDTH_1; |
| break; |
| case 2: |
| intel_dp->DP |= DP_PORT_WIDTH_2; |
| break; |
| case 4: |
| intel_dp->DP |= DP_PORT_WIDTH_4; |
| break; |
| } |
| if (intel_dp->has_audio) |
| intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; |
| |
| memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); |
| intel_dp->link_configuration[0] = intel_dp->link_bw; |
| intel_dp->link_configuration[1] = intel_dp->lane_count; |
| |
| /* |
| * Check for DPCD version > 1.1 and enhanced framing support |
| */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { |
| intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| } |
| |
| /* CPT DP's pipe select is decided in TRANS_DP_CTL */ |
| if (gma_crtc->pipe == 1) |
| intel_dp->DP |= DP_PIPEB_SELECT; |
| |
| REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN)); |
| DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP); |
| if (is_edp(intel_encoder)) { |
| uint32_t pfit_control; |
| cdv_intel_edp_panel_on(intel_encoder); |
| |
| if (mode->hdisplay != adjusted_mode->hdisplay || |
| mode->vdisplay != adjusted_mode->vdisplay) |
| pfit_control = PFIT_ENABLE; |
| else |
| pfit_control = 0; |
| |
| pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT; |
| |
| REG_WRITE(PFIT_CONTROL, pfit_control); |
| } |
| } |
| |
| |
| /* If the sink supports it, try to set the power state appropriately */ |
| static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int ret, i; |
| |
| /* Should have a valid DPCD by this point */ |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) |
| return; |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER, |
| DP_SET_POWER_D3); |
| if (ret != 1) |
| DRM_DEBUG_DRIVER("failed to write sink power state\n"); |
| } else { |
| /* |
| * When turning on, we need to retry for 1ms to give the sink |
| * time to wake up. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = cdv_intel_dp_aux_native_write_1(encoder, |
| DP_SET_POWER, |
| DP_SET_POWER_D0); |
| if (ret == 1) |
| break; |
| udelay(1000); |
| } |
| } |
| } |
| |
| static void cdv_intel_dp_prepare(struct drm_encoder *encoder) |
| { |
| struct gma_encoder *intel_encoder = to_gma_encoder(encoder); |
| int edp = is_edp(intel_encoder); |
| |
| if (edp) { |
| cdv_intel_edp_backlight_off(intel_encoder); |
| cdv_intel_edp_panel_off(intel_encoder); |
| cdv_intel_edp_panel_vdd_on(intel_encoder); |
| } |
| /* Wake up the sink first */ |
| cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON); |
| cdv_intel_dp_link_down(intel_encoder); |
| if (edp) |
| cdv_intel_edp_panel_vdd_off(intel_encoder); |
| } |
| |
| static void cdv_intel_dp_commit(struct drm_encoder *encoder) |
| { |
| struct gma_encoder *intel_encoder = to_gma_encoder(encoder); |
| int edp = is_edp(intel_encoder); |
| |
| if (edp) |
| cdv_intel_edp_panel_on(intel_encoder); |
| cdv_intel_dp_start_link_train(intel_encoder); |
| cdv_intel_dp_complete_link_train(intel_encoder); |
| if (edp) |
| cdv_intel_edp_backlight_on(intel_encoder); |
| } |
| |
| static void |
| cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode) |
| { |
| struct gma_encoder *intel_encoder = to_gma_encoder(encoder); |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| struct drm_device *dev = encoder->dev; |
| uint32_t dp_reg = REG_READ(intel_dp->output_reg); |
| int edp = is_edp(intel_encoder); |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| if (edp) { |
| cdv_intel_edp_backlight_off(intel_encoder); |
| cdv_intel_edp_panel_vdd_on(intel_encoder); |
| } |
| cdv_intel_dp_sink_dpms(intel_encoder, mode); |
| cdv_intel_dp_link_down(intel_encoder); |
| if (edp) { |
| cdv_intel_edp_panel_vdd_off(intel_encoder); |
| cdv_intel_edp_panel_off(intel_encoder); |
| } |
| } else { |
| if (edp) |
| cdv_intel_edp_panel_on(intel_encoder); |
| cdv_intel_dp_sink_dpms(intel_encoder, mode); |
| if (!(dp_reg & DP_PORT_EN)) { |
| cdv_intel_dp_start_link_train(intel_encoder); |
| cdv_intel_dp_complete_link_train(intel_encoder); |
| } |
| if (edp) |
| cdv_intel_edp_backlight_on(intel_encoder); |
| } |
| } |
| |
| /* |
| * Native read with retry for link status and receiver capability reads for |
| * cases where the sink may still be asleep. |
| */ |
| static bool |
| cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address, |
| uint8_t *recv, int recv_bytes) |
| { |
| int ret, i; |
| |
| /* |
| * Sinks are *supposed* to come up within 1ms from an off state, |
| * but we're also supposed to retry 3 times per the spec. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = cdv_intel_dp_aux_native_read(encoder, address, recv, |
| recv_bytes); |
| if (ret == recv_bytes) |
| return true; |
| udelay(1000); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Fetch AUX CH registers 0x202 - 0x207 which contain |
| * link status information |
| */ |
| static bool |
| cdv_intel_dp_get_link_status(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| return cdv_intel_dp_aux_native_read_retry(encoder, |
| DP_LANE0_1_STATUS, |
| intel_dp->link_status, |
| DP_LINK_STATUS_SIZE); |
| } |
| |
| static uint8_t |
| cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int r) |
| { |
| return link_status[r - DP_LANE0_1_STATUS]; |
| } |
| |
| static uint8_t |
| cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); |
| int s = ((lane & 1) ? |
| DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : |
| DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); |
| uint8_t l = cdv_intel_dp_link_status(link_status, i); |
| |
| return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; |
| } |
| |
| static uint8_t |
| cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); |
| int s = ((lane & 1) ? |
| DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : |
| DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); |
| uint8_t l = cdv_intel_dp_link_status(link_status, i); |
| |
| return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; |
| } |
| |
| #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3 |
| |
| static void |
| cdv_intel_get_adjust_train(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| uint8_t v = 0; |
| uint8_t p = 0; |
| int lane; |
| |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane); |
| uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane); |
| |
| if (this_v > v) |
| v = this_v; |
| if (this_p > p) |
| p = this_p; |
| } |
| |
| if (v >= CDV_DP_VOLTAGE_MAX) |
| v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; |
| |
| if (p == DP_TRAIN_PRE_EMPHASIS_MASK) |
| p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| for (lane = 0; lane < 4; lane++) |
| intel_dp->train_set[lane] = v | p; |
| } |
| |
| |
| static uint8_t |
| cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], |
| int lane) |
| { |
| int i = DP_LANE0_1_STATUS + (lane >> 1); |
| int s = (lane & 1) * 4; |
| uint8_t l = cdv_intel_dp_link_status(link_status, i); |
| |
| return (l >> s) & 0xf; |
| } |
| |
| /* Check for clock recovery is done on all channels */ |
| static bool |
| cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) |
| { |
| int lane; |
| uint8_t lane_status; |
| |
| for (lane = 0; lane < lane_count; lane++) { |
| lane_status = cdv_intel_get_lane_status(link_status, lane); |
| if ((lane_status & DP_LANE_CR_DONE) == 0) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Check to see if channel eq is done on all channels */ |
| #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ |
| DP_LANE_CHANNEL_EQ_DONE|\ |
| DP_LANE_SYMBOL_LOCKED) |
| static bool |
| cdv_intel_channel_eq_ok(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| uint8_t lane_align; |
| uint8_t lane_status; |
| int lane; |
| |
| lane_align = cdv_intel_dp_link_status(intel_dp->link_status, |
| DP_LANE_ALIGN_STATUS_UPDATED); |
| if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) |
| return false; |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane); |
| if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| cdv_intel_dp_set_link_train(struct gma_encoder *encoder, |
| uint32_t dp_reg_value, |
| uint8_t dp_train_pat) |
| { |
| |
| struct drm_device *dev = encoder->base.dev; |
| int ret; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| |
| REG_WRITE(intel_dp->output_reg, dp_reg_value); |
| REG_READ(intel_dp->output_reg); |
| |
| ret = cdv_intel_dp_aux_native_write_1(encoder, |
| DP_TRAINING_PATTERN_SET, |
| dp_train_pat); |
| |
| if (ret != 1) { |
| DRM_DEBUG_KMS("Failure in setting link pattern %x\n", |
| dp_train_pat); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| static bool |
| cdv_intel_dplink_set_level(struct gma_encoder *encoder, |
| uint8_t dp_train_pat) |
| { |
| |
| int ret; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| |
| ret = cdv_intel_dp_aux_native_write(encoder, |
| DP_TRAINING_LANE0_SET, |
| intel_dp->train_set, |
| intel_dp->lane_count); |
| |
| if (ret != intel_dp->lane_count) { |
| DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n", |
| intel_dp->train_set[0], intel_dp->lane_count); |
| return false; |
| } |
| return true; |
| } |
| |
| static void |
| cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| struct ddi_regoff *ddi_reg; |
| int vswing, premph, index; |
| |
| if (intel_dp->output_reg == DP_B) |
| ddi_reg = &ddi_DP_train_table[0]; |
| else |
| ddi_reg = &ddi_DP_train_table[1]; |
| |
| vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK); |
| premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >> |
| DP_TRAIN_PRE_EMPHASIS_SHIFT; |
| |
| if (vswing + premph > 3) |
| return; |
| #ifdef CDV_FAST_LINK_TRAIN |
| return; |
| #endif |
| DRM_DEBUG_KMS("Test2\n"); |
| //return ; |
| cdv_sb_reset(dev); |
| /* ;Swing voltage programming |
| ;gfx_dpio_set_reg(0xc058, 0x0505313A) */ |
| cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A); |
| |
| /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */ |
| cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055); |
| |
| /* ;gfx_dpio_set_reg(0x8148, 0x55338954) |
| * The VSwing_PreEmph table is also considered based on the vswing/premp |
| */ |
| index = (vswing + premph) * 2; |
| if (premph == 1 && vswing == 1) { |
| cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954); |
| } else |
| cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]); |
| |
| /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */ |
| if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3) |
| cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040); |
| else |
| cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040); |
| |
| /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */ |
| /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */ |
| |
| /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */ |
| cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055); |
| |
| /* ;Pre emphasis programming |
| * ;gfx_dpio_set_reg(0xc02c, 0x1f030040) |
| */ |
| cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040); |
| |
| /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */ |
| index = 2 * premph + 1; |
| cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]); |
| return; |
| } |
| |
| |
| /* Enable corresponding port and start training pattern 1 */ |
| static void |
| cdv_intel_dp_start_link_train(struct gma_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int i; |
| uint8_t voltage; |
| bool clock_recovery = false; |
| int tries; |
| u32 reg; |
| uint32_t DP = intel_dp->DP; |
| |
| DP |= DP_PORT_EN; |
| DP &= ~DP_LINK_TRAIN_MASK; |
| |
| reg = DP; |
| reg |= DP_LINK_TRAIN_PAT_1; |
| /* Enable output, wait for it to become active */ |
| REG_WRITE(intel_dp->output_reg, reg); |
| REG_READ(intel_dp->output_reg); |
| gma_wait_for_vblank(dev); |
| |
| DRM_DEBUG_KMS("Link config\n"); |
| /* Write the link configuration data */ |
| cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET, |
| intel_dp->link_configuration, |
| 2); |
| |
| memset(intel_dp->train_set, 0, 4); |
| voltage = 0; |
| tries = 0; |
| clock_recovery = false; |
| |
| DRM_DEBUG_KMS("Start train\n"); |
| reg = DP | DP_LINK_TRAIN_PAT_1; |
| |
| |
| for (;;) { |
| /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ |
| DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", |
| intel_dp->train_set[0], |
| intel_dp->link_configuration[0], |
| intel_dp->link_configuration[1]); |
| |
| if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) { |
| DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n"); |
| } |
| cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); |
| /* Set training pattern 1 */ |
| |
| cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1); |
| |
| udelay(200); |
| if (!cdv_intel_dp_get_link_status(encoder)) |
| break; |
| |
| DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", |
| intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], |
| intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); |
| |
| if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("PT1 train is done\n"); |
| clock_recovery = true; |
| break; |
| } |
| |
| /* Check to see if we've tried the max voltage */ |
| for (i = 0; i < intel_dp->lane_count; i++) |
| if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) |
| break; |
| if (i == intel_dp->lane_count) |
| break; |
| |
| /* Check to see if we've tried the same voltage 5 times */ |
| if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { |
| ++tries; |
| if (tries == 5) |
| break; |
| } else |
| tries = 0; |
| voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| |
| /* Compute new intel_dp->train_set as requested by target */ |
| cdv_intel_get_adjust_train(encoder); |
| |
| } |
| |
| if (!clock_recovery) { |
| DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]); |
| } |
| |
| intel_dp->DP = DP; |
| } |
| |
| static void |
| cdv_intel_dp_complete_link_train(struct gma_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int tries, cr_tries; |
| u32 reg; |
| uint32_t DP = intel_dp->DP; |
| |
| /* channel equalization */ |
| tries = 0; |
| cr_tries = 0; |
| |
| DRM_DEBUG_KMS("\n"); |
| reg = DP | DP_LINK_TRAIN_PAT_2; |
| |
| for (;;) { |
| |
| DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", |
| intel_dp->train_set[0], |
| intel_dp->link_configuration[0], |
| intel_dp->link_configuration[1]); |
| /* channel eq pattern */ |
| |
| if (!cdv_intel_dp_set_link_train(encoder, reg, |
| DP_TRAINING_PATTERN_2)) { |
| DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n"); |
| } |
| /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ |
| |
| if (cr_tries > 5) { |
| DRM_ERROR("failed to train DP, aborting\n"); |
| cdv_intel_dp_link_down(encoder); |
| break; |
| } |
| |
| cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); |
| |
| cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2); |
| |
| udelay(1000); |
| if (!cdv_intel_dp_get_link_status(encoder)) |
| break; |
| |
| DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", |
| intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], |
| intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); |
| |
| /* Make sure clock is still ok */ |
| if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { |
| cdv_intel_dp_start_link_train(encoder); |
| cr_tries++; |
| continue; |
| } |
| |
| if (cdv_intel_channel_eq_ok(encoder)) { |
| DRM_DEBUG_KMS("PT2 train is done\n"); |
| break; |
| } |
| |
| /* Try 5 times, then try clock recovery if that fails */ |
| if (tries > 5) { |
| cdv_intel_dp_link_down(encoder); |
| cdv_intel_dp_start_link_train(encoder); |
| tries = 0; |
| cr_tries++; |
| continue; |
| } |
| |
| /* Compute new intel_dp->train_set as requested by target */ |
| cdv_intel_get_adjust_train(encoder); |
| ++tries; |
| |
| } |
| |
| reg = DP | DP_LINK_TRAIN_OFF; |
| |
| REG_WRITE(intel_dp->output_reg, reg); |
| REG_READ(intel_dp->output_reg); |
| cdv_intel_dp_aux_native_write_1(encoder, |
| DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); |
| } |
| |
| static void |
| cdv_intel_dp_link_down(struct gma_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| uint32_t DP = intel_dp->DP; |
| |
| if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| |
| { |
| DP &= ~DP_LINK_TRAIN_MASK; |
| REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); |
| } |
| REG_READ(intel_dp->output_reg); |
| |
| msleep(17); |
| |
| REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); |
| REG_READ(intel_dp->output_reg); |
| } |
| |
| static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder) |
| { |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| enum drm_connector_status status; |
| |
| status = connector_status_disconnected; |
| if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd, |
| sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd)) |
| { |
| if (intel_dp->dpcd[DP_DPCD_REV] != 0) |
| status = connector_status_connected; |
| } |
| if (status == connector_status_connected) |
| DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", |
| intel_dp->dpcd[0], intel_dp->dpcd[1], |
| intel_dp->dpcd[2], intel_dp->dpcd[3]); |
| return status; |
| } |
| |
| /** |
| * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. |
| * |
| * \return true if DP port is connected. |
| * \return false if DP port is disconnected. |
| */ |
| static enum drm_connector_status |
| cdv_intel_dp_detect(struct drm_connector *connector, bool force) |
| { |
| struct gma_encoder *encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| enum drm_connector_status status; |
| struct edid *edid = NULL; |
| int edp = is_edp(encoder); |
| |
| intel_dp->has_audio = false; |
| |
| if (edp) |
| cdv_intel_edp_panel_vdd_on(encoder); |
| status = cdv_dp_detect(encoder); |
| if (status != connector_status_connected) { |
| if (edp) |
| cdv_intel_edp_panel_vdd_off(encoder); |
| return status; |
| } |
| |
| if (intel_dp->force_audio) { |
| intel_dp->has_audio = intel_dp->force_audio > 0; |
| } else { |
| edid = drm_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| intel_dp->has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| } |
| if (edp) |
| cdv_intel_edp_panel_vdd_off(encoder); |
| |
| return connector_status_connected; |
| } |
| |
| static int cdv_intel_dp_get_modes(struct drm_connector *connector) |
| { |
| struct gma_encoder *intel_encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; |
| struct edid *edid = NULL; |
| int ret = 0; |
| int edp = is_edp(intel_encoder); |
| |
| |
| edid = drm_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| drm_connector_update_edid_property(connector, edid); |
| ret = drm_add_edid_modes(connector, edid); |
| kfree(edid); |
| } |
| |
| if (is_edp(intel_encoder)) { |
| struct drm_device *dev = connector->dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| cdv_intel_edp_panel_vdd_off(intel_encoder); |
| if (ret) { |
| if (edp && !intel_dp->panel_fixed_mode) { |
| struct drm_display_mode *newmode; |
| list_for_each_entry(newmode, &connector->probed_modes, |
| head) { |
| if (newmode->type & DRM_MODE_TYPE_PREFERRED) { |
| intel_dp->panel_fixed_mode = |
| drm_mode_duplicate(dev, newmode); |
| break; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) { |
| intel_dp->panel_fixed_mode = |
| drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); |
| if (intel_dp->panel_fixed_mode) { |
| intel_dp->panel_fixed_mode->type |= |
| DRM_MODE_TYPE_PREFERRED; |
| } |
| } |
| if (intel_dp->panel_fixed_mode != NULL) { |
| struct drm_display_mode *mode; |
| mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode); |
| drm_mode_probed_add(connector, mode); |
| return 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static bool |
| cdv_intel_dp_detect_audio(struct drm_connector *connector) |
| { |
| struct gma_encoder *encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| struct edid *edid; |
| bool has_audio = false; |
| int edp = is_edp(encoder); |
| |
| if (edp) |
| cdv_intel_edp_panel_vdd_on(encoder); |
| |
| edid = drm_get_edid(connector, &intel_dp->adapter); |
| if (edid) { |
| has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| if (edp) |
| cdv_intel_edp_panel_vdd_off(encoder); |
| |
| return has_audio; |
| } |
| |
| static int |
| cdv_intel_dp_set_property(struct drm_connector *connector, |
| struct drm_property *property, |
| uint64_t val) |
| { |
| struct drm_psb_private *dev_priv = connector->dev->dev_private; |
| struct gma_encoder *encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = encoder->dev_priv; |
| int ret; |
| |
| ret = drm_object_property_set_value(&connector->base, property, val); |
| if (ret) |
| return ret; |
| |
| if (property == dev_priv->force_audio_property) { |
| int i = val; |
| bool has_audio; |
| |
| if (i == intel_dp->force_audio) |
| return 0; |
| |
| intel_dp->force_audio = i; |
| |
| if (i == 0) |
| has_audio = cdv_intel_dp_detect_audio(connector); |
| else |
| has_audio = i > 0; |
| |
| if (has_audio == intel_dp->has_audio) |
| return 0; |
| |
| intel_dp->has_audio = has_audio; |
| goto done; |
| } |
| |
| if (property == dev_priv->broadcast_rgb_property) { |
| if (val == !!intel_dp->color_range) |
| return 0; |
| |
| intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; |
| goto done; |
| } |
| |
| return -EINVAL; |
| |
| done: |
| if (encoder->base.crtc) { |
| struct drm_crtc *crtc = encoder->base.crtc; |
| drm_crtc_helper_set_mode(crtc, &crtc->mode, |
| crtc->x, crtc->y, |
| crtc->primary->fb); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| cdv_intel_dp_destroy(struct drm_connector *connector) |
| { |
| struct gma_encoder *gma_encoder = gma_attached_encoder(connector); |
| struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv; |
| |
| if (is_edp(gma_encoder)) { |
| /* cdv_intel_panel_destroy_backlight(connector->dev); */ |
| kfree(intel_dp->panel_fixed_mode); |
| intel_dp->panel_fixed_mode = NULL; |
| } |
| i2c_del_adapter(&intel_dp->adapter); |
| drm_connector_unregister(connector); |
| drm_connector_cleanup(connector); |
| kfree(connector); |
| } |
| |
| static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = { |
| .dpms = cdv_intel_dp_dpms, |
| .mode_fixup = cdv_intel_dp_mode_fixup, |
| .prepare = cdv_intel_dp_prepare, |
| .mode_set = cdv_intel_dp_mode_set, |
| .commit = cdv_intel_dp_commit, |
| }; |
| |
| static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = { |
| .dpms = drm_helper_connector_dpms, |
| .detect = cdv_intel_dp_detect, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .set_property = cdv_intel_dp_set_property, |
| .destroy = cdv_intel_dp_destroy, |
| }; |
| |
| static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = { |
| .get_modes = cdv_intel_dp_get_modes, |
| .mode_valid = cdv_intel_dp_mode_valid, |
| .best_encoder = gma_best_encoder, |
| }; |
| |
| static void cdv_intel_dp_add_properties(struct drm_connector *connector) |
| { |
| cdv_intel_attach_force_audio_property(connector); |
| cdv_intel_attach_broadcast_rgb_property(connector); |
| } |
| |
| /* check the VBT to see whether the eDP is on DP-D port */ |
| static bool cdv_intel_dpc_is_edp(struct drm_device *dev) |
| { |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| struct child_device_config *p_child; |
| int i; |
| |
| if (!dev_priv->child_dev_num) |
| return false; |
| |
| for (i = 0; i < dev_priv->child_dev_num; i++) { |
| p_child = dev_priv->child_dev + i; |
| |
| if (p_child->dvo_port == PORT_IDPC && |
| p_child->device_type == DEVICE_TYPE_eDP) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Cedarview display clock gating |
| |
| We need this disable dot get correct behaviour while enabling |
| DP/eDP. TODO - investigate if we can turn it back to normality |
| after enabling */ |
| static void cdv_disable_intel_clock_gating(struct drm_device *dev) |
| { |
| u32 reg_value; |
| reg_value = REG_READ(DSPCLK_GATE_D); |
| |
| reg_value |= (DPUNIT_PIPEB_GATE_DISABLE | |
| DPUNIT_PIPEA_GATE_DISABLE | |
| DPCUNIT_CLOCK_GATE_DISABLE | |
| DPLSUNIT_CLOCK_GATE_DISABLE | |
| DPOUNIT_CLOCK_GATE_DISABLE | |
| DPIOUNIT_CLOCK_GATE_DISABLE); |
| |
| REG_WRITE(DSPCLK_GATE_D, reg_value); |
| |
| udelay(500); |
| } |
| |
| void |
| cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg) |
| { |
| struct gma_encoder *gma_encoder; |
| struct gma_connector *gma_connector; |
| struct drm_connector *connector; |
| struct drm_encoder *encoder; |
| struct cdv_intel_dp *intel_dp; |
| const char *name = NULL; |
| int type = DRM_MODE_CONNECTOR_DisplayPort; |
| |
| gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL); |
| if (!gma_encoder) |
| return; |
| gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL); |
| if (!gma_connector) |
| goto err_connector; |
| intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL); |
| if (!intel_dp) |
| goto err_priv; |
| |
| if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev)) |
| type = DRM_MODE_CONNECTOR_eDP; |
| |
| connector = &gma_connector->base; |
| encoder = &gma_encoder->base; |
| |
| drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type); |
| drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS); |
| |
| gma_connector_attach_encoder(gma_connector, gma_encoder); |
| |
| if (type == DRM_MODE_CONNECTOR_DisplayPort) |
| gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| else |
| gma_encoder->type = INTEL_OUTPUT_EDP; |
| |
| |
| gma_encoder->dev_priv=intel_dp; |
| intel_dp->encoder = gma_encoder; |
| intel_dp->output_reg = output_reg; |
| |
| drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs); |
| drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs); |
| |
| connector->polled = DRM_CONNECTOR_POLL_HPD; |
| connector->interlace_allowed = false; |
| connector->doublescan_allowed = false; |
| |
| drm_connector_register(connector); |
| |
| /* Set up the DDC bus. */ |
| switch (output_reg) { |
| case DP_B: |
| name = "DPDDC-B"; |
| gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT); |
| break; |
| case DP_C: |
| name = "DPDDC-C"; |
| gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT); |
| break; |
| } |
| |
| cdv_disable_intel_clock_gating(dev); |
| |
| cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name); |
| /* FIXME:fail check */ |
| cdv_intel_dp_add_properties(connector); |
| |
| if (is_edp(gma_encoder)) { |
| int ret; |
| struct edp_power_seq cur; |
| u32 pp_on, pp_off, pp_div; |
| u32 pwm_ctrl; |
| |
| pp_on = REG_READ(PP_CONTROL); |
| pp_on &= ~PANEL_UNLOCK_MASK; |
| pp_on |= PANEL_UNLOCK_REGS; |
| |
| REG_WRITE(PP_CONTROL, pp_on); |
| |
| pwm_ctrl = REG_READ(BLC_PWM_CTL2); |
| pwm_ctrl |= PWM_PIPE_B; |
| REG_WRITE(BLC_PWM_CTL2, pwm_ctrl); |
| |
| pp_on = REG_READ(PP_ON_DELAYS); |
| pp_off = REG_READ(PP_OFF_DELAYS); |
| pp_div = REG_READ(PP_DIVISOR); |
| |
| /* Pull timing values out of registers */ |
| cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> |
| PANEL_POWER_UP_DELAY_SHIFT; |
| |
| cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> |
| PANEL_LIGHT_ON_DELAY_SHIFT; |
| |
| cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> |
| PANEL_LIGHT_OFF_DELAY_SHIFT; |
| |
| cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> |
| PANEL_POWER_DOWN_DELAY_SHIFT; |
| |
| cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> |
| PANEL_POWER_CYCLE_DELAY_SHIFT); |
| |
| DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); |
| |
| |
| intel_dp->panel_power_up_delay = cur.t1_t3 / 10; |
| intel_dp->backlight_on_delay = cur.t8 / 10; |
| intel_dp->backlight_off_delay = cur.t9 / 10; |
| intel_dp->panel_power_down_delay = cur.t10 / 10; |
| intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100; |
| |
| DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", |
| intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, |
| intel_dp->panel_power_cycle_delay); |
| |
| DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", |
| intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); |
| |
| |
| cdv_intel_edp_panel_vdd_on(gma_encoder); |
| ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV, |
| intel_dp->dpcd, |
| sizeof(intel_dp->dpcd)); |
| cdv_intel_edp_panel_vdd_off(gma_encoder); |
| if (ret <= 0) { |
| /* if this fails, presume the device is a ghost */ |
| DRM_INFO("failed to retrieve link info, disabling eDP\n"); |
| drm_encoder_cleanup(encoder); |
| cdv_intel_dp_destroy(connector); |
| goto err_priv; |
| } else { |
| DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", |
| intel_dp->dpcd[0], intel_dp->dpcd[1], |
| intel_dp->dpcd[2], intel_dp->dpcd[3]); |
| |
| } |
| /* The CDV reference driver moves pnale backlight setup into the displays that |
| have a backlight: this is a good idea and one we should probably adopt, however |
| we need to migrate all the drivers before we can do that */ |
| /*cdv_intel_panel_setup_backlight(dev); */ |
| } |
| return; |
| |
| err_priv: |
| kfree(gma_connector); |
| err_connector: |
| kfree(gma_encoder); |
| } |