blob: 22f421e82733b04fa91ca859d5d8ab00646e4f4c [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/delay.h>
#include "dm_services.h"
#include "basics/dc_common.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dcn20_resource.h"
#include "dcn20_hwseq.h"
#include "dce/dce_hwseq.h"
#include "dcn20_dsc.h"
#include "dcn20_optc.h"
#include "abm.h"
#include "clk_mgr.h"
#include "dmcu.h"
#include "hubp.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dchubbub.h"
#include "reg_helper.h"
#include "dcn10/dcn10_cm_common.h"
#include "dc_link_dp.h"
#include "vm_helper.h"
#include "dccg.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static int find_free_gsl_group(const struct dc *dc)
{
if (dc->res_pool->gsl_groups.gsl_0 == 0)
return 1;
if (dc->res_pool->gsl_groups.gsl_1 == 0)
return 2;
if (dc->res_pool->gsl_groups.gsl_2 == 0)
return 3;
return 0;
}
/* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
* This is only used to lock pipes in pipe splitting case with immediate flip
* Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
* so we get tearing with freesync since we cannot flip multiple pipes
* atomically.
* We use GSL for this:
* - immediate flip: find first available GSL group if not already assigned
* program gsl with that group, set current OTG as master
* and always us 0x4 = AND of flip_ready from all pipes
* - vsync flip: disable GSL if used
*
* Groups in stream_res are stored as +1 from HW registers, i.e.
* gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
* Using a magic value like -1 would require tracking all inits/resets
*/
static void dcn20_setup_gsl_group_as_lock(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enable)
{
struct gsl_params gsl;
int group_idx;
memset(&gsl, 0, sizeof(struct gsl_params));
if (enable) {
/* return if group already assigned since GSL was set up
* for vsync flip, we would unassign so it can't be "left over"
*/
if (pipe_ctx->stream_res.gsl_group > 0)
return;
group_idx = find_free_gsl_group(dc);
ASSERT(group_idx != 0);
pipe_ctx->stream_res.gsl_group = group_idx;
/* set gsl group reg field and mark resource used */
switch (group_idx) {
case 1:
gsl.gsl0_en = 1;
dc->res_pool->gsl_groups.gsl_0 = 1;
break;
case 2:
gsl.gsl1_en = 1;
dc->res_pool->gsl_groups.gsl_1 = 1;
break;
case 3:
gsl.gsl2_en = 1;
dc->res_pool->gsl_groups.gsl_2 = 1;
break;
default:
BREAK_TO_DEBUGGER();
return; // invalid case
}
gsl.gsl_master_en = 1;
} else {
group_idx = pipe_ctx->stream_res.gsl_group;
if (group_idx == 0)
return; // if not in use, just return
pipe_ctx->stream_res.gsl_group = 0;
/* unset gsl group reg field and mark resource free */
switch (group_idx) {
case 1:
gsl.gsl0_en = 0;
dc->res_pool->gsl_groups.gsl_0 = 0;
break;
case 2:
gsl.gsl1_en = 0;
dc->res_pool->gsl_groups.gsl_1 = 0;
break;
case 3:
gsl.gsl2_en = 0;
dc->res_pool->gsl_groups.gsl_2 = 0;
break;
default:
BREAK_TO_DEBUGGER();
return;
}
gsl.gsl_master_en = 0;
}
/* at this point we want to program whether it's to enable or disable */
if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
pipe_ctx->stream_res.tg->funcs->set_gsl(
pipe_ctx->stream_res.tg,
&gsl);
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0);
} else
BREAK_TO_DEBUGGER();
}
void dcn20_set_flip_control_gsl(
struct pipe_ctx *pipe_ctx,
bool flip_immediate)
{
if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
pipe_ctx->plane_res.hubp, flip_immediate);
}
void dcn20_enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = true; /* disable power gating */
if (enable)
force_on = false;
/* DCHUBP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
if (REG(DOMAIN8_PG_CONFIG))
REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
if (REG(DOMAIN10_PG_CONFIG))
REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
/* DPP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
if (REG(DOMAIN9_PG_CONFIG))
REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
if (REG(DOMAIN11_PG_CONFIG))
REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
/* DCS0/1/2/3/4/5 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
if (REG(DOMAIN19_PG_CONFIG))
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
if (REG(DOMAIN20_PG_CONFIG))
REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
if (REG(DOMAIN21_PG_CONFIG))
REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
}
void dcn20_dccg_init(struct dce_hwseq *hws)
{
/*
* set MICROSECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x120264
* 27Mhz refclk -> 0x12021b
* 48Mhz refclk -> 0x120230
*
*/
REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
/*
* set MILLISECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x1186a0
* 27Mhz refclk -> 0x106978
* 48Mhz refclk -> 0x10bb80
*
*/
REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
/* This value is dependent on the hardware pipeline delay so set once per SOC */
REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c);
}
void dcn20_disable_vga(
struct dce_hwseq *hws)
{
REG_WRITE(D1VGA_CONTROL, 0);
REG_WRITE(D2VGA_CONTROL, 0);
REG_WRITE(D3VGA_CONTROL, 0);
REG_WRITE(D4VGA_CONTROL, 0);
REG_WRITE(D5VGA_CONTROL, 0);
REG_WRITE(D6VGA_CONTROL, 0);
}
void dcn20_program_triple_buffer(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enable_triple_buffer)
{
if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
pipe_ctx->plane_res.hubp,
enable_triple_buffer);
}
}
/* Blank pixel data during initialization */
void dcn20_init_blank(
struct dc *dc,
struct timing_generator *tg)
{
struct dce_hwseq *hws = dc->hwseq;
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct output_pixel_processor *opp = NULL;
struct output_pixel_processor *bottom_opp = NULL;
uint32_t num_opps, opp_id_src0, opp_id_src1;
uint32_t otg_active_width, otg_active_height;
/* program opp dpg blank color */
color_space = COLOR_SPACE_SRGB;
color_space_to_black_color(dc, color_space, &black_color);
/* get the OTG active size */
tg->funcs->get_otg_active_size(tg,
&otg_active_width,
&otg_active_height);
/* get the OPTC source */
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
opp = dc->res_pool->opps[opp_id_src0];
if (num_opps == 2) {
otg_active_width = otg_active_width / 2;
ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp);
bottom_opp = dc->res_pool->opps[opp_id_src1];
}
opp->funcs->opp_set_disp_pattern_generator(
opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height,
0);
if (num_opps == 2) {
bottom_opp->funcs->opp_set_disp_pattern_generator(
bottom_opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
CONTROLLER_DP_COLOR_SPACE_UDEFINED,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height,
0);
}
hws->funcs.wait_for_blank_complete(opp);
}
void dcn20_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
if (REG(DOMAIN16_PG_CONFIG) == 0)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN16_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN16_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN17_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN17_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN18_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN18_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN19_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN19_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DSC4 */
REG_UPDATE(DOMAIN20_PG_CONFIG,
DOMAIN20_POWER_GATE, power_gate);
REG_WAIT(DOMAIN20_PG_STATUS,
DOMAIN20_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DSC5 */
REG_UPDATE(DOMAIN21_PG_CONFIG,
DOMAIN21_POWER_GATE, power_gate);
REG_WAIT(DOMAIN21_PG_STATUS,
DOMAIN21_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn20_dpp_pg_control(
struct dce_hwseq *hws,
unsigned int dpp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_dpp_power_gate)
return;
if (REG(DOMAIN1_PG_CONFIG) == 0)
return;
switch (dpp_inst) {
case 0: /* DPP0 */
REG_UPDATE(DOMAIN1_PG_CONFIG,
DOMAIN1_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS,
DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DPP1 */
REG_UPDATE(DOMAIN3_PG_CONFIG,
DOMAIN3_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS,
DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DPP2 */
REG_UPDATE(DOMAIN5_PG_CONFIG,
DOMAIN5_POWER_GATE, power_gate);
REG_WAIT(DOMAIN5_PG_STATUS,
DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DPP3 */
REG_UPDATE(DOMAIN7_PG_CONFIG,
DOMAIN7_POWER_GATE, power_gate);
REG_WAIT(DOMAIN7_PG_STATUS,
DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DPP4 */
REG_UPDATE(DOMAIN9_PG_CONFIG,
DOMAIN9_POWER_GATE, power_gate);
REG_WAIT(DOMAIN9_PG_STATUS,
DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DPP5 */
/*
* Do not power gate DPP5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN11_PG_CONFIG,
* DOMAIN11_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN11_PG_STATUS,
* DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
void dcn20_hubp_pg_control(
struct dce_hwseq *hws,
unsigned int hubp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0: /* DCHUBP0 */
REG_UPDATE(DOMAIN0_PG_CONFIG,
DOMAIN0_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS,
DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DCHUBP1 */
REG_UPDATE(DOMAIN2_PG_CONFIG,
DOMAIN2_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS,
DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DCHUBP2 */
REG_UPDATE(DOMAIN4_PG_CONFIG,
DOMAIN4_POWER_GATE, power_gate);
REG_WAIT(DOMAIN4_PG_STATUS,
DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DCHUBP3 */
REG_UPDATE(DOMAIN6_PG_CONFIG,
DOMAIN6_POWER_GATE, power_gate);
REG_WAIT(DOMAIN6_PG_STATUS,
DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DCHUBP4 */
REG_UPDATE(DOMAIN8_PG_CONFIG,
DOMAIN8_POWER_GATE, power_gate);
REG_WAIT(DOMAIN8_PG_STATUS,
DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DCHUBP5 */
/*
* Do not power gate DCHUB5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN10_PG_CONFIG,
* DOMAIN10_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN10_PG_STATUS,
* DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
/* disable HW used by plane.
* note: cannot disable until disconnect is complete
*/
void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
/* In flip immediate with pipe splitting case GSL is used for
* synchronization so we must disable it when the plane is disabled.
*/
if (pipe_ctx->stream_res.gsl_group != 0)
dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
dc->hwss.set_flip_control_gsl(pipe_ctx, false);
hubp->funcs->hubp_clk_cntl(hubp, false);
dpp->funcs->dpp_dppclk_control(dpp, false, false);
hubp->power_gated = true;
hws->funcs.plane_atomic_power_down(dc,
pipe_ctx->plane_res.dpp,
pipe_ctx->plane_res.hubp);
pipe_ctx->stream = NULL;
memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
pipe_ctx->top_pipe = NULL;
pipe_ctx->bottom_pipe = NULL;
pipe_ctx->plane_state = NULL;
}
void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(dc->ctx->logger);
if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
return;
dcn20_plane_atomic_disable(dc, pipe_ctx);
DC_LOG_DC("Power down front end %d\n",
pipe_ctx->pipe_idx);
}
enum dc_status dcn20_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
struct dc_stream_state *stream = pipe_ctx->stream;
struct drr_params params = {0};
unsigned int event_triggers = 0;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
/* by upper caller loop, pipe0 is parent pipe and be called first.
* back end is set up by for pipe0. Other children pipe share back end
* with pipe 0. No program is needed.
*/
if (pipe_ctx->top_pipe != NULL)
return DC_OK;
/* TODO check if timing_changed, disable stream if timing changed */
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
opp_cnt++;
}
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal)))
dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width,
pipe_ctx->stream->signal,
true);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
hws->funcs.blank_pixel_data(dc, pipe_ctx, true);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp);
params.vertical_total_min = stream->adjust.v_total_min;
params.vertical_total_max = stream->adjust.v_total_max;
params.vertical_total_mid = stream->adjust.v_total_mid;
params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num;
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, &params);
// DRR should set trigger event to monitor surface update event
if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
event_triggers = 0x80;
/* Event triggers and num frames initialized for DRR, but can be
* later updated for PSR use. Note DRR trigger events are generated
* regardless of whether num frames met.
*/
if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg, event_triggers, 2);
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
return DC_OK;
}
void dcn20_program_output_csc(struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix,
int opp_id)
{
struct mpc *mpc = dc->res_pool->mpc;
enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
if (mpc->funcs->power_on_mpc_mem_pwr)
mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
if (mpc->funcs->set_output_csc != NULL)
mpc->funcs->set_output_csc(mpc,
opp_id,
matrix,
ocsc_mode);
} else {
if (mpc->funcs->set_ocsc_default != NULL)
mpc->funcs->set_ocsc_default(mpc,
opp_id,
colorspace,
ocsc_mode);
}
}
bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
/*
* program OGAM only for the top pipe
* if there is a pipe split then fix diagnostic is required:
* how to pass OGAM parameter for stream.
* if programming for all pipes is required then remove condition
* pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
*/
if (mpc->funcs->power_on_mpc_mem_pwr)
mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true);
if (pipe_ctx->top_pipe == NULL
&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/*
* there is no ROM
*/
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
/*
* if above if is not executed then 'params' equal to 0 and set in bypass
*/
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return true;
}
bool dcn20_set_blend_lut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *blend_lut = NULL;
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
blend_lut = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->blend_tf,
&dpp_base->regamma_params, false);
blend_lut = &dpp_base->regamma_params;
}
}
result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
return result;
}
bool dcn20_set_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *shaper_lut = NULL;
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
shaper_lut = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
if (plane_state->lut3d_func &&
plane_state->lut3d_func->state.bits.initialized == 1)
result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
&plane_state->lut3d_func->lut_3d);
else
result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
return result;
}
bool dcn20_set_input_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dce_hwseq *hws = dc->hwseq;
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
const struct dc_transfer_func *tf = NULL;
bool result = true;
bool use_degamma_ram = false;
if (dpp_base == NULL || plane_state == NULL)
return false;
hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
hws->funcs.set_blend_lut(pipe_ctx, plane_state);
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
if (tf == NULL) {
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
return true;
}
if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
use_degamma_ram = true;
if (use_degamma_ram == true) {
if (tf->type == TF_TYPE_HWPWL)
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&tf->pwl);
else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_degamma_hw_format(tf,
&dpp_base->degamma_params);
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&dpp_base->degamma_params);
}
return true;
}
/* handle here the optimized cases when de-gamma ROM could be used.
*
*/
if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL);
cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params);
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params);
result = true;
break;
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS)
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
else {
/*
* if we are here, we did not handle correctly.
* fix is required for this use case
*/
BREAK_TO_DEBUGGER();
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
}
return result;
}
void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst };
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst;
opp_cnt++;
}
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
}
void dcn20_blank_pixel_data(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool blank)
{
struct tg_color black_color = {0};
struct stream_resource *stream_res = &pipe_ctx->stream_res;
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_color_space color_space = stream->output_color_space;
enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
struct pipe_ctx *odm_pipe;
int odm_cnt = 1;
int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
if (stream->link->test_pattern_enabled)
return;
/* get opp dpg blank color */
color_space_to_black_color(dc, color_space, &black_color);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
odm_cnt++;
width = width / odm_cnt;
if (blank) {
if (stream_res->abm)
stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm);
if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
}
} else {
test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
}
stream_res->opp->funcs->opp_set_disp_pattern_generator(
stream_res->opp,
test_pattern,
test_pattern_color_space,
stream->timing.display_color_depth,
&black_color,
width,
height,
0);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator(
odm_pipe->stream_res.opp,
dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ?
CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern,
test_pattern_color_space,
stream->timing.display_color_depth,
&black_color,
width,
height,
0);
}
if (!blank)
if (stream_res->abm) {
stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1);
stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
}
}
static void dcn20_power_on_plane(
struct dce_hwseq *hws,
struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(hws->ctx->logger);
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
DC_LOG_DEBUG(
"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
}
}
void dcn20_enable_plane(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
//if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
//}
dcn20_power_on_plane(dc->hwseq, pipe_ctx);
/* enable DCFCLK current DCHUB */
pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
/* initialize HUBP on power up */
pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
/* make sure OPP_PIPE_CLOCK_EN = 1 */
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
/* TODO: enable/disable in dm as per update type.
if (plane_state) {
DC_LOG_DC(dc->ctx->logger,
"Pipe:%d 0x%x: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;\n",
pipe_ctx->pipe_idx,
plane_state,
plane_state->address.grph.addr.high_part,
plane_state->address.grph.addr.low_part,
plane_state->src_rect.x,
plane_state->src_rect.y,
plane_state->src_rect.width,
plane_state->src_rect.height,
plane_state->dst_rect.x,
plane_state->dst_rect.y,
plane_state->dst_rect.width,
plane_state->dst_rect.height);
DC_LOG_DC(dc->ctx->logger,
"Pipe %d: width, height, x, y format:%d\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
plane_state->format,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
print_rq_dlg_ttu(dc, pipe_ctx);
}
*/
if (dc->vm_pa_config.valid) {
struct vm_system_aperture_param apt;
apt.sys_default.quad_part = 0;
apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
// Program system aperture settings
pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
}
// if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
// }
}
void dcn20_pipe_control_lock(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
bool flip_immediate = false;
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (!pipe || pipe->top_pipe)
return;
if (pipe->plane_state != NULL)
flip_immediate = pipe->plane_state->flip_immediate;
if (flip_immediate && lock) {
const int TIMEOUT_FOR_FLIP_PENDING = 100000;
int i;
for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) {
if (!pipe->plane_res.hubp->funcs->hubp_is_flip_pending(pipe->plane_res.hubp))
break;
udelay(1);
}
if (pipe->bottom_pipe != NULL) {
for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) {
if (!pipe->bottom_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(pipe->bottom_pipe->plane_res.hubp))
break;
udelay(1);
}
}
}
/* In flip immediate and pipe splitting case, we need to use GSL
* for synchronization. Only do setup on locking and on flip type change.
*/
if (lock && pipe->bottom_pipe != NULL)
if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
(!flip_immediate && pipe->stream_res.gsl_group > 0))
dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate);
if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
if (lock)
pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
} else {
if (lock)
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
}
}
static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe)
{
new_pipe->update_flags.raw = 0;
/* Exit on unchanged, unused pipe */
if (!old_pipe->plane_state && !new_pipe->plane_state)
return;
/* Detect pipe enable/disable */
if (!old_pipe->plane_state && new_pipe->plane_state) {
new_pipe->update_flags.bits.enable = 1;
new_pipe->update_flags.bits.mpcc = 1;
new_pipe->update_flags.bits.dppclk = 1;
new_pipe->update_flags.bits.hubp_interdependent = 1;
new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
new_pipe->update_flags.bits.gamut_remap = 1;
new_pipe->update_flags.bits.scaler = 1;
new_pipe->update_flags.bits.viewport = 1;
if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
new_pipe->update_flags.bits.odm = 1;
new_pipe->update_flags.bits.global_sync = 1;
}
return;
}
if (old_pipe->plane_state && !new_pipe->plane_state) {
new_pipe->update_flags.bits.disable = 1;
return;
}
/* Detect top pipe only changes */
if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) {
/* Detect odm changes */
if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe
&& old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx)
|| (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe)
|| (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe)
|| old_pipe->stream_res.opp != new_pipe->stream_res.opp)
new_pipe->update_flags.bits.odm = 1;
/* Detect global sync changes */
if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset
|| old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start
|| old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset
|| old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width)
new_pipe->update_flags.bits.global_sync = 1;
}
/*
* Detect opp / tg change, only set on change, not on enable
* Assume mpcc inst = pipe index, if not this code needs to be updated
* since mpcc is what is affected by these. In fact all of our sequence
* makes this assumption at the moment with how hubp reset is matched to
* same index mpcc reset.
*/
if (old_pipe->stream_res.opp != new_pipe->stream_res.opp)
new_pipe->update_flags.bits.opp_changed = 1;
if (old_pipe->stream_res.tg != new_pipe->stream_res.tg)
new_pipe->update_flags.bits.tg_changed = 1;
/* Detect mpcc blending changes, only dpp inst and bot matter here */
if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp
|| old_pipe->stream_res.opp != new_pipe->stream_res.opp
|| (!old_pipe->bottom_pipe && new_pipe->bottom_pipe)
|| (old_pipe->bottom_pipe && !new_pipe->bottom_pipe)
|| (old_pipe->bottom_pipe && new_pipe->bottom_pipe
&& old_pipe->bottom_pipe->plane_res.mpcc_inst
!= new_pipe->bottom_pipe->plane_res.mpcc_inst))
new_pipe->update_flags.bits.mpcc = 1;
/* Detect dppclk change */
if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz)
new_pipe->update_flags.bits.dppclk = 1;
/* Check for scl update */
if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data)))
new_pipe->update_flags.bits.scaler = 1;
/* Check for vp update */
if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect))
|| memcmp(&old_pipe->plane_res.scl_data.viewport_c,
&new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect)))
new_pipe->update_flags.bits.viewport = 1;
/* Detect dlg/ttu/rq updates */
{
struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs;
struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs;
struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs;
struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs;
/* Detect pipe interdependent updates */
if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch ||
old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch ||
old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c ||
old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank ||
old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank ||
old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip ||
old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip ||
old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l ||
old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c ||
old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l ||
old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l ||
old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c ||
old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l ||
old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c ||
old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 ||
old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 ||
old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank ||
old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) {
old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch;
old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch;
old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c;
old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank;
old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank;
old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip;
old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip;
old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l;
old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c;
old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l;
old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l;
old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c;
old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l;
old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c;
old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0;
old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1;
old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank;
old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip;
new_pipe->update_flags.bits.hubp_interdependent = 1;
}
/* Detect any other updates to ttu/rq/dlg */
if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) ||
memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) ||
memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs)))
new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
}
}
static void dcn20_update_dchubp_dpp(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool viewport_changed = false;
if (pipe_ctx->update_flags.bits.dppclk)
dpp->funcs->dpp_dppclk_control(dpp, false, true);
/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
* VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
* VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
*/
if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) {
hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst);
hubp->funcs->hubp_setup(
hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
}
if (pipe_ctx->update_flags.bits.hubp_interdependent)
hubp->funcs->hubp_setup_interdependent(
hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs);
if (pipe_ctx->update_flags.bits.enable ||
plane_state->update_flags.bits.bpp_change ||
plane_state->update_flags.bits.input_csc_change ||
plane_state->update_flags.bits.color_space_change ||
plane_state->update_flags.bits.coeff_reduction_change) {
struct dc_bias_and_scale bns_params = {0};
// program the input csc
dpp->funcs->dpp_setup(dpp,
plane_state->format,
EXPANSION_MODE_ZERO,
plane_state->input_csc_color_matrix,
plane_state->color_space,
NULL);
if (dpp->funcs->dpp_program_bias_and_scale) {
//TODO :for CNVC set scale and bias registers if necessary
build_prescale_params(&bns_params, plane_state);
dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params);
}
}
if (pipe_ctx->update_flags.bits.mpcc
|| plane_state->update_flags.bits.global_alpha_change
|| plane_state->update_flags.bits.per_pixel_alpha_change) {
// MPCC inst is equal to pipe index in practice
int mpcc_inst = hubp->inst;
int opp_inst;
int opp_count = dc->res_pool->pipe_count;
for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
break;
}
}
hws->funcs.update_mpcc(dc, pipe_ctx);
}
if (pipe_ctx->update_flags.bits.scaler ||
plane_state->update_flags.bits.scaling_change ||
plane_state->update_flags.bits.position_change ||
plane_state->update_flags.bits.per_pixel_alpha_change ||
pipe_ctx->stream->update_flags.bits.scaling) {
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha;
ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_30BPP);
/* scaler configuration */
pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
}
if (pipe_ctx->update_flags.bits.viewport ||
(context == dc->current_state && plane_state->update_flags.bits.position_change) ||
(context == dc->current_state && plane_state->update_flags.bits.scaling_change) ||
(context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) {
hubp->funcs->mem_program_viewport(
hubp,
&pipe_ctx->plane_res.scl_data.viewport,
&pipe_ctx->plane_res.scl_data.viewport_c);
viewport_changed = true;
}
/* Any updates are handled in dc interface, just need to apply existing for plane enable */
if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed ||
pipe_ctx->update_flags.bits.scaler || pipe_ctx->update_flags.bits.viewport)
&& pipe_ctx->stream->cursor_attributes.address.quad_part != 0) {
dc->hwss.set_cursor_position(pipe_ctx);
dc->hwss.set_cursor_attribute(pipe_ctx);
if (dc->hwss.set_cursor_sdr_white_level)
dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
}
/* Any updates are handled in dc interface, just need
* to apply existing for plane enable / opp change */
if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed
|| pipe_ctx->stream->update_flags.bits.gamut_remap
|| pipe_ctx->stream->update_flags.bits.out_csc) {
/* dpp/cm gamut remap*/
dc->hwss.program_gamut_remap(pipe_ctx);
/*call the dcn2 method which uses mpc csc*/
dc->hwss.program_output_csc(dc,
pipe_ctx,
pipe_ctx->stream->output_color_space,
pipe_ctx->stream->csc_color_matrix.matrix,
hubp->opp_id);
}
if (pipe_ctx->update_flags.bits.enable ||
pipe_ctx->update_flags.bits.opp_changed ||
plane_state->update_flags.bits.pixel_format_change ||
plane_state->update_flags.bits.horizontal_mirror_change ||
plane_state->update_flags.bits.rotation_change ||
plane_state->update_flags.bits.swizzle_change ||
plane_state->update_flags.bits.dcc_change ||
plane_state->update_flags.bits.bpp_change ||
plane_state->update_flags.bits.scaling_change ||
plane_state->update_flags.bits.plane_size_change) {
struct plane_size size = plane_state->plane_size;
size.surface_size = pipe_ctx->plane_res.scl_data.viewport;
hubp->funcs->hubp_program_surface_config(
hubp,
plane_state->format,
&plane_state->tiling_info,
&size,
plane_state->rotation,
&plane_state->dcc,
plane_state->horizontal_mirror,
0);
hubp->power_gated = false;
}
if (hubp->funcs->apply_PLAT_54186_wa && viewport_changed)
hubp->funcs->apply_PLAT_54186_wa(hubp, &plane_state->address);
if (pipe_ctx->update_flags.bits.enable || plane_state->update_flags.bits.addr_update)
hws->funcs.update_plane_addr(dc, pipe_ctx);
if (pipe_ctx->update_flags.bits.enable)
hubp->funcs->set_blank(hubp, false);
}
static void dcn20_program_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
struct dce_hwseq *hws = dc->hwseq;
/* Only need to unblank on top pipe */
if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level)
&& !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe)
hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible);
if (pipe_ctx->update_flags.bits.global_sync) {
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
pipe_ctx->stream_res.tg->funcs->set_vtg_params(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
if (hws->funcs.setup_vupdate_interrupt)
hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
}
if (pipe_ctx->update_flags.bits.odm)
hws->funcs.update_odm(dc, context, pipe_ctx);
if (pipe_ctx->update_flags.bits.enable)
dcn20_enable_plane(dc, pipe_ctx, context);
if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw)
dcn20_update_dchubp_dpp(dc, pipe_ctx, context);
if (pipe_ctx->update_flags.bits.enable
|| pipe_ctx->plane_state->update_flags.bits.hdr_mult)
hws->funcs.set_hdr_multiplier(pipe_ctx);
if (pipe_ctx->update_flags.bits.enable ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
/* dcn10_translate_regamma_to_hw_format takes 750us to finish
* only do gamma programming for powering on, internal memcmp to avoid
* updating on slave planes
*/
if (pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.out_tf)
hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
/* If the pipe has been enabled or has a different opp, we
* should reprogram the fmt. This deals with cases where
* interation between mpc and odm combine on different streams
* causes a different pipe to be chosen to odm combine with.
*/
if (pipe_ctx->update_flags.bits.enable
|| pipe_ctx->update_flags.bits.opp_changed) {
pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
pipe_ctx->stream_res.opp,
COLOR_SPACE_YCBCR601,
pipe_ctx->stream->timing.display_color_depth,
pipe_ctx->stream->signal);
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
pipe_ctx->stream_res.opp,
&pipe_ctx->stream->bit_depth_params,
&pipe_ctx->stream->clamping);
}
}
void dcn20_program_front_end_for_ctx(
struct dc *dc,
struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
DC_LOGGER_INIT(dc->ctx->logger);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) {
ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
if (dc->hwss.program_triplebuffer != NULL &&
!dc->debug.disable_tri_buf) {
/*turn off triple buffer for full update*/
dc->hwss.program_triplebuffer(
dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
}
}
}
/* Set pipe update flags and lock pipes */
for (i = 0; i < dc->res_pool->pipe_count; i++)
dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i],
&context->res_ctx.pipe_ctx[i]);
/* OTG blank before disabling all front ends */
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
&& !context->res_ctx.pipe_ctx[i].top_pipe
&& !context->res_ctx.pipe_ctx[i].prev_odm_pipe
&& context->res_ctx.pipe_ctx[i].stream)
hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true);
/* Disconnect mpcc */
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable
|| context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) {
hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx);
}
/*
* Program all updated pipes, order matters for mpcc setup. Start with
* top pipe and program all pipes that follow in order
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->plane_state && !pipe->top_pipe) {
while (pipe) {
dcn20_program_pipe(dc, pipe, context);
pipe = pipe->bottom_pipe;
}
/* Program secondary blending tree and writeback pipes */
pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->prev_odm_pipe && pipe->stream->num_wb_info > 0
&& (pipe->update_flags.raw || pipe->plane_state->update_flags.raw || pipe->stream->update_flags.raw)
&& hws->funcs.program_all_writeback_pipes_in_tree)
hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context);
}
}
}
void dcn20_post_unlock_program_front_end(
struct dc *dc,
struct dc_state *context)
{
int i;
const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100;
struct dce_hwseq *hwseq = dc->hwseq;
DC_LOGGER_INIT(dc->ctx->logger);
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable)
dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
/*
* If we are enabling a pipe, we need to wait for pending clear as this is a critical
* part of the enable operation otherwise, DM may request an immediate flip which
* will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which
* is unsupported on DCN.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable) {
struct hubp *hubp = pipe->plane_res.hubp;
int j = 0;
for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000
&& hubp->funcs->hubp_is_flip_pending(hubp); j++)
mdelay(1);
}
}
/* WA to apply WM setting*/
if (hwseq->wa.DEGVIDCN21)
dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub);
/* WA for stutter underflow during MPO transitions when adding 2nd plane */
if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) {
if (dc->current_state->stream_status[0].plane_count == 1 &&
context->stream_status[0].plane_count > 1) {
struct timing_generator *tg = dc->res_pool->timing_generators[0];
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false);
hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true;
hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg);
}
}
}
void dcn20_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
false);
/* program dchubbub watermarks */
dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
false);
}
void dcn20_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
true);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
true);
}
bool dcn20_update_bandwidth(
struct dc *dc,
struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
/* recalculate DML parameters */
if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false))
return false;
/* apply updated bandwidth parameters */
dc->hwss.prepare_bandwidth(dc, context);
/* update hubp configs for all pipes */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state == NULL)
continue;
if (pipe_ctx->top_pipe == NULL) {
bool blank = !is_pipe_tree_visible(pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
pipe_ctx->stream_res.tg->funcs->set_vtg_params(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
if (pipe_ctx->prev_odm_pipe == NULL)
hws->funcs.blank_pixel_data(dc, pipe_ctx, blank);
if (hws->funcs.setup_vupdate_interrupt)
hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
}
pipe_ctx->plane_res.hubp->funcs->hubp_setup(
pipe_ctx->plane_res.hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
}
return true;
}
void dcn20_enable_writeback(
struct dc *dc,
struct dc_writeback_info *wb_info,
struct dc_state *context)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
struct timing_generator *optc;
ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
ASSERT(wb_info->wb_enabled);
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
/* set the OPTC source mux */
optc = dc->res_pool->timing_generators[dwb->otg_inst];
optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
/* set MCIF_WB buffer and arbitration configuration */
mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
/* Enable MCIF_WB */
mcif_wb->funcs->enable_mcif(mcif_wb);
/* Enable DWB */
dwb->funcs->enable(dwb, &wb_info->dwb_params);
/* TODO: add sequence to enable/disable warmup */
}
void dcn20_disable_writeback(
struct dc *dc,
unsigned int dwb_pipe_inst)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
dwb = dc->res_pool->dwbc[dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
dwb->funcs->disable(dwb);
mcif_wb->funcs->disable_mcif(mcif_wb);
}
bool dcn20_wait_for_blank_complete(
struct output_pixel_processor *opp)
{
int counter;
for (counter = 0; counter < 1000; counter++) {
if (opp->funcs->dpg_is_blanked(opp))
break;
udelay(100);
}
if (counter == 1000) {
dm_error("DC: failed to blank crtc!\n");
return false;
}
return true;
}
bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
if (!hubp)
return false;
return hubp->funcs->dmdata_status_done(hubp);
}
void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true);
while (odm_pipe) {
dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true);
odm_pipe = odm_pipe->next_odm_pipe;
}
}
}
void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
dcn20_dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false);
while (odm_pipe) {
dcn20_dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false);
odm_pipe = odm_pipe->next_odm_pipe;
}
}
}
void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
{
struct dc_dmdata_attributes attr = { 0 };
struct hubp *hubp = pipe_ctx->plane_res.hubp;
attr.dmdata_mode = DMDATA_HW_MODE;
attr.dmdata_size =
dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
attr.address.quad_part =
pipe_ctx->stream->dmdata_address.quad_part;
attr.dmdata_dl_delta = 0;
attr.dmdata_qos_mode = 0;
attr.dmdata_qos_level = 0;
attr.dmdata_repeat = 1; /* always repeat */
attr.dmdata_updated = 1;
attr.dmdata_sw_data = NULL;
hubp->funcs->dmdata_set_attributes(hubp, &attr);
}
void dcn20_init_vm_ctx(
struct dce_hwseq *hws,
struct dc *dc,
struct dc_virtual_addr_space_config *va_config,
int vmid)
{
struct dcn_hubbub_virt_addr_config config;
if (vmid == 0) {
ASSERT(0); /* VMID cannot be 0 for vm context */
return;
}
config.page_table_start_addr = va_config->page_table_start_addr;
config.page_table_end_addr = va_config->page_table_end_addr;
config.page_table_block_size = va_config->page_table_block_size_in_bytes;
config.page_table_depth = va_config->page_table_depth;
config.page_table_base_addr = va_config->page_table_base_addr;
dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid);
}
int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config)
{
struct dcn_hubbub_phys_addr_config config;
config.system_aperture.fb_top = pa_config->system_aperture.fb_top;
config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset;
config.system_aperture.fb_base = pa_config->system_aperture.fb_base;
config.system_aperture.agp_top = pa_config->system_aperture.agp_top;
config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot;
config.system_aperture.agp_base = pa_config->system_aperture.agp_base;
config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr;
config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr;
config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr;
config.page_table_default_page_addr = pa_config->page_table_default_page_addr;
return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config);
}
static bool patch_address_for_sbs_tb_stereo(
struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.left_addr =
plane_state->address.grph_stereo.right_addr;
return true;
}
if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
plane_state->address.grph_stereo.right_addr =
plane_state->address.grph_stereo.left_addr;
}
return false;
}
void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
// Call Helper to track VMID use
vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst);
pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
pipe_ctx->plane_res.hubp,
&plane_state->address,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
if (plane_state->flip_immediate)
plane_state->status.current_address = plane_state->address;
if (addr_patched)
pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}
void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
struct pipe_ctx *odm_pipe;
params.opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
params.opp_cnt++;
}
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1)
params.timing.pix_clk_100hz /= 2;
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
hws->funcs.edp_backlight_control(link, true);
}
}
void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct timing_generator *tg = pipe_ctx->stream_res.tg;
int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx);
if (start_line < 0)
start_line = 0;
if (tg->funcs->setup_vertical_interrupt2)
tg->funcs->setup_vertical_interrupt2(tg, start_line);
}
static void dcn20_reset_back_end_for_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
int i;
struct dc_link *link;
DC_LOGGER_INIT(dc->ctx->logger);
if (pipe_ctx->stream_res.stream_enc == NULL) {
pipe_ctx->stream = NULL;
return;
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
link = pipe_ctx->stream->link;
/* DPMS may already disable or */
/* dpms_off status is incorrect due to fastboot
* feature. When system resume from S4 with second
* screen only, the dpms_off would be true but
* VBIOS lit up eDP, so check link status too.
*/
if (!pipe_ctx->stream->dpms_off || link->link_status.link_active)
core_link_disable_stream(pipe_ctx);
else if (pipe_ctx->stream_res.audio)
dc->hwss.disable_audio_stream(pipe_ctx);
/* free acquired resources */
if (pipe_ctx->stream_res.audio) {
/*disable az_endpoint*/
pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
/*free audio*/
if (dc->caps.dynamic_audio == true) {
/*we have to dynamic arbitrate the audio endpoints*/
/*we free the resource, need reset is_audio_acquired*/
update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
pipe_ctx->stream_res.audio, false);
pipe_ctx->stream_res.audio = NULL;
}
}
}
else if (pipe_ctx->stream_res.dsc) {
dp_set_dsc_enable(pipe_ctx, false);
}
/* by upper caller loop, parent pipe: pipe0, will be reset last.
* back end share by all pipes and will be disable only when disable
* parent pipe.
*/
if (pipe_ctx->top_pipe == NULL) {
if (pipe_ctx->stream_res.abm)
pipe_ctx->stream_res.abm->funcs->set_abm_immediate_disable(pipe_ctx->stream_res.abm);
pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, NULL);
}
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
break;
if (i == dc->res_pool->pipe_count)
return;
pipe_ctx->stream = NULL;
DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}
void dcn20_reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
/* Reset Back End*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx_old->stream)
continue;
if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
if (hws->funcs.enable_stream_gating)
hws->funcs.enable_stream_gating(dc, pipe_ctx);
if (old_clk)
old_clk->funcs->cs_power_down(old_clk);
}
}
}
void dcn20_get_mpctree_visual_confirm_color(
struct pipe_ctx *pipe_ctx,
struct tg_color *color)
{
const struct tg_color pipe_colors[6] = {
{MAX_TG_COLOR_VALUE, 0, 0}, // red
{MAX_TG_COLOR_VALUE, 0, MAX_TG_COLOR_VALUE}, // yellow
{0, MAX_TG_COLOR_VALUE, 0}, // blue
{MAX_TG_COLOR_VALUE / 2, 0, MAX_TG_COLOR_VALUE / 2}, // purple
{0, 0, MAX_TG_COLOR_VALUE}, // green
{MAX_TG_COLOR_VALUE, MAX_TG_COLOR_VALUE * 2 / 3, 0}, // orange
};
struct pipe_ctx *top_pipe = pipe_ctx;
while (top_pipe->top_pipe) {
top_pipe = top_pipe->top_pipe;
}
*color = pipe_colors[top_pipe->pipe_idx];
}
void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct mpcc_blnd_cfg blnd_cfg = { {0} };
bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha;
int mpcc_id;
struct mpcc *new_mpcc;
struct mpc *mpc = dc->res_pool->mpc;
struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
// input to MPCC is always RGB, by default leave black_color at 0
if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
hws->funcs.get_hdr_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
hws->funcs.get_surface_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE) {
dcn20_get_mpctree_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
}
if (per_pixel_alpha)
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
else
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
blnd_cfg.overlap_only = false;
blnd_cfg.global_gain = 0xff;
if (pipe_ctx->plane_state->global_alpha)
blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
else
blnd_cfg.global_alpha = 0xff;
blnd_cfg.background_color_bpc = 4;
blnd_cfg.bottom_gain_mode = 0;
blnd_cfg.top_gain = 0x1f000;
blnd_cfg.bottom_inside_gain = 0x1f000;
blnd_cfg.bottom_outside_gain = 0x1f000;
blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
/*
* TODO: remove hack
* Note: currently there is a bug in init_hw such that
* on resume from hibernate, BIOS sets up MPCC0, and
* we do mpcc_remove but the mpcc cannot go to idle
* after remove. This cause us to pick mpcc1 here,
* which causes a pstate hang for yet unknown reason.
*/
mpcc_id = hubp->inst;
/* check if this MPCC is already being used */
new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
/* remove MPCC if being used */
if (new_mpcc != NULL)
mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
else
if (dc->debug.sanity_checks)
mpc->funcs->assert_mpcc_idle_before_connect(
dc->res_pool->mpc, mpcc_id);
/* Call MPC to insert new plane */
new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
mpc_tree_params,
&blnd_cfg,
NULL,
NULL,
hubp->inst,
mpcc_id);
ASSERT(new_mpcc != NULL);
hubp->opp_id = pipe_ctx->stream_res.opp->inst;
hubp->mpcc_id = mpcc_id;
}
void dcn20_enable_stream(struct pipe_ctx *pipe_ctx)
{
enum dc_lane_count lane_count =
pipe_ctx->stream->link->cur_link_settings.lane_count;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct dc_link *link = pipe_ctx->stream->link;
uint32_t active_total_with_borders;
uint32_t early_control = 0;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
/* For MST, there are multiply stream go to only one link.
* connect DIG back_end to front_end while enable_stream and
* disconnect them during disable_stream
* BY this, it is logic clean to separate stream and link
*/
link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
pipe_ctx->stream_res.stream_enc->id, true);
if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) {
if (link->dc->hwss.program_dmdata_engine)
link->dc->hwss.program_dmdata_engine(pipe_ctx);
}
link->dc->hwss.update_info_frame(pipe_ctx);
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
timing->h_addressable
+ timing->h_border_left
+ timing->h_border_right;
if (lane_count != 0)
early_control = active_total_with_borders % lane_count;
if (early_control == 0)
early_control = lane_count;
tg->funcs->set_early_control(tg, early_control);
/* enable audio only within mode set */
if (pipe_ctx->stream_res.audio != NULL) {
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
}
}
void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
bool enable = false;
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal)
? dmdata_dp
: dmdata_hdmi;
/* if using dynamic meta, don't set up generic infopackets */
if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
enable = true;
}
if (!hubp)
return;
if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
return;
stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
hubp->inst, mode);
}
void dcn20_fpga_init_hw(struct dc *dc)
{
int i, j;
struct dce_hwseq *hws = dc->hwseq;
struct resource_pool *res_pool = dc->res_pool;
struct dc_state *context = dc->current_state;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
//Enable ability to power gate / don't force power on permanently
hws->funcs.enable_power_gating_plane(hws, true);
// Specific to FPGA dccg and registers
REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
hws->funcs.dccg_init(hws);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(REFCLK_CNTL, 0);
//
/* Blank pixel data with OPP DPG */
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
dcn20_init_blank(dc, tg);
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->lock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dpp *dpp = res_pool->dpps[i];
dpp->funcs->dpp_reset(dpp);
}
/* Reset all MPCC muxes */
res_pool->mpc->funcs->mpc_init(res_pool->mpc);
/* initialize OPP mpc_tree parameter */
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
for (j = 0; j < MAX_PIPES; j++)
res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = dc->res_pool->hubps[i];
struct dpp *dpp = dc->res_pool->dpps[i];
pipe_ctx->stream_res.tg = tg;
pipe_ctx->pipe_idx = i;
pipe_ctx->plane_res.hubp = hubp;
pipe_ctx->plane_res.dpp = dpp;
pipe_ctx->plane_res.mpcc_inst = dpp->inst;
hubp->mpcc_id = dpp->inst;
hubp->opp_id = OPP_ID_INVALID;
hubp->power_gated = false;
pipe_ctx->stream_res.opp = NULL;
hubp->funcs->hubp_init(hubp);
//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
/*to do*/
hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
}
/* initialize DWB pointer to MCIF_WB */
for (i = 0; i < res_pool->res_cap->num_dwb; i++)
res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->unlock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
dc->hwss.disable_plane(dc, pipe_ctx);
pipe_ctx->stream_res.tg = NULL;
pipe_ctx->plane_res.hubp = NULL;
}
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
tg->funcs->tg_init(tg);
}
}