| /* |
| * Core routines and tables shareable across OS platforms. |
| * |
| * Copyright (c) 1994-2002 Justin T. Gibbs. |
| * Copyright (c) 2000-2002 Adaptec Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| * |
| * $Id: //depot/aic7xxx/aic7xxx/aic7xxx.c#155 $ |
| */ |
| |
| #include "aic7xxx_osm.h" |
| #include "aic7xxx_inline.h" |
| #include "aicasm/aicasm_insformat.h" |
| |
| /***************************** Lookup Tables **********************************/ |
| static const char *const ahc_chip_names[] = { |
| "NONE", |
| "aic7770", |
| "aic7850", |
| "aic7855", |
| "aic7859", |
| "aic7860", |
| "aic7870", |
| "aic7880", |
| "aic7895", |
| "aic7895C", |
| "aic7890/91", |
| "aic7896/97", |
| "aic7892", |
| "aic7899" |
| }; |
| |
| /* |
| * Hardware error codes. |
| */ |
| struct ahc_hard_error_entry { |
| uint8_t errno; |
| const char *errmesg; |
| }; |
| |
| static const struct ahc_hard_error_entry ahc_hard_errors[] = { |
| { ILLHADDR, "Illegal Host Access" }, |
| { ILLSADDR, "Illegal Sequencer Address referenced" }, |
| { ILLOPCODE, "Illegal Opcode in sequencer program" }, |
| { SQPARERR, "Sequencer Parity Error" }, |
| { DPARERR, "Data-path Parity Error" }, |
| { MPARERR, "Scratch or SCB Memory Parity Error" }, |
| { PCIERRSTAT, "PCI Error detected" }, |
| { CIOPARERR, "CIOBUS Parity Error" }, |
| }; |
| static const u_int num_errors = ARRAY_SIZE(ahc_hard_errors); |
| |
| static const struct ahc_phase_table_entry ahc_phase_table[] = |
| { |
| { P_DATAOUT, MSG_NOOP, "in Data-out phase" }, |
| { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" }, |
| { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" }, |
| { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" }, |
| { P_COMMAND, MSG_NOOP, "in Command phase" }, |
| { P_MESGOUT, MSG_NOOP, "in Message-out phase" }, |
| { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" }, |
| { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" }, |
| { P_BUSFREE, MSG_NOOP, "while idle" }, |
| { 0, MSG_NOOP, "in unknown phase" } |
| }; |
| |
| /* |
| * In most cases we only wish to itterate over real phases, so |
| * exclude the last element from the count. |
| */ |
| static const u_int num_phases = ARRAY_SIZE(ahc_phase_table) - 1; |
| |
| /* |
| * Valid SCSIRATE values. (p. 3-17) |
| * Provides a mapping of tranfer periods in ns to the proper value to |
| * stick in the scsixfer reg. |
| */ |
| static const struct ahc_syncrate ahc_syncrates[] = |
| { |
| /* ultra2 fast/ultra period rate */ |
| { 0x42, 0x000, 9, "80.0" }, |
| { 0x03, 0x000, 10, "40.0" }, |
| { 0x04, 0x000, 11, "33.0" }, |
| { 0x05, 0x100, 12, "20.0" }, |
| { 0x06, 0x110, 15, "16.0" }, |
| { 0x07, 0x120, 18, "13.4" }, |
| { 0x08, 0x000, 25, "10.0" }, |
| { 0x19, 0x010, 31, "8.0" }, |
| { 0x1a, 0x020, 37, "6.67" }, |
| { 0x1b, 0x030, 43, "5.7" }, |
| { 0x1c, 0x040, 50, "5.0" }, |
| { 0x00, 0x050, 56, "4.4" }, |
| { 0x00, 0x060, 62, "4.0" }, |
| { 0x00, 0x070, 68, "3.6" }, |
| { 0x00, 0x000, 0, NULL } |
| }; |
| |
| /* Our Sequencer Program */ |
| #include "aic7xxx_seq.h" |
| |
| /**************************** Function Declarations ***************************/ |
| static void ahc_force_renegotiation(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static struct ahc_tmode_tstate* |
| ahc_alloc_tstate(struct ahc_softc *ahc, |
| u_int scsi_id, char channel); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_free_tstate(struct ahc_softc *ahc, |
| u_int scsi_id, char channel, int force); |
| #endif |
| static const struct ahc_syncrate* |
| ahc_devlimited_syncrate(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *, |
| u_int *period, |
| u_int *ppr_options, |
| role_t role); |
| static void ahc_update_pending_scbs(struct ahc_softc *ahc); |
| static void ahc_fetch_devinfo(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_scb_devinfo(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| static void ahc_assert_atn(struct ahc_softc *ahc); |
| static void ahc_setup_initiator_msgout(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| static void ahc_build_transfer_msg(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_construct_sdtr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int period, u_int offset); |
| static void ahc_construct_wdtr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int bus_width); |
| static void ahc_construct_ppr(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| u_int period, u_int offset, |
| u_int bus_width, u_int ppr_options); |
| static void ahc_clear_msg_state(struct ahc_softc *ahc); |
| static void ahc_handle_proto_violation(struct ahc_softc *ahc); |
| static void ahc_handle_message_phase(struct ahc_softc *ahc); |
| typedef enum { |
| AHCMSG_1B, |
| AHCMSG_2B, |
| AHCMSG_EXT |
| } ahc_msgtype; |
| static int ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, |
| u_int msgval, int full); |
| static int ahc_parse_msg(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static int ahc_handle_msg_reject(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_handle_ign_wide_residue(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo); |
| static void ahc_reinitialize_dataptrs(struct ahc_softc *ahc); |
| static void ahc_handle_devreset(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| cam_status status, char *message, |
| int verbose_level); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_setup_target_msgin(struct ahc_softc *ahc, |
| struct ahc_devinfo *devinfo, |
| struct scb *scb); |
| #endif |
| |
| static bus_dmamap_callback_t ahc_dmamap_cb; |
| static void ahc_build_free_scb_list(struct ahc_softc *ahc); |
| static int ahc_init_scbdata(struct ahc_softc *ahc); |
| static void ahc_fini_scbdata(struct ahc_softc *ahc); |
| static void ahc_qinfifo_requeue(struct ahc_softc *ahc, |
| struct scb *prev_scb, |
| struct scb *scb); |
| static int ahc_qinfifo_count(struct ahc_softc *ahc); |
| static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, |
| u_int prev, u_int scbptr); |
| static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc); |
| static u_int ahc_rem_wscb(struct ahc_softc *ahc, |
| u_int scbpos, u_int prev); |
| static void ahc_reset_current_bus(struct ahc_softc *ahc); |
| #ifdef AHC_DUMP_SEQ |
| static void ahc_dumpseq(struct ahc_softc *ahc); |
| #endif |
| static int ahc_loadseq(struct ahc_softc *ahc); |
| static int ahc_check_patch(struct ahc_softc *ahc, |
| const struct patch **start_patch, |
| u_int start_instr, u_int *skip_addr); |
| static void ahc_download_instr(struct ahc_softc *ahc, |
| u_int instrptr, uint8_t *dconsts); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_queue_lstate_event(struct ahc_softc *ahc, |
| struct ahc_tmode_lstate *lstate, |
| u_int initiator_id, |
| u_int event_type, |
| u_int event_arg); |
| static void ahc_update_scsiid(struct ahc_softc *ahc, |
| u_int targid_mask); |
| static int ahc_handle_target_cmd(struct ahc_softc *ahc, |
| struct target_cmd *cmd); |
| #endif |
| |
| static u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl); |
| static void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl); |
| static void ahc_busy_tcl(struct ahc_softc *ahc, |
| u_int tcl, u_int busyid); |
| |
| /************************** SCB and SCB queue management **********************/ |
| static void ahc_run_untagged_queues(struct ahc_softc *ahc); |
| static void ahc_run_untagged_queue(struct ahc_softc *ahc, |
| struct scb_tailq *queue); |
| |
| /****************************** Initialization ********************************/ |
| static void ahc_alloc_scbs(struct ahc_softc *ahc); |
| static void ahc_shutdown(void *arg); |
| |
| /*************************** Interrupt Services *******************************/ |
| static void ahc_clear_intstat(struct ahc_softc *ahc); |
| static void ahc_run_qoutfifo(struct ahc_softc *ahc); |
| #ifdef AHC_TARGET_MODE |
| static void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused); |
| #endif |
| static void ahc_handle_brkadrint(struct ahc_softc *ahc); |
| static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat); |
| static void ahc_handle_scsiint(struct ahc_softc *ahc, |
| u_int intstat); |
| static void ahc_clear_critical_section(struct ahc_softc *ahc); |
| |
| /***************************** Error Recovery *********************************/ |
| static void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb); |
| static int ahc_abort_scbs(struct ahc_softc *ahc, int target, |
| char channel, int lun, u_int tag, |
| role_t role, uint32_t status); |
| static void ahc_calc_residual(struct ahc_softc *ahc, |
| struct scb *scb); |
| |
| /*********************** Untagged Transaction Routines ************************/ |
| static inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc); |
| static inline void ahc_release_untagged_queues(struct ahc_softc *ahc); |
| |
| /* |
| * Block our completion routine from starting the next untagged |
| * transaction for this target or target lun. |
| */ |
| static inline void |
| ahc_freeze_untagged_queues(struct ahc_softc *ahc) |
| { |
| if ((ahc->flags & AHC_SCB_BTT) == 0) |
| ahc->untagged_queue_lock++; |
| } |
| |
| /* |
| * Allow the next untagged transaction for this target or target lun |
| * to be executed. We use a counting semaphore to allow the lock |
| * to be acquired recursively. Once the count drops to zero, the |
| * transaction queues will be run. |
| */ |
| static inline void |
| ahc_release_untagged_queues(struct ahc_softc *ahc) |
| { |
| if ((ahc->flags & AHC_SCB_BTT) == 0) { |
| ahc->untagged_queue_lock--; |
| if (ahc->untagged_queue_lock == 0) |
| ahc_run_untagged_queues(ahc); |
| } |
| } |
| |
| /************************* Sequencer Execution Control ************************/ |
| /* |
| * Work around any chip bugs related to halting sequencer execution. |
| * On Ultra2 controllers, we must clear the CIOBUS stretch signal by |
| * reading a register that will set this signal and deassert it. |
| * Without this workaround, if the chip is paused, by an interrupt or |
| * manual pause while accessing scb ram, accesses to certain registers |
| * will hang the system (infinite pci retries). |
| */ |
| static void |
| ahc_pause_bug_fix(struct ahc_softc *ahc) |
| { |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| (void)ahc_inb(ahc, CCSCBCTL); |
| } |
| |
| /* |
| * Determine whether the sequencer has halted code execution. |
| * Returns non-zero status if the sequencer is stopped. |
| */ |
| int |
| ahc_is_paused(struct ahc_softc *ahc) |
| { |
| return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0); |
| } |
| |
| /* |
| * Request that the sequencer stop and wait, indefinitely, for it |
| * to stop. The sequencer will only acknowledge that it is paused |
| * once it has reached an instruction boundary and PAUSEDIS is |
| * cleared in the SEQCTL register. The sequencer may use PAUSEDIS |
| * for critical sections. |
| */ |
| void |
| ahc_pause(struct ahc_softc *ahc) |
| { |
| ahc_outb(ahc, HCNTRL, ahc->pause); |
| |
| /* |
| * Since the sequencer can disable pausing in a critical section, we |
| * must loop until it actually stops. |
| */ |
| while (ahc_is_paused(ahc) == 0) |
| ; |
| |
| ahc_pause_bug_fix(ahc); |
| } |
| |
| /* |
| * Allow the sequencer to continue program execution. |
| * We check here to ensure that no additional interrupt |
| * sources that would cause the sequencer to halt have been |
| * asserted. If, for example, a SCSI bus reset is detected |
| * while we are fielding a different, pausing, interrupt type, |
| * we don't want to release the sequencer before going back |
| * into our interrupt handler and dealing with this new |
| * condition. |
| */ |
| void |
| ahc_unpause(struct ahc_softc *ahc) |
| { |
| if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0) |
| ahc_outb(ahc, HCNTRL, ahc->unpause); |
| } |
| |
| /************************** Memory mapping routines ***************************/ |
| static struct ahc_dma_seg * |
| ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr) |
| { |
| int sg_index; |
| |
| sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg); |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_index++; |
| |
| return (&scb->sg_list[sg_index]); |
| } |
| |
| static uint32_t |
| ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg) |
| { |
| int sg_index; |
| |
| /* sg_list_phys points to entry 1, not 0 */ |
| sg_index = sg - &scb->sg_list[1]; |
| |
| return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list))); |
| } |
| |
| static uint32_t |
| ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index) |
| { |
| return (ahc->scb_data->hscb_busaddr |
| + (sizeof(struct hardware_scb) * index)); |
| } |
| |
| static void |
| ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op) |
| { |
| ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat, |
| ahc->scb_data->hscb_dmamap, |
| /*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb), |
| /*len*/sizeof(*scb->hscb), op); |
| } |
| |
| void |
| ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op) |
| { |
| if (scb->sg_count == 0) |
| return; |
| |
| ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap, |
| /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr) |
| * sizeof(struct ahc_dma_seg), |
| /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| static uint32_t |
| ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index) |
| { |
| return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo); |
| } |
| #endif |
| |
| /*********************** Miscellaneous Support Functions ***********************/ |
| /* |
| * Determine whether the sequencer reported a residual |
| * for this SCB/transaction. |
| */ |
| static void |
| ahc_update_residual(struct ahc_softc *ahc, struct scb *scb) |
| { |
| uint32_t sgptr; |
| |
| sgptr = ahc_le32toh(scb->hscb->sgptr); |
| if ((sgptr & SG_RESID_VALID) != 0) |
| ahc_calc_residual(ahc, scb); |
| } |
| |
| /* |
| * Return pointers to the transfer negotiation information |
| * for the specified our_id/remote_id pair. |
| */ |
| struct ahc_initiator_tinfo * |
| ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id, |
| u_int remote_id, struct ahc_tmode_tstate **tstate) |
| { |
| /* |
| * Transfer data structures are stored from the perspective |
| * of the target role. Since the parameters for a connection |
| * in the initiator role to a given target are the same as |
| * when the roles are reversed, we pretend we are the target. |
| */ |
| if (channel == 'B') |
| our_id += 8; |
| *tstate = ahc->enabled_targets[our_id]; |
| return (&(*tstate)->transinfo[remote_id]); |
| } |
| |
| uint16_t |
| ahc_inw(struct ahc_softc *ahc, u_int port) |
| { |
| uint16_t r = ahc_inb(ahc, port+1) << 8; |
| return r | ahc_inb(ahc, port); |
| } |
| |
| void |
| ahc_outw(struct ahc_softc *ahc, u_int port, u_int value) |
| { |
| ahc_outb(ahc, port, value & 0xFF); |
| ahc_outb(ahc, port+1, (value >> 8) & 0xFF); |
| } |
| |
| uint32_t |
| ahc_inl(struct ahc_softc *ahc, u_int port) |
| { |
| return ((ahc_inb(ahc, port)) |
| | (ahc_inb(ahc, port+1) << 8) |
| | (ahc_inb(ahc, port+2) << 16) |
| | (ahc_inb(ahc, port+3) << 24)); |
| } |
| |
| void |
| ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value) |
| { |
| ahc_outb(ahc, port, (value) & 0xFF); |
| ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF); |
| ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF); |
| ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF); |
| } |
| |
| uint64_t |
| ahc_inq(struct ahc_softc *ahc, u_int port) |
| { |
| return ((ahc_inb(ahc, port)) |
| | (ahc_inb(ahc, port+1) << 8) |
| | (ahc_inb(ahc, port+2) << 16) |
| | (ahc_inb(ahc, port+3) << 24) |
| | (((uint64_t)ahc_inb(ahc, port+4)) << 32) |
| | (((uint64_t)ahc_inb(ahc, port+5)) << 40) |
| | (((uint64_t)ahc_inb(ahc, port+6)) << 48) |
| | (((uint64_t)ahc_inb(ahc, port+7)) << 56)); |
| } |
| |
| void |
| ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value) |
| { |
| ahc_outb(ahc, port, value & 0xFF); |
| ahc_outb(ahc, port+1, (value >> 8) & 0xFF); |
| ahc_outb(ahc, port+2, (value >> 16) & 0xFF); |
| ahc_outb(ahc, port+3, (value >> 24) & 0xFF); |
| ahc_outb(ahc, port+4, (value >> 32) & 0xFF); |
| ahc_outb(ahc, port+5, (value >> 40) & 0xFF); |
| ahc_outb(ahc, port+6, (value >> 48) & 0xFF); |
| ahc_outb(ahc, port+7, (value >> 56) & 0xFF); |
| } |
| |
| /* |
| * Get a free scb. If there are none, see if we can allocate a new SCB. |
| */ |
| struct scb * |
| ahc_get_scb(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| |
| if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) { |
| ahc_alloc_scbs(ahc); |
| scb = SLIST_FIRST(&ahc->scb_data->free_scbs); |
| if (scb == NULL) |
| return (NULL); |
| } |
| SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle); |
| return (scb); |
| } |
| |
| /* |
| * Return an SCB resource to the free list. |
| */ |
| void |
| ahc_free_scb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| |
| hscb = scb->hscb; |
| /* Clean up for the next user */ |
| ahc->scb_data->scbindex[hscb->tag] = NULL; |
| scb->flags = SCB_FREE; |
| hscb->control = 0; |
| |
| SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle); |
| |
| /* Notify the OSM that a resource is now available. */ |
| ahc_platform_scb_free(ahc, scb); |
| } |
| |
| struct scb * |
| ahc_lookup_scb(struct ahc_softc *ahc, u_int tag) |
| { |
| struct scb* scb; |
| |
| scb = ahc->scb_data->scbindex[tag]; |
| if (scb != NULL) |
| ahc_sync_scb(ahc, scb, |
| BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); |
| return (scb); |
| } |
| |
| static void |
| ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct hardware_scb *q_hscb; |
| u_int saved_tag; |
| |
| /* |
| * Our queuing method is a bit tricky. The card |
| * knows in advance which HSCB to download, and we |
| * can't disappoint it. To achieve this, the next |
| * SCB to download is saved off in ahc->next_queued_scb. |
| * When we are called to queue "an arbitrary scb", |
| * we copy the contents of the incoming HSCB to the one |
| * the sequencer knows about, swap HSCB pointers and |
| * finally assign the SCB to the tag indexed location |
| * in the scb_array. This makes sure that we can still |
| * locate the correct SCB by SCB_TAG. |
| */ |
| q_hscb = ahc->next_queued_scb->hscb; |
| saved_tag = q_hscb->tag; |
| memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); |
| if ((scb->flags & SCB_CDB32_PTR) != 0) { |
| q_hscb->shared_data.cdb_ptr = |
| ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag) |
| + offsetof(struct hardware_scb, cdb32)); |
| } |
| q_hscb->tag = saved_tag; |
| q_hscb->next = scb->hscb->tag; |
| |
| /* Now swap HSCB pointers. */ |
| ahc->next_queued_scb->hscb = scb->hscb; |
| scb->hscb = q_hscb; |
| |
| /* Now define the mapping from tag to SCB in the scbindex */ |
| ahc->scb_data->scbindex[scb->hscb->tag] = scb; |
| } |
| |
| /* |
| * Tell the sequencer about a new transaction to execute. |
| */ |
| void |
| ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb) |
| { |
| ahc_swap_with_next_hscb(ahc, scb); |
| |
| if (scb->hscb->tag == SCB_LIST_NULL |
| || scb->hscb->next == SCB_LIST_NULL) |
| panic("Attempt to queue invalid SCB tag %x:%x\n", |
| scb->hscb->tag, scb->hscb->next); |
| |
| /* |
| * Setup data "oddness". |
| */ |
| scb->hscb->lun &= LID; |
| if (ahc_get_transfer_length(scb) & 0x1) |
| scb->hscb->lun |= SCB_XFERLEN_ODD; |
| |
| /* |
| * Keep a history of SCBs we've downloaded in the qinfifo. |
| */ |
| ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag; |
| |
| /* |
| * Make sure our data is consistent from the |
| * perspective of the adapter. |
| */ |
| ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| |
| /* Tell the adapter about the newly queued SCB */ |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); |
| } else { |
| if ((ahc->features & AHC_AUTOPAUSE) == 0) |
| ahc_pause(ahc); |
| ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); |
| if ((ahc->features & AHC_AUTOPAUSE) == 0) |
| ahc_unpause(ahc); |
| } |
| } |
| |
| struct scsi_sense_data * |
| ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb) |
| { |
| int offset; |
| |
| offset = scb - ahc->scb_data->scbarray; |
| return (&ahc->scb_data->sense[offset]); |
| } |
| |
| static uint32_t |
| ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb) |
| { |
| int offset; |
| |
| offset = scb - ahc->scb_data->scbarray; |
| return (ahc->scb_data->sense_busaddr |
| + (offset * sizeof(struct scsi_sense_data))); |
| } |
| |
| /************************** Interrupt Processing ******************************/ |
| static void |
| ahc_sync_qoutfifo(struct ahc_softc *ahc, int op) |
| { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap, |
| /*offset*/0, /*len*/256, op); |
| } |
| |
| static void |
| ahc_sync_tqinfifo(struct ahc_softc *ahc, int op) |
| { |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0) { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| ahc_targetcmd_offset(ahc, 0), |
| sizeof(struct target_cmd) * AHC_TMODE_CMDS, |
| op); |
| } |
| #endif |
| } |
| |
| /* |
| * See if the firmware has posted any completed commands |
| * into our in-core command complete fifos. |
| */ |
| #define AHC_RUN_QOUTFIFO 0x1 |
| #define AHC_RUN_TQINFIFO 0x2 |
| static u_int |
| ahc_check_cmdcmpltqueues(struct ahc_softc *ahc) |
| { |
| u_int retval; |
| |
| retval = 0; |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap, |
| /*offset*/ahc->qoutfifonext, /*len*/1, |
| BUS_DMASYNC_POSTREAD); |
| if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) |
| retval |= AHC_RUN_QOUTFIFO; |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0 |
| && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) { |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| ahc_targetcmd_offset(ahc, ahc->tqinfifofnext), |
| /*len*/sizeof(struct target_cmd), |
| BUS_DMASYNC_POSTREAD); |
| if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0) |
| retval |= AHC_RUN_TQINFIFO; |
| } |
| #endif |
| return (retval); |
| } |
| |
| /* |
| * Catch an interrupt from the adapter |
| */ |
| int |
| ahc_intr(struct ahc_softc *ahc) |
| { |
| u_int intstat; |
| |
| if ((ahc->pause & INTEN) == 0) { |
| /* |
| * Our interrupt is not enabled on the chip |
| * and may be disabled for re-entrancy reasons, |
| * so just return. This is likely just a shared |
| * interrupt. |
| */ |
| return (0); |
| } |
| /* |
| * Instead of directly reading the interrupt status register, |
| * infer the cause of the interrupt by checking our in-core |
| * completion queues. This avoids a costly PCI bus read in |
| * most cases. |
| */ |
| if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0 |
| && (ahc_check_cmdcmpltqueues(ahc) != 0)) |
| intstat = CMDCMPLT; |
| else { |
| intstat = ahc_inb(ahc, INTSTAT); |
| } |
| |
| if ((intstat & INT_PEND) == 0) { |
| #if AHC_PCI_CONFIG > 0 |
| if (ahc->unsolicited_ints > 500) { |
| ahc->unsolicited_ints = 0; |
| if ((ahc->chip & AHC_PCI) != 0 |
| && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0) |
| ahc->bus_intr(ahc); |
| } |
| #endif |
| ahc->unsolicited_ints++; |
| return (0); |
| } |
| ahc->unsolicited_ints = 0; |
| |
| if (intstat & CMDCMPLT) { |
| ahc_outb(ahc, CLRINT, CLRCMDINT); |
| |
| /* |
| * Ensure that the chip sees that we've cleared |
| * this interrupt before we walk the output fifo. |
| * Otherwise, we may, due to posted bus writes, |
| * clear the interrupt after we finish the scan, |
| * and after the sequencer has added new entries |
| * and asserted the interrupt again. |
| */ |
| ahc_flush_device_writes(ahc); |
| ahc_run_qoutfifo(ahc); |
| #ifdef AHC_TARGET_MODE |
| if ((ahc->flags & AHC_TARGETROLE) != 0) |
| ahc_run_tqinfifo(ahc, /*paused*/FALSE); |
| #endif |
| } |
| |
| /* |
| * Handle statuses that may invalidate our cached |
| * copy of INTSTAT separately. |
| */ |
| if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) { |
| /* Hot eject. Do nothing */ |
| } else if (intstat & BRKADRINT) { |
| ahc_handle_brkadrint(ahc); |
| } else if ((intstat & (SEQINT|SCSIINT)) != 0) { |
| |
| ahc_pause_bug_fix(ahc); |
| |
| if ((intstat & SEQINT) != 0) |
| ahc_handle_seqint(ahc, intstat); |
| |
| if ((intstat & SCSIINT) != 0) |
| ahc_handle_scsiint(ahc, intstat); |
| } |
| return (1); |
| } |
| |
| /************************* Sequencer Execution Control ************************/ |
| /* |
| * Restart the sequencer program from address zero |
| */ |
| static void |
| ahc_restart(struct ahc_softc *ahc) |
| { |
| uint8_t sblkctl; |
| |
| ahc_pause(ahc); |
| |
| /* No more pending messages. */ |
| ahc_clear_msg_state(ahc); |
| |
| ahc_outb(ahc, SCSISIGO, 0); /* De-assert BSY */ |
| ahc_outb(ahc, MSG_OUT, MSG_NOOP); /* No message to send */ |
| ahc_outb(ahc, SXFRCTL1, ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET); |
| ahc_outb(ahc, LASTPHASE, P_BUSFREE); |
| ahc_outb(ahc, SAVED_SCSIID, 0xFF); |
| ahc_outb(ahc, SAVED_LUN, 0xFF); |
| |
| /* |
| * Ensure that the sequencer's idea of TQINPOS |
| * matches our own. The sequencer increments TQINPOS |
| * only after it sees a DMA complete and a reset could |
| * occur before the increment leaving the kernel to believe |
| * the command arrived but the sequencer to not. |
| */ |
| ahc_outb(ahc, TQINPOS, ahc->tqinfifonext); |
| |
| /* Always allow reselection */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| if ((ahc->features & AHC_CMD_CHAN) != 0) { |
| /* Ensure that no DMA operations are in progress */ |
| ahc_outb(ahc, CCSCBCNT, 0); |
| ahc_outb(ahc, CCSGCTL, 0); |
| ahc_outb(ahc, CCSCBCTL, 0); |
| } |
| /* |
| * If we were in the process of DMA'ing SCB data into |
| * an SCB, replace that SCB on the free list. This prevents |
| * an SCB leak. |
| */ |
| if ((ahc_inb(ahc, SEQ_FLAGS2) & SCB_DMA) != 0) { |
| ahc_add_curscb_to_free_list(ahc); |
| ahc_outb(ahc, SEQ_FLAGS2, |
| ahc_inb(ahc, SEQ_FLAGS2) & ~SCB_DMA); |
| } |
| |
| /* |
| * Clear any pending sequencer interrupt. It is no |
| * longer relevant since we're resetting the Program |
| * Counter. |
| */ |
| ahc_outb(ahc, CLRINT, CLRSEQINT); |
| |
| ahc_outb(ahc, MWI_RESIDUAL, 0); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl); |
| ahc_outb(ahc, SEQADDR0, 0); |
| ahc_outb(ahc, SEQADDR1, 0); |
| |
| /* |
| * Take the LED out of diagnostic mode on PM resume, too |
| */ |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON))); |
| |
| ahc_unpause(ahc); |
| } |
| |
| /************************* Input/Output Queues ********************************/ |
| static void |
| ahc_run_qoutfifo(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| u_int scb_index; |
| |
| ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD); |
| while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) { |
| |
| scb_index = ahc->qoutfifo[ahc->qoutfifonext]; |
| if ((ahc->qoutfifonext & 0x03) == 0x03) { |
| u_int modnext; |
| |
| /* |
| * Clear 32bits of QOUTFIFO at a time |
| * so that we don't clobber an incoming |
| * byte DMA to the array on architectures |
| * that only support 32bit load and store |
| * operations. |
| */ |
| modnext = ahc->qoutfifonext & ~0x3; |
| *((uint32_t *)(&ahc->qoutfifo[modnext])) = 0xFFFFFFFFUL; |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| /*offset*/modnext, /*len*/4, |
| BUS_DMASYNC_PREREAD); |
| } |
| ahc->qoutfifonext++; |
| |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| printk("%s: WARNING no command for scb %d " |
| "(cmdcmplt)\nQOUTPOS = %d\n", |
| ahc_name(ahc), scb_index, |
| (ahc->qoutfifonext - 1) & 0xFF); |
| continue; |
| } |
| |
| /* |
| * Save off the residual |
| * if there is one. |
| */ |
| ahc_update_residual(ahc, scb); |
| ahc_done(ahc, scb); |
| } |
| } |
| |
| static void |
| ahc_run_untagged_queues(struct ahc_softc *ahc) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| ahc_run_untagged_queue(ahc, &ahc->untagged_queues[i]); |
| } |
| |
| static void |
| ahc_run_untagged_queue(struct ahc_softc *ahc, struct scb_tailq *queue) |
| { |
| struct scb *scb; |
| |
| if (ahc->untagged_queue_lock != 0) |
| return; |
| |
| if ((scb = TAILQ_FIRST(queue)) != NULL |
| && (scb->flags & SCB_ACTIVE) == 0) { |
| scb->flags |= SCB_ACTIVE; |
| ahc_queue_scb(ahc, scb); |
| } |
| } |
| |
| /************************* Interrupt Handling *********************************/ |
| static void |
| ahc_handle_brkadrint(struct ahc_softc *ahc) |
| { |
| /* |
| * We upset the sequencer :-( |
| * Lookup the error message |
| */ |
| int i; |
| int error; |
| |
| error = ahc_inb(ahc, ERROR); |
| for (i = 0; error != 1 && i < num_errors; i++) |
| error >>= 1; |
| printk("%s: brkadrint, %s at seqaddr = 0x%x\n", |
| ahc_name(ahc), ahc_hard_errors[i].errmesg, |
| ahc_inb(ahc, SEQADDR0) | |
| (ahc_inb(ahc, SEQADDR1) << 8)); |
| |
| ahc_dump_card_state(ahc); |
| |
| /* Tell everyone that this HBA is no longer available */ |
| ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, |
| CAM_NO_HBA); |
| |
| /* Disable all interrupt sources by resetting the controller */ |
| ahc_shutdown(ahc); |
| } |
| |
| static void |
| ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat) |
| { |
| struct scb *scb; |
| struct ahc_devinfo devinfo; |
| |
| ahc_fetch_devinfo(ahc, &devinfo); |
| |
| /* |
| * Clear the upper byte that holds SEQINT status |
| * codes and clear the SEQINT bit. We will unpause |
| * the sequencer, if appropriate, after servicing |
| * the request. |
| */ |
| ahc_outb(ahc, CLRINT, CLRSEQINT); |
| switch (intstat & SEQINT_MASK) { |
| case BAD_STATUS: |
| { |
| u_int scb_index; |
| struct hardware_scb *hscb; |
| |
| /* |
| * Set the default return value to 0 (don't |
| * send sense). The sense code will change |
| * this if needed. |
| */ |
| ahc_outb(ahc, RETURN_1, 0); |
| |
| /* |
| * The sequencer will notify us when a command |
| * has an error that would be of interest to |
| * the kernel. This allows us to leave the sequencer |
| * running in the common case of command completes |
| * without error. The sequencer will already have |
| * dma'd the SCB back up to us, so we can reference |
| * the in kernel copy directly. |
| */ |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("ahc_intr - referenced scb " |
| "not valid during seqint 0x%x scb(%d)\n", |
| intstat, scb_index); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| goto unpause; |
| } |
| |
| hscb = scb->hscb; |
| |
| /* Don't want to clobber the original sense code */ |
| if ((scb->flags & SCB_SENSE) != 0) { |
| /* |
| * Clear the SCB_SENSE Flag and have |
| * the sequencer do a normal command |
| * complete. |
| */ |
| scb->flags &= ~SCB_SENSE; |
| ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); |
| break; |
| } |
| ahc_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR); |
| /* Freeze the queue until the client sees the error. */ |
| ahc_freeze_devq(ahc, scb); |
| ahc_freeze_scb(scb); |
| ahc_set_scsi_status(scb, hscb->shared_data.status.scsi_status); |
| switch (hscb->shared_data.status.scsi_status) { |
| case SCSI_STATUS_OK: |
| printk("%s: Interrupted for status of 0???\n", |
| ahc_name(ahc)); |
| break; |
| case SCSI_STATUS_CMD_TERMINATED: |
| case SCSI_STATUS_CHECK_COND: |
| { |
| struct ahc_dma_seg *sg; |
| struct scsi_sense *sc; |
| struct ahc_initiator_tinfo *targ_info; |
| struct ahc_tmode_tstate *tstate; |
| struct ahc_transinfo *tinfo; |
| #ifdef AHC_DEBUG |
| if (ahc_debug & AHC_SHOW_SENSE) { |
| ahc_print_path(ahc, scb); |
| printk("SCB %d: requests Check Status\n", |
| scb->hscb->tag); |
| } |
| #endif |
| |
| if (ahc_perform_autosense(scb) == 0) |
| break; |
| |
| targ_info = ahc_fetch_transinfo(ahc, |
| devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, |
| &tstate); |
| tinfo = &targ_info->curr; |
| sg = scb->sg_list; |
| sc = (struct scsi_sense *)(&hscb->shared_data.cdb); |
| /* |
| * Save off the residual if there is one. |
| */ |
| ahc_update_residual(ahc, scb); |
| #ifdef AHC_DEBUG |
| if (ahc_debug & AHC_SHOW_SENSE) { |
| ahc_print_path(ahc, scb); |
| printk("Sending Sense\n"); |
| } |
| #endif |
| sg->addr = ahc_get_sense_bufaddr(ahc, scb); |
| sg->len = ahc_get_sense_bufsize(ahc, scb); |
| sg->len |= AHC_DMA_LAST_SEG; |
| |
| /* Fixup byte order */ |
| sg->addr = ahc_htole32(sg->addr); |
| sg->len = ahc_htole32(sg->len); |
| |
| sc->opcode = REQUEST_SENSE; |
| sc->byte2 = 0; |
| if (tinfo->protocol_version <= SCSI_REV_2 |
| && SCB_GET_LUN(scb) < 8) |
| sc->byte2 = SCB_GET_LUN(scb) << 5; |
| sc->unused[0] = 0; |
| sc->unused[1] = 0; |
| sc->length = sg->len; |
| sc->control = 0; |
| |
| /* |
| * We can't allow the target to disconnect. |
| * This will be an untagged transaction and |
| * having the target disconnect will make this |
| * transaction indestinguishable from outstanding |
| * tagged transactions. |
| */ |
| hscb->control = 0; |
| |
| /* |
| * This request sense could be because the |
| * the device lost power or in some other |
| * way has lost our transfer negotiations. |
| * Renegotiate if appropriate. Unit attention |
| * errors will be reported before any data |
| * phases occur. |
| */ |
| if (ahc_get_residual(scb) |
| == ahc_get_transfer_length(scb)) { |
| ahc_update_neg_request(ahc, &devinfo, |
| tstate, targ_info, |
| AHC_NEG_IF_NON_ASYNC); |
| } |
| if (tstate->auto_negotiate & devinfo.target_mask) { |
| hscb->control |= MK_MESSAGE; |
| scb->flags &= ~SCB_NEGOTIATE; |
| scb->flags |= SCB_AUTO_NEGOTIATE; |
| } |
| hscb->cdb_len = sizeof(*sc); |
| hscb->dataptr = sg->addr; |
| hscb->datacnt = sg->len; |
| hscb->sgptr = scb->sg_list_phys | SG_FULL_RESID; |
| hscb->sgptr = ahc_htole32(hscb->sgptr); |
| scb->sg_count = 1; |
| scb->flags |= SCB_SENSE; |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| ahc_outb(ahc, RETURN_1, SEND_SENSE); |
| /* |
| * Ensure we have enough time to actually |
| * retrieve the sense. |
| */ |
| ahc_scb_timer_reset(scb, 5 * 1000000); |
| break; |
| } |
| default: |
| break; |
| } |
| break; |
| } |
| case NO_MATCH: |
| { |
| /* Ensure we don't leave the selection hardware on */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| |
| printk("%s:%c:%d: no active SCB for reconnecting " |
| "target - issuing BUS DEVICE RESET\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target); |
| printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " |
| "ARG_1 == 0x%x ACCUM = 0x%x\n", |
| ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN), |
| ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM)); |
| printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " |
| "SINDEX == 0x%x\n", |
| ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR), |
| ahc_index_busy_tcl(ahc, |
| BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID), |
| ahc_inb(ahc, SAVED_LUN))), |
| ahc_inb(ahc, SINDEX)); |
| printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " |
| "SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n", |
| ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID), |
| ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG), |
| ahc_inb(ahc, SCB_CONTROL)); |
| printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n", |
| ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI)); |
| printk("SXFRCTL0 == 0x%x\n", ahc_inb(ahc, SXFRCTL0)); |
| printk("SEQCTL == 0x%x\n", ahc_inb(ahc, SEQCTL)); |
| ahc_dump_card_state(ahc); |
| ahc->msgout_buf[0] = MSG_BUS_DEV_RESET; |
| ahc->msgout_len = 1; |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| ahc_outb(ahc, MSG_OUT, HOST_MSG); |
| ahc_assert_atn(ahc); |
| break; |
| } |
| case SEND_REJECT: |
| { |
| u_int rejbyte = ahc_inb(ahc, ACCUM); |
| printk("%s:%c:%d: Warning - unknown message received from " |
| "target (0x%x). Rejecting\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte); |
| break; |
| } |
| case PROTO_VIOLATION: |
| { |
| ahc_handle_proto_violation(ahc); |
| break; |
| } |
| case IGN_WIDE_RES: |
| ahc_handle_ign_wide_residue(ahc, &devinfo); |
| break; |
| case PDATA_REINIT: |
| ahc_reinitialize_dataptrs(ahc); |
| break; |
| case BAD_PHASE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| printk("%s:%c:%d: unknown scsi bus phase %x, " |
| "lastphase = 0x%x. Attempting to continue\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| lastphase, ahc_inb(ahc, SCSISIGI)); |
| break; |
| } |
| case MISSED_BUSFREE: |
| { |
| u_int lastphase; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| printk("%s:%c:%d: Missed busfree. " |
| "Lastphase = 0x%x, Curphase = 0x%x\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| lastphase, ahc_inb(ahc, SCSISIGI)); |
| ahc_restart(ahc); |
| return; |
| } |
| case HOST_MSG_LOOP: |
| { |
| /* |
| * The sequencer has encountered a message phase |
| * that requires host assistance for completion. |
| * While handling the message phase(s), we will be |
| * notified by the sequencer after each byte is |
| * transferred so we can track bus phase changes. |
| * |
| * If this is the first time we've seen a HOST_MSG_LOOP |
| * interrupt, initialize the state of the host message |
| * loop. |
| */ |
| if (ahc->msg_type == MSG_TYPE_NONE) { |
| struct scb *scb; |
| u_int scb_index; |
| u_int bus_phase; |
| |
| bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| if (bus_phase != P_MESGIN |
| && bus_phase != P_MESGOUT) { |
| printk("ahc_intr: HOST_MSG_LOOP bad " |
| "phase 0x%x\n", |
| bus_phase); |
| /* |
| * Probably transitioned to bus free before |
| * we got here. Just punt the message. |
| */ |
| ahc_clear_intstat(ahc); |
| ahc_restart(ahc); |
| return; |
| } |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (devinfo.role == ROLE_INITIATOR) { |
| if (bus_phase == P_MESGOUT) { |
| if (scb == NULL) |
| panic("HOST_MSG_LOOP with " |
| "invalid SCB %x\n", |
| scb_index); |
| |
| ahc_setup_initiator_msgout(ahc, |
| &devinfo, |
| scb); |
| } else { |
| ahc->msg_type = |
| MSG_TYPE_INITIATOR_MSGIN; |
| ahc->msgin_index = 0; |
| } |
| } |
| #ifdef AHC_TARGET_MODE |
| else { |
| if (bus_phase == P_MESGOUT) { |
| ahc->msg_type = |
| MSG_TYPE_TARGET_MSGOUT; |
| ahc->msgin_index = 0; |
| } |
| else |
| ahc_setup_target_msgin(ahc, |
| &devinfo, |
| scb); |
| } |
| #endif |
| } |
| |
| ahc_handle_message_phase(ahc); |
| break; |
| } |
| case PERR_DETECTED: |
| { |
| /* |
| * If we've cleared the parity error interrupt |
| * but the sequencer still believes that SCSIPERR |
| * is true, it must be that the parity error is |
| * for the currently presented byte on the bus, |
| * and we are not in a phase (data-in) where we will |
| * eventually ack this byte. Ack the byte and |
| * throw it away in the hope that the target will |
| * take us to message out to deliver the appropriate |
| * error message. |
| */ |
| if ((intstat & SCSIINT) == 0 |
| && (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) { |
| |
| if ((ahc->features & AHC_DT) == 0) { |
| u_int curphase; |
| |
| /* |
| * The hardware will only let you ack bytes |
| * if the expected phase in SCSISIGO matches |
| * the current phase. Make sure this is |
| * currently the case. |
| */ |
| curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| ahc_outb(ahc, LASTPHASE, curphase); |
| ahc_outb(ahc, SCSISIGO, curphase); |
| } |
| if ((ahc_inb(ahc, SCSISIGI) & (CDI|MSGI)) == 0) { |
| int wait; |
| |
| /* |
| * In a data phase. Faster to bitbucket |
| * the data than to individually ack each |
| * byte. This is also the only strategy |
| * that will work with AUTOACK enabled. |
| */ |
| ahc_outb(ahc, SXFRCTL1, |
| ahc_inb(ahc, SXFRCTL1) | BITBUCKET); |
| wait = 5000; |
| while (--wait != 0) { |
| if ((ahc_inb(ahc, SCSISIGI) |
| & (CDI|MSGI)) != 0) |
| break; |
| ahc_delay(100); |
| } |
| ahc_outb(ahc, SXFRCTL1, |
| ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET); |
| if (wait == 0) { |
| struct scb *scb; |
| u_int scb_index; |
| |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("Unable to clear parity error. " |
| "Resetting bus.\n"); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb != NULL) |
| ahc_set_transaction_status(scb, |
| CAM_UNCOR_PARITY); |
| ahc_reset_channel(ahc, devinfo.channel, |
| /*init reset*/TRUE); |
| } |
| } else { |
| ahc_inb(ahc, SCSIDATL); |
| } |
| } |
| break; |
| } |
| case DATA_OVERRUN: |
| { |
| /* |
| * When the sequencer detects an overrun, it |
| * places the controller in "BITBUCKET" mode |
| * and allows the target to complete its transfer. |
| * Unfortunately, none of the counters get updated |
| * when the controller is in this mode, so we have |
| * no way of knowing how large the overrun was. |
| */ |
| u_int scbindex = ahc_inb(ahc, SCB_TAG); |
| u_int lastphase = ahc_inb(ahc, LASTPHASE); |
| u_int i; |
| |
| scb = ahc_lookup_scb(ahc, scbindex); |
| for (i = 0; i < num_phases; i++) { |
| if (lastphase == ahc_phase_table[i].phase) |
| break; |
| } |
| ahc_print_path(ahc, scb); |
| printk("data overrun detected %s." |
| " Tag == 0x%x.\n", |
| ahc_phase_table[i].phasemsg, |
| scb->hscb->tag); |
| ahc_print_path(ahc, scb); |
| printk("%s seen Data Phase. Length = %ld. NumSGs = %d.\n", |
| ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't", |
| ahc_get_transfer_length(scb), scb->sg_count); |
| if (scb->sg_count > 0) { |
| for (i = 0; i < scb->sg_count; i++) { |
| |
| printk("sg[%d] - Addr 0x%x%x : Length %d\n", |
| i, |
| (ahc_le32toh(scb->sg_list[i].len) >> 24 |
| & SG_HIGH_ADDR_BITS), |
| ahc_le32toh(scb->sg_list[i].addr), |
| ahc_le32toh(scb->sg_list[i].len) |
| & AHC_SG_LEN_MASK); |
| } |
| } |
| /* |
| * Set this and it will take effect when the |
| * target does a command complete. |
| */ |
| ahc_freeze_devq(ahc, scb); |
| if ((scb->flags & SCB_SENSE) == 0) { |
| ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); |
| } else { |
| scb->flags &= ~SCB_SENSE; |
| ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); |
| } |
| ahc_freeze_scb(scb); |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| /* |
| * Clear the channel in case we return |
| * to data phase later. |
| */ |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN); |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN); |
| } |
| if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) { |
| u_int dscommand1; |
| |
| /* Ensure HHADDR is 0 for future DMA operations. */ |
| dscommand1 = ahc_inb(ahc, DSCOMMAND1); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0); |
| ahc_outb(ahc, HADDR, 0); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1); |
| } |
| break; |
| } |
| case MKMSG_FAILED: |
| { |
| u_int scbindex; |
| |
| printk("%s:%c:%d:%d: Attempt to issue message failed\n", |
| ahc_name(ahc), devinfo.channel, devinfo.target, |
| devinfo.lun); |
| scbindex = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scbindex); |
| if (scb != NULL |
| && (scb->flags & SCB_RECOVERY_SCB) != 0) |
| /* |
| * Ensure that we didn't put a second instance of this |
| * SCB into the QINFIFO. |
| */ |
| ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb), |
| SCB_GET_CHANNEL(ahc, scb), |
| SCB_GET_LUN(scb), scb->hscb->tag, |
| ROLE_INITIATOR, /*status*/0, |
| SEARCH_REMOVE); |
| break; |
| } |
| case NO_FREE_SCB: |
| { |
| printk("%s: No free or disconnected SCBs\n", ahc_name(ahc)); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| case SCB_MISMATCH: |
| { |
| u_int scbptr; |
| |
| scbptr = ahc_inb(ahc, SCBPTR); |
| printk("Bogus TAG after DMA. SCBPTR %d, tag %d, our tag %d\n", |
| scbptr, ahc_inb(ahc, ARG_1), |
| ahc->scb_data->hscbs[scbptr].tag); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| case OUT_OF_RANGE: |
| { |
| printk("%s: BTT calculation out of range\n", ahc_name(ahc)); |
| printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " |
| "ARG_1 == 0x%x ACCUM = 0x%x\n", |
| ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN), |
| ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM)); |
| printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " |
| "SINDEX == 0x%x\n, A == 0x%x\n", |
| ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR), |
| ahc_index_busy_tcl(ahc, |
| BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID), |
| ahc_inb(ahc, SAVED_LUN))), |
| ahc_inb(ahc, SINDEX), |
| ahc_inb(ahc, ACCUM)); |
| printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " |
| "SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n", |
| ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID), |
| ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG), |
| ahc_inb(ahc, SCB_CONTROL)); |
| printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n", |
| ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI)); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| break; |
| } |
| default: |
| printk("ahc_intr: seqint, " |
| "intstat == 0x%x, scsisigi = 0x%x\n", |
| intstat, ahc_inb(ahc, SCSISIGI)); |
| break; |
| } |
| unpause: |
| /* |
| * The sequencer is paused immediately on |
| * a SEQINT, so we should restart it when |
| * we're done. |
| */ |
| ahc_unpause(ahc); |
| } |
| |
| static void |
| ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat) |
| { |
| u_int scb_index; |
| u_int status0; |
| u_int status; |
| struct scb *scb; |
| char cur_channel; |
| char intr_channel; |
| |
| if ((ahc->features & AHC_TWIN) != 0 |
| && ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0)) |
| cur_channel = 'B'; |
| else |
| cur_channel = 'A'; |
| intr_channel = cur_channel; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| status0 = ahc_inb(ahc, SSTAT0) & IOERR; |
| else |
| status0 = 0; |
| status = ahc_inb(ahc, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); |
| if (status == 0 && status0 == 0) { |
| if ((ahc->features & AHC_TWIN) != 0) { |
| /* Try the other channel */ |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB); |
| status = ahc_inb(ahc, SSTAT1) |
| & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); |
| intr_channel = (cur_channel == 'A') ? 'B' : 'A'; |
| } |
| if (status == 0) { |
| printk("%s: Spurious SCSI interrupt\n", ahc_name(ahc)); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_unpause(ahc); |
| return; |
| } |
| } |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahc_clear_critical_section(ahc); |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb != NULL |
| && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) |
| scb = NULL; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0 |
| && (status0 & IOERR) != 0) { |
| int now_lvd; |
| |
| now_lvd = ahc_inb(ahc, SBLKCTL) & ENAB40; |
| printk("%s: Transceiver State Has Changed to %s mode\n", |
| ahc_name(ahc), now_lvd ? "LVD" : "SE"); |
| ahc_outb(ahc, CLRSINT0, CLRIOERR); |
| /* |
| * When transitioning to SE mode, the reset line |
| * glitches, triggering an arbitration bug in some |
| * Ultra2 controllers. This bug is cleared when we |
| * assert the reset line. Since a reset glitch has |
| * already occurred with this transition and a |
| * transceiver state change is handled just like |
| * a bus reset anyway, asserting the reset line |
| * ourselves is safe. |
| */ |
| ahc_reset_channel(ahc, intr_channel, |
| /*Initiate Reset*/now_lvd == 0); |
| } else if ((status & SCSIRSTI) != 0) { |
| printk("%s: Someone reset channel %c\n", |
| ahc_name(ahc), intr_channel); |
| if (intr_channel != cur_channel) |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB); |
| ahc_reset_channel(ahc, intr_channel, /*Initiate Reset*/FALSE); |
| } else if ((status & SCSIPERR) != 0) { |
| /* |
| * Determine the bus phase and queue an appropriate message. |
| * SCSIPERR is latched true as soon as a parity error |
| * occurs. If the sequencer acked the transfer that |
| * caused the parity error and the currently presented |
| * transfer on the bus has correct parity, SCSIPERR will |
| * be cleared by CLRSCSIPERR. Use this to determine if |
| * we should look at the last phase the sequencer recorded, |
| * or the current phase presented on the bus. |
| */ |
| struct ahc_devinfo devinfo; |
| u_int mesg_out; |
| u_int curphase; |
| u_int errorphase; |
| u_int lastphase; |
| u_int scsirate; |
| u_int i; |
| u_int sstat2; |
| int silent; |
| |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| sstat2 = ahc_inb(ahc, SSTAT2); |
| ahc_outb(ahc, CLRSINT1, CLRSCSIPERR); |
| /* |
| * For all phases save DATA, the sequencer won't |
| * automatically ack a byte that has a parity error |
| * in it. So the only way that the current phase |
| * could be 'data-in' is if the parity error is for |
| * an already acked byte in the data phase. During |
| * synchronous data-in transfers, we may actually |
| * ack bytes before latching the current phase in |
| * LASTPHASE, leading to the discrepancy between |
| * curphase and lastphase. |
| */ |
| if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0 |
| || curphase == P_DATAIN || curphase == P_DATAIN_DT) |
| errorphase = curphase; |
| else |
| errorphase = lastphase; |
| |
| for (i = 0; i < num_phases; i++) { |
| if (errorphase == ahc_phase_table[i].phase) |
| break; |
| } |
| mesg_out = ahc_phase_table[i].mesg_out; |
| silent = FALSE; |
| if (scb != NULL) { |
| if (SCB_IS_SILENT(scb)) |
| silent = TRUE; |
| else |
| ahc_print_path(ahc, scb); |
| scb->flags |= SCB_TRANSMISSION_ERROR; |
| } else |
| printk("%s:%c:%d: ", ahc_name(ahc), intr_channel, |
| SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID))); |
| scsirate = ahc_inb(ahc, SCSIRATE); |
| if (silent == FALSE) { |
| printk("parity error detected %s. " |
| "SEQADDR(0x%x) SCSIRATE(0x%x)\n", |
| ahc_phase_table[i].phasemsg, |
| ahc_inw(ahc, SEQADDR0), |
| scsirate); |
| if ((ahc->features & AHC_DT) != 0) { |
| if ((sstat2 & CRCVALERR) != 0) |
| printk("\tCRC Value Mismatch\n"); |
| if ((sstat2 & CRCENDERR) != 0) |
| printk("\tNo terminal CRC packet " |
| "received\n"); |
| if ((sstat2 & CRCREQERR) != 0) |
| printk("\tIllegal CRC packet " |
| "request\n"); |
| if ((sstat2 & DUAL_EDGE_ERR) != 0) |
| printk("\tUnexpected %sDT Data Phase\n", |
| (scsirate & SINGLE_EDGE) |
| ? "" : "non-"); |
| } |
| } |
| |
| if ((ahc->features & AHC_DT) != 0 |
| && (sstat2 & DUAL_EDGE_ERR) != 0) { |
| /* |
| * This error applies regardless of |
| * data direction, so ignore the value |
| * in the phase table. |
| */ |
| mesg_out = MSG_INITIATOR_DET_ERR; |
| } |
| |
| /* |
| * We've set the hardware to assert ATN if we |
| * get a parity error on "in" phases, so all we |
| * need to do is stuff the message buffer with |
| * the appropriate message. "In" phases have set |
| * mesg_out to something other than MSG_NOP. |
| */ |
| if (mesg_out != MSG_NOOP) { |
| if (ahc->msg_type != MSG_TYPE_NONE) |
| ahc->send_msg_perror = TRUE; |
| else |
| ahc_outb(ahc, MSG_OUT, mesg_out); |
| } |
| /* |
| * Force a renegotiation with this target just in |
| * case we are out of sync for some external reason |
| * unknown (or unreported) by the target. |
| */ |
| ahc_fetch_devinfo(ahc, &devinfo); |
| ahc_force_renegotiation(ahc, &devinfo); |
| |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_unpause(ahc); |
| } else if ((status & SELTO) != 0) { |
| u_int scbptr; |
| |
| /* Stop the selection */ |
| ahc_outb(ahc, SCSISEQ, 0); |
| |
| /* No more pending messages */ |
| ahc_clear_msg_state(ahc); |
| |
| /* Clear interrupt state */ |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE); |
| ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR); |
| |
| /* |
| * Although the driver does not care about the |
| * 'Selection in Progress' status bit, the busy |
| * LED does. SELINGO is only cleared by a successful |
| * selection, so we must manually clear it to insure |
| * the LED turns off just incase no future successful |
| * selections occur (e.g. no devices on the bus). |
| */ |
| ahc_outb(ahc, CLRSINT0, CLRSELINGO); |
| |
| scbptr = ahc_inb(ahc, WAITING_SCBH); |
| ahc_outb(ahc, SCBPTR, scbptr); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| printk("%s: ahc_intr - referenced scb not " |
| "valid during SELTO scb(%d, %d)\n", |
| ahc_name(ahc), scbptr, scb_index); |
| ahc_dump_card_state(ahc); |
| } else { |
| struct ahc_devinfo devinfo; |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_SELTO) != 0) { |
| ahc_print_path(ahc, scb); |
| printk("Saw Selection Timeout for SCB 0x%x\n", |
| scb_index); |
| } |
| #endif |
| ahc_scb_devinfo(ahc, &devinfo, scb); |
| ahc_set_transaction_status(scb, CAM_SEL_TIMEOUT); |
| ahc_freeze_devq(ahc, scb); |
| |
| /* |
| * Cancel any pending transactions on the device |
| * now that it seems to be missing. This will |
| * also revert us to async/narrow transfers until |
| * we can renegotiate with the device. |
| */ |
| ahc_handle_devreset(ahc, &devinfo, |
| CAM_SEL_TIMEOUT, |
| "Selection Timeout", |
| /*verbose_level*/1); |
| } |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_restart(ahc); |
| } else if ((status & BUSFREE) != 0 |
| && (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) { |
| struct ahc_devinfo devinfo; |
| u_int lastphase; |
| u_int saved_scsiid; |
| u_int saved_lun; |
| u_int target; |
| u_int initiator_role_id; |
| char channel; |
| int printerror; |
| |
| /* |
| * Clear our selection hardware as soon as possible. |
| * We may have an entry in the waiting Q for this target, |
| * that is affected by this busfree and we don't want to |
| * go about selecting the target while we handle the event. |
| */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP)); |
| |
| /* |
| * Disable busfree interrupts and clear the busfree |
| * interrupt status. We do this here so that several |
| * bus transactions occur prior to clearing the SCSIINT |
| * latch. It can take a bit for the clearing to take effect. |
| */ |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE); |
| ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR); |
| |
| /* |
| * Look at what phase we were last in. |
| * If its message out, chances are pretty good |
| * that the busfree was in response to one of |
| * our abort requests. |
| */ |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); |
| saved_lun = ahc_inb(ahc, SAVED_LUN); |
| target = SCSIID_TARGET(ahc, saved_scsiid); |
| initiator_role_id = SCSIID_OUR_ID(saved_scsiid); |
| channel = SCSIID_CHANNEL(ahc, saved_scsiid); |
| ahc_compile_devinfo(&devinfo, initiator_role_id, |
| target, saved_lun, channel, ROLE_INITIATOR); |
| printerror = 1; |
| |
| if (lastphase == P_MESGOUT) { |
| u_int tag; |
| |
| tag = SCB_LIST_NULL; |
| if (ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT_TAG, TRUE) |
| || ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT, TRUE)) { |
| if (ahc->msgout_buf[ahc->msgout_index - 1] |
| == MSG_ABORT_TAG) |
| tag = scb->hscb->tag; |
| ahc_print_path(ahc, scb); |
| printk("SCB %d - Abort%s Completed.\n", |
| scb->hscb->tag, tag == SCB_LIST_NULL ? |
| "" : " Tag"); |
| ahc_abort_scbs(ahc, target, channel, |
| saved_lun, tag, |
| ROLE_INITIATOR, |
| CAM_REQ_ABORTED); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_1B, |
| MSG_BUS_DEV_RESET, TRUE)) { |
| ahc_compile_devinfo(&devinfo, |
| initiator_role_id, |
| target, |
| CAM_LUN_WILDCARD, |
| channel, |
| ROLE_INITIATOR); |
| ahc_handle_devreset(ahc, &devinfo, |
| CAM_BDR_SENT, |
| "Bus Device Reset", |
| /*verbose_level*/0); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| MSG_EXT_PPR, FALSE)) { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| |
| /* |
| * PPR Rejected. Try non-ppr negotiation |
| * and retry command. |
| */ |
| tinfo = ahc_fetch_transinfo(ahc, |
| devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, |
| &tstate); |
| tinfo->curr.transport_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->goal.ppr_options = 0; |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| MSG_EXT_WDTR, FALSE)) { |
| /* |
| * Negotiation Rejected. Go-narrow and |
| * retry command. |
| */ |
| ahc_set_width(ahc, &devinfo, |
| MSG_EXT_WDTR_BUS_8_BIT, |
| AHC_TRANS_CUR|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, |
| MSG_EXT_SDTR, FALSE)) { |
| /* |
| * Negotiation Rejected. Go-async and |
| * retry command. |
| */ |
| ahc_set_syncrate(ahc, &devinfo, |
| /*syncrate*/NULL, |
| /*period*/0, /*offset*/0, |
| /*ppr_options*/0, |
| AHC_TRANS_CUR|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahc_qinfifo_requeue_tail(ahc, scb); |
| printerror = 0; |
| } |
| } |
| if (printerror != 0) { |
| u_int i; |
| |
| if (scb != NULL) { |
| u_int tag; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) |
| tag = scb->hscb->tag; |
| else |
| tag = SCB_LIST_NULL; |
| ahc_print_path(ahc, scb); |
| ahc_abort_scbs(ahc, target, channel, |
| SCB_GET_LUN(scb), tag, |
| ROLE_INITIATOR, |
| CAM_UNEXP_BUSFREE); |
| } else { |
| /* |
| * We had not fully identified this connection, |
| * so we cannot abort anything. |
| */ |
| printk("%s: ", ahc_name(ahc)); |
| } |
| for (i = 0; i < num_phases; i++) { |
| if (lastphase == ahc_phase_table[i].phase) |
| break; |
| } |
| if (lastphase != P_BUSFREE) { |
| /* |
| * Renegotiate with this device at the |
| * next opportunity just in case this busfree |
| * is due to a negotiation mismatch with the |
| * device. |
| */ |
| ahc_force_renegotiation(ahc, &devinfo); |
| } |
| printk("Unexpected busfree %s\n" |
| "SEQADDR == 0x%x\n", |
| ahc_phase_table[i].phasemsg, |
| ahc_inb(ahc, SEQADDR0) |
| | (ahc_inb(ahc, SEQADDR1) << 8)); |
| } |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_restart(ahc); |
| } else { |
| printk("%s: Missing case in ahc_handle_scsiint. status = %x\n", |
| ahc_name(ahc), status); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| } |
| } |
| |
| /* |
| * Force renegotiation to occur the next time we initiate |
| * a command to the current device. |
| */ |
| static void |
| ahc_force_renegotiation(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| struct ahc_initiator_tinfo *targ_info; |
| struct ahc_tmode_tstate *tstate; |
| |
| targ_info = ahc_fetch_transinfo(ahc, |
| devinfo->channel, |
| devinfo->our_scsiid, |
| devinfo->target, |
| &tstate); |
| ahc_update_neg_request(ahc, devinfo, tstate, |
| targ_info, AHC_NEG_IF_NON_ASYNC); |
| } |
| |
| #define AHC_MAX_STEPS 2000 |
| static void |
| ahc_clear_critical_section(struct ahc_softc *ahc) |
| { |
| int stepping; |
| int steps; |
| u_int simode0; |
| u_int simode1; |
| |
| if (ahc->num_critical_sections == 0) |
| return; |
| |
| stepping = FALSE; |
| steps = 0; |
| simode0 = 0; |
| simode1 = 0; |
| for (;;) { |
| struct cs *cs; |
| u_int seqaddr; |
| u_int i; |
| |
| seqaddr = ahc_inb(ahc, SEQADDR0) |
| | (ahc_inb(ahc, SEQADDR1) << 8); |
| |
| /* |
| * Seqaddr represents the next instruction to execute, |
| * so we are really executing the instruction just |
| * before it. |
| */ |
| if (seqaddr != 0) |
| seqaddr -= 1; |
| cs = ahc->critical_sections; |
| for (i = 0; i < ahc->num_critical_sections; i++, cs++) { |
| |
| if (cs->begin < seqaddr && cs->end >= seqaddr) |
| break; |
| } |
| |
| if (i == ahc->num_critical_sections) |
| break; |
| |
| if (steps > AHC_MAX_STEPS) { |
| printk("%s: Infinite loop in critical section\n", |
| ahc_name(ahc)); |
| ahc_dump_card_state(ahc); |
| panic("critical section loop"); |
| } |
| |
| steps++; |
| if (stepping == FALSE) { |
| |
| /* |
| * Disable all interrupt sources so that the |
| * sequencer will not be stuck by a pausing |
| * interrupt condition while we attempt to |
| * leave a critical section. |
| */ |
| simode0 = ahc_inb(ahc, SIMODE0); |
| ahc_outb(ahc, SIMODE0, 0); |
| simode1 = ahc_inb(ahc, SIMODE1); |
| if ((ahc->features & AHC_DT) != 0) |
| /* |
| * On DT class controllers, we |
| * use the enhanced busfree logic. |
| * Unfortunately we cannot re-enable |
| * busfree detection within the |
| * current connection, so we must |
| * leave it on while single stepping. |
| */ |
| ahc_outb(ahc, SIMODE1, simode1 & ENBUSFREE); |
| else |
| ahc_outb(ahc, SIMODE1, 0); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl | STEP); |
| stepping = TRUE; |
| } |
| if ((ahc->features & AHC_DT) != 0) { |
| ahc_outb(ahc, CLRSINT1, CLRBUSFREE); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| } |
| ahc_outb(ahc, HCNTRL, ahc->unpause); |
| while (!ahc_is_paused(ahc)) |
| ahc_delay(200); |
| } |
| if (stepping) { |
| ahc_outb(ahc, SIMODE0, simode0); |
| ahc_outb(ahc, SIMODE1, simode1); |
| ahc_outb(ahc, SEQCTL, ahc->seqctl); |
| } |
| } |
| |
| /* |
| * Clear any pending interrupt status. |
| */ |
| static void |
| ahc_clear_intstat(struct ahc_softc *ahc) |
| { |
| /* Clear any interrupt conditions this may have caused */ |
| ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI |
| |CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG| |
| CLRREQINIT); |
| ahc_flush_device_writes(ahc); |
| ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO); |
| ahc_flush_device_writes(ahc); |
| ahc_outb(ahc, CLRINT, CLRSCSIINT); |
| ahc_flush_device_writes(ahc); |
| } |
| |
| /**************************** Debugging Routines ******************************/ |
| #ifdef AHC_DEBUG |
| uint32_t ahc_debug = AHC_DEBUG_OPTS; |
| #endif |
| |
| #if 0 /* unused */ |
| static void |
| ahc_print_scb(struct scb *scb) |
| { |
| int i; |
| |
| struct hardware_scb *hscb = scb->hscb; |
| |
| printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n", |
| (void *)scb, |
| hscb->control, |
| hscb->scsiid, |
| hscb->lun, |
| hscb->cdb_len); |
| printk("Shared Data: "); |
| for (i = 0; i < sizeof(hscb->shared_data.cdb); i++) |
| printk("%#02x", hscb->shared_data.cdb[i]); |
| printk(" dataptr:%#x datacnt:%#x sgptr:%#x tag:%#x\n", |
| ahc_le32toh(hscb->dataptr), |
| ahc_le32toh(hscb->datacnt), |
| ahc_le32toh(hscb->sgptr), |
| hscb->tag); |
| if (scb->sg_count > 0) { |
| for (i = 0; i < scb->sg_count; i++) { |
| printk("sg[%d] - Addr 0x%x%x : Length %d\n", |
| i, |
| (ahc_le32toh(scb->sg_list[i].len) >> 24 |
| & SG_HIGH_ADDR_BITS), |
| ahc_le32toh(scb->sg_list[i].addr), |
| ahc_le32toh(scb->sg_list[i].len)); |
| } |
| } |
| } |
| #endif |
| |
| /************************* Transfer Negotiation *******************************/ |
| /* |
| * Allocate per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static struct ahc_tmode_tstate * |
| ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel) |
| { |
| struct ahc_tmode_tstate *master_tstate; |
| struct ahc_tmode_tstate *tstate; |
| int i; |
| |
| master_tstate = ahc->enabled_targets[ahc->our_id]; |
| if (channel == 'B') { |
| scsi_id += 8; |
| master_tstate = ahc->enabled_targets[ahc->our_id_b + 8]; |
| } |
| if (ahc->enabled_targets[scsi_id] != NULL |
| && ahc->enabled_targets[scsi_id] != master_tstate) |
| panic("%s: ahc_alloc_tstate - Target already allocated", |
| ahc_name(ahc)); |
| tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC); |
| if (tstate == NULL) |
| return (NULL); |
| |
| /* |
| * If we have allocated a master tstate, copy user settings from |
| * the master tstate (taken from SRAM or the EEPROM) for this |
| * channel, but reset our current and goal settings to async/narrow |
| * until an initiator talks to us. |
| */ |
| if (master_tstate != NULL) { |
| memcpy(tstate, master_tstate, sizeof(*tstate)); |
| memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns)); |
| tstate->ultraenb = 0; |
| for (i = 0; i < AHC_NUM_TARGETS; i++) { |
| memset(&tstate->transinfo[i].curr, 0, |
| sizeof(tstate->transinfo[i].curr)); |
| memset(&tstate->transinfo[i].goal, 0, |
| sizeof(tstate->transinfo[i].goal)); |
| } |
| } else |
| memset(tstate, 0, sizeof(*tstate)); |
| ahc->enabled_targets[scsi_id] = tstate; |
| return (tstate); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Free per target mode instance (ID we respond to as a target) |
| * transfer negotiation data structures. |
| */ |
| static void |
| ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force) |
| { |
| struct ahc_tmode_tstate *tstate; |
| |
| /* |
| * Don't clean up our "master" tstate. |
| * It has our default user settings. |
| */ |
| if (((channel == 'B' && scsi_id == ahc->our_id_b) |
| || (channel == 'A' && scsi_id == ahc->our_id)) |
| && force == FALSE) |
| return; |
| |
| if (channel == 'B') |
| scsi_id += 8; |
| tstate = ahc->enabled_targets[scsi_id]; |
| if (tstate != NULL) |
| kfree(tstate); |
| ahc->enabled_targets[scsi_id] = NULL; |
| } |
| #endif |
| |
| /* |
| * Called when we have an active connection to a target on the bus, |
| * this function finds the nearest syncrate to the input period limited |
| * by the capabilities of the bus connectivity of and sync settings for |
| * the target. |
| */ |
| static const struct ahc_syncrate * |
| ahc_devlimited_syncrate(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *tinfo, |
| u_int *period, u_int *ppr_options, role_t role) |
| { |
| struct ahc_transinfo *transinfo; |
| u_int maxsync; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0 |
| && (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) { |
| maxsync = AHC_SYNCRATE_DT; |
| } else { |
| maxsync = AHC_SYNCRATE_ULTRA; |
| /* Can't do DT on an SE bus */ |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| } else if ((ahc->features & AHC_ULTRA) != 0) { |
| maxsync = AHC_SYNCRATE_ULTRA; |
| } else { |
| maxsync = AHC_SYNCRATE_FAST; |
| } |
| /* |
| * Never allow a value higher than our current goal |
| * period otherwise we may allow a target initiated |
| * negotiation to go above the limit as set by the |
| * user. In the case of an initiator initiated |
| * sync negotiation, we limit based on the user |
| * setting. This allows the system to still accept |
| * incoming negotiations even if target initiated |
| * negotiation is not performed. |
| */ |
| if (role == ROLE_TARGET) |
| transinfo = &tinfo->user; |
| else |
| transinfo = &tinfo->goal; |
| *ppr_options &= transinfo->ppr_options; |
| if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) { |
| maxsync = max(maxsync, (u_int)AHC_SYNCRATE_ULTRA2); |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| if (transinfo->period == 0) { |
| *period = 0; |
| *ppr_options = 0; |
| return (NULL); |
| } |
| *period = max(*period, (u_int)transinfo->period); |
| return (ahc_find_syncrate(ahc, period, ppr_options, maxsync)); |
| } |
| |
| /* |
| * Look up the valid period to SCSIRATE conversion in our table. |
| * Return the period and offset that should be sent to the target |
| * if this was the beginning of an SDTR. |
| */ |
| const struct ahc_syncrate * |
| ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, |
| u_int *ppr_options, u_int maxsync) |
| { |
| const struct ahc_syncrate *syncrate; |
| |
| if ((ahc->features & AHC_DT) == 0) |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| |
| /* Skip all DT only entries if DT is not available */ |
| if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA2) |
| maxsync = AHC_SYNCRATE_ULTRA2; |
| |
| /* Now set the maxsync based on the card capabilities |
| * DT is already done above */ |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA) |
| maxsync = AHC_SYNCRATE_ULTRA; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0 |
| && maxsync < AHC_SYNCRATE_FAST) |
| maxsync = AHC_SYNCRATE_FAST; |
| |
| for (syncrate = &ahc_syncrates[maxsync]; |
| syncrate->rate != NULL; |
| syncrate++) { |
| |
| /* |
| * The Ultra2 table doesn't go as low |
| * as for the Fast/Ultra cards. |
| */ |
| if ((ahc->features & AHC_ULTRA2) != 0 |
| && (syncrate->sxfr_u2 == 0)) |
| break; |
| |
| if (*period <= syncrate->period) { |
| /* |
| * When responding to a target that requests |
| * sync, the requested rate may fall between |
| * two rates that we can output, but still be |
| * a rate that we can receive. Because of this, |
| * we want to respond to the target with |
| * the same rate that it sent to us even |
| * if the period we use to send data to it |
| * is lower. Only lower the response period |
| * if we must. |
| */ |
| if (syncrate == &ahc_syncrates[maxsync]) |
| *period = syncrate->period; |
| |
| /* |
| * At some speeds, we only support |
| * ST transfers. |
| */ |
| if ((syncrate->sxfr_u2 & ST_SXFR) != 0) |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| break; |
| } |
| } |
| |
| if ((*period == 0) |
| || (syncrate->rate == NULL) |
| || ((ahc->features & AHC_ULTRA2) != 0 |
| && (syncrate->sxfr_u2 == 0))) { |
| /* Use asynchronous transfers. */ |
| *period = 0; |
| syncrate = NULL; |
| *ppr_options &= ~MSG_EXT_PPR_DT_REQ; |
| } |
| return (syncrate); |
| } |
| |
| /* |
| * Convert from an entry in our syncrate table to the SCSI equivalent |
| * sync "period" factor. |
| */ |
| u_int |
| ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync) |
| { |
| const struct ahc_syncrate *syncrate; |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| scsirate &= SXFR_ULTRA2; |
| else |
| scsirate &= SXFR; |
| |
| /* now set maxsync based on card capabilities */ |
| if ((ahc->features & AHC_DT) == 0 && maxsync < AHC_SYNCRATE_ULTRA2) |
| maxsync = AHC_SYNCRATE_ULTRA2; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0 |
| && maxsync < AHC_SYNCRATE_ULTRA) |
| maxsync = AHC_SYNCRATE_ULTRA; |
| if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0 |
| && maxsync < AHC_SYNCRATE_FAST) |
| maxsync = AHC_SYNCRATE_FAST; |
| |
| |
| syncrate = &ahc_syncrates[maxsync]; |
| while (syncrate->rate != NULL) { |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| if (syncrate->sxfr_u2 == 0) |
| break; |
| else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2)) |
| return (syncrate->period); |
| } else if (scsirate == (syncrate->sxfr & SXFR)) { |
| return (syncrate->period); |
| } |
| syncrate++; |
| } |
| return (0); /* async */ |
| } |
| |
| /* |
| * Truncate the given synchronous offset to a value the |
| * current adapter type and syncrate are capable of. |
| */ |
| static void |
| ahc_validate_offset(struct ahc_softc *ahc, |
| struct ahc_initiator_tinfo *tinfo, |
| const struct ahc_syncrate *syncrate, |
| u_int *offset, int wide, role_t role) |
| { |
| u_int maxoffset; |
| |
| /* Limit offset to what we can do */ |
| if (syncrate == NULL) { |
| maxoffset = 0; |
| } else if ((ahc->features & AHC_ULTRA2) != 0) { |
| maxoffset = MAX_OFFSET_ULTRA2; |
| } else { |
| if (wide) |
| maxoffset = MAX_OFFSET_16BIT; |
| else |
| maxoffset = MAX_OFFSET_8BIT; |
| } |
| *offset = min(*offset, maxoffset); |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *offset = min(*offset, (u_int)tinfo->user.offset); |
| else |
| *offset = min(*offset, (u_int)tinfo->goal.offset); |
| } |
| } |
| |
| /* |
| * Truncate the given transfer width parameter to a value the |
| * current adapter type is capable of. |
| */ |
| static void |
| ahc_validate_width(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo, |
| u_int *bus_width, role_t role) |
| { |
| switch (*bus_width) { |
| default: |
| if (ahc->features & AHC_WIDE) { |
| /* Respond Wide */ |
| *bus_width = MSG_EXT_WDTR_BUS_16_BIT; |
| break; |
| } |
| /* FALLTHROUGH */ |
| case MSG_EXT_WDTR_BUS_8_BIT: |
| *bus_width = MSG_EXT_WDTR_BUS_8_BIT; |
| break; |
| } |
| if (tinfo != NULL) { |
| if (role == ROLE_TARGET) |
| *bus_width = min((u_int)tinfo->user.width, *bus_width); |
| else |
| *bus_width = min((u_int)tinfo->goal.width, *bus_width); |
| } |
| } |
| |
| /* |
| * Update the bitmask of targets for which the controller should |
| * negotiate with at the next convenient opportunity. This currently |
| * means the next time we send the initial identify messages for |
| * a new transaction. |
| */ |
| int |
| ahc_update_neg_request(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct ahc_tmode_tstate *tstate, |
| struct ahc_initiator_tinfo *tinfo, ahc_neg_type neg_type) |
| { |
| u_int auto_negotiate_orig; |
| |
| auto_negotiate_orig = tstate->auto_negotiate; |
| if (neg_type == AHC_NEG_ALWAYS) { |
| /* |
| * Force our "current" settings to be |
| * unknown so that unless a bus reset |
| * occurs the need to renegotiate is |
| * recorded persistently. |
| */ |
| if ((ahc->features & AHC_WIDE) != 0) |
| tinfo->curr.width = AHC_WIDTH_UNKNOWN; |
| tinfo->curr.period = AHC_PERIOD_UNKNOWN; |
| tinfo->curr.offset = AHC_OFFSET_UNKNOWN; |
| } |
| if (tinfo->curr.period != tinfo->goal.period |
| || tinfo->curr.width != tinfo->goal.width |
| || tinfo->curr.offset != tinfo->goal.offset |
| || tinfo->curr.ppr_options != tinfo->goal.ppr_options |
| || (neg_type == AHC_NEG_IF_NON_ASYNC |
| && (tinfo->goal.offset != 0 |
| || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT |
| || tinfo->goal.ppr_options != 0))) |
| tstate->auto_negotiate |= devinfo->target_mask; |
| else |
| tstate->auto_negotiate &= ~devinfo->target_mask; |
| |
| return (auto_negotiate_orig != tstate->auto_negotiate); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of synchronous negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| const struct ahc_syncrate *syncrate, u_int period, |
| u_int offset, u_int ppr_options, u_int type, int paused) |
| { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int old_period; |
| u_int old_offset; |
| u_int old_ppr; |
| int active; |
| int update_needed; |
| |
| active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE; |
| update_needed = 0; |
| |
| if (syncrate == NULL) { |
| period = 0; |
| offset = 0; |
| } |
| |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHC_TRANS_USER) != 0) { |
| tinfo->user.period = period; |
| tinfo->user.offset = offset; |
| tinfo->user.ppr_options = ppr_options; |
| } |
| |
| if ((type & AHC_TRANS_GOAL) != 0) { |
| tinfo->goal.period = period; |
| tinfo->goal.offset = offset; |
| tinfo->goal.ppr_options = ppr_options; |
| } |
| |
| old_period = tinfo->curr.period; |
| old_offset = tinfo->curr.offset; |
| old_ppr = tinfo->curr.ppr_options; |
| |
| if ((type & AHC_TRANS_CUR) != 0 |
| && (old_period != period |
| || old_offset != offset |
| || old_ppr != ppr_options)) { |
| u_int scsirate; |
| |
| update_needed++; |
| scsirate = tinfo->scsirate; |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| |
| scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC); |
| if (syncrate != NULL) { |
| scsirate |= syncrate->sxfr_u2; |
| if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) |
| scsirate |= ENABLE_CRC; |
| else |
| scsirate |= SINGLE_EDGE; |
| } |
| } else { |
| |
| scsirate &= ~(SXFR|SOFS); |
| /* |
| * Ensure Ultra mode is set properly for |
| * this target. |
| */ |
| tstate->ultraenb &= ~devinfo->target_mask; |
| if (syncrate != NULL) { |
| if (syncrate->sxfr & ULTRA_SXFR) { |
| tstate->ultraenb |= |
| devinfo->target_mask; |
| } |
| scsirate |= syncrate->sxfr & SXFR; |
| scsirate |= offset & SOFS; |
| } |
| if (active) { |
| u_int sxfrctl0; |
| |
| sxfrctl0 = ahc_inb(ahc, SXFRCTL0); |
| sxfrctl0 &= ~FAST20; |
| if (tstate->ultraenb & devinfo->target_mask) |
| sxfrctl0 |= FAST20; |
| ahc_outb(ahc, SXFRCTL0, sxfrctl0); |
| } |
| } |
| if (active) { |
| ahc_outb(ahc, SCSIRATE, scsirate); |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SCSIOFFSET, offset); |
| } |
| |
| tinfo->scsirate = scsirate; |
| tinfo->curr.period = period; |
| tinfo->curr.offset = offset; |
| tinfo->curr.ppr_options = ppr_options; |
| |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| if (offset != 0) { |
| printk("%s: target %d synchronous at %sMHz%s, " |
| "offset = 0x%x\n", ahc_name(ahc), |
| devinfo->target, syncrate->rate, |
| (ppr_options & MSG_EXT_PPR_DT_REQ) |
| ? " DT" : "", offset); |
| } else { |
| printk("%s: target %d using " |
| "asynchronous transfers\n", |
| ahc_name(ahc), devinfo->target); |
| } |
| } |
| } |
| |
| update_needed += ahc_update_neg_request(ahc, devinfo, tstate, |
| tinfo, AHC_NEG_TO_GOAL); |
| |
| if (update_needed) |
| ahc_update_pending_scbs(ahc); |
| } |
| |
| /* |
| * Update the user/goal/curr tables of wide negotiation |
| * parameters as well as, in the case of a current or active update, |
| * any data structures on the host controller. In the case of an |
| * active update, the specified target is currently talking to us on |
| * the bus, so the transfer parameter update must take effect |
| * immediately. |
| */ |
| void |
| ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int width, u_int type, int paused) |
| { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int oldwidth; |
| int active; |
| int update_needed; |
| |
| active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE; |
| update_needed = 0; |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| |
| if ((type & AHC_TRANS_USER) != 0) |
| tinfo->user.width = width; |
| |
| if ((type & AHC_TRANS_GOAL) != 0) |
| tinfo->goal.width = width; |
| |
| oldwidth = tinfo->curr.width; |
| if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) { |
| u_int scsirate; |
| |
| update_needed++; |
| scsirate = tinfo->scsirate; |
| scsirate &= ~WIDEXFER; |
| if (width == MSG_EXT_WDTR_BUS_16_BIT) |
| scsirate |= WIDEXFER; |
| |
| tinfo->scsirate = scsirate; |
| |
| if (active) |
| ahc_outb(ahc, SCSIRATE, scsirate); |
| |
| tinfo->curr.width = width; |
| |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_TRANSFER_NEG); |
| if (bootverbose) { |
| printk("%s: target %d using %dbit transfers\n", |
| ahc_name(ahc), devinfo->target, |
| 8 * (0x01 << width)); |
| } |
| } |
| |
| update_needed += ahc_update_neg_request(ahc, devinfo, tstate, |
| tinfo, AHC_NEG_TO_GOAL); |
| if (update_needed) |
| ahc_update_pending_scbs(ahc); |
| } |
| |
| /* |
| * Update the current state of tagged queuing for a given target. |
| */ |
| static void |
| ahc_set_tags(struct ahc_softc *ahc, struct scsi_cmnd *cmd, |
| struct ahc_devinfo *devinfo, ahc_queue_alg alg) |
| { |
| struct scsi_device *sdev = cmd->device; |
| |
| ahc_platform_set_tags(ahc, sdev, devinfo, alg); |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| devinfo->lun, AC_TRANSFER_NEG); |
| } |
| |
| /* |
| * When the transfer settings for a connection change, update any |
| * in-transit SCBs to contain the new data so the hardware will |
| * be set correctly during future (re)selections. |
| */ |
| static void |
| ahc_update_pending_scbs(struct ahc_softc *ahc) |
| { |
| struct scb *pending_scb; |
| int pending_scb_count; |
| int i; |
| int paused; |
| u_int saved_scbptr; |
| |
| /* |
| * Traverse the pending SCB list and ensure that all of the |
| * SCBs there have the proper settings. |
| */ |
| pending_scb_count = 0; |
| LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { |
| struct ahc_devinfo devinfo; |
| struct hardware_scb *pending_hscb; |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| |
| ahc_scb_devinfo(ahc, &devinfo, pending_scb); |
| tinfo = ahc_fetch_transinfo(ahc, devinfo.channel, |
| devinfo.our_scsiid, |
| devinfo.target, &tstate); |
| pending_hscb = pending_scb->hscb; |
| pending_hscb->control &= ~ULTRAENB; |
| if ((tstate->ultraenb & devinfo.target_mask) != 0) |
| pending_hscb->control |= ULTRAENB; |
| pending_hscb->scsirate = tinfo->scsirate; |
| pending_hscb->scsioffset = tinfo->curr.offset; |
| if ((tstate->auto_negotiate & devinfo.target_mask) == 0 |
| && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) { |
| pending_scb->flags &= ~SCB_AUTO_NEGOTIATE; |
| pending_hscb->control &= ~MK_MESSAGE; |
| } |
| ahc_sync_scb(ahc, pending_scb, |
| BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| pending_scb_count++; |
| } |
| |
| if (pending_scb_count == 0) |
| return; |
| |
| if (ahc_is_paused(ahc)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahc_pause(ahc); |
| } |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| /* Ensure that the hscbs down on the card match the new information */ |
| for (i = 0; i < ahc->scb_data->maxhscbs; i++) { |
| struct hardware_scb *pending_hscb; |
| u_int control; |
| u_int scb_tag; |
| |
| ahc_outb(ahc, SCBPTR, i); |
| scb_tag = ahc_inb(ahc, SCB_TAG); |
| pending_scb = ahc_lookup_scb(ahc, scb_tag); |
| if (pending_scb == NULL) |
| continue; |
| |
| pending_hscb = pending_scb->hscb; |
| control = ahc_inb(ahc, SCB_CONTROL); |
| control &= ~(ULTRAENB|MK_MESSAGE); |
| control |= pending_hscb->control & (ULTRAENB|MK_MESSAGE); |
| ahc_outb(ahc, SCB_CONTROL, control); |
| ahc_outb(ahc, SCB_SCSIRATE, pending_hscb->scsirate); |
| ahc_outb(ahc, SCB_SCSIOFFSET, pending_hscb->scsioffset); |
| } |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| |
| if (paused == 0) |
| ahc_unpause(ahc); |
| } |
| |
| /**************************** Pathing Information *****************************/ |
| static void |
| ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| u_int saved_scsiid; |
| role_t role; |
| int our_id; |
| |
| if (ahc_inb(ahc, SSTAT0) & TARGET) |
| role = ROLE_TARGET; |
| else |
| role = ROLE_INITIATOR; |
| |
| if (role == ROLE_TARGET |
| && (ahc->features & AHC_MULTI_TID) != 0 |
| && (ahc_inb(ahc, SEQ_FLAGS) |
| & (CMDPHASE_PENDING|TARG_CMD_PENDING|NO_DISCONNECT)) != 0) { |
| /* We were selected, so pull our id from TARGIDIN */ |
| our_id = ahc_inb(ahc, TARGIDIN) & OID; |
| } else if ((ahc->features & AHC_ULTRA2) != 0) |
| our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID; |
| else |
| our_id = ahc_inb(ahc, SCSIID) & OID; |
| |
| saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); |
| ahc_compile_devinfo(devinfo, |
| our_id, |
| SCSIID_TARGET(ahc, saved_scsiid), |
| ahc_inb(ahc, SAVED_LUN), |
| SCSIID_CHANNEL(ahc, saved_scsiid), |
| role); |
| } |
| |
| static const struct ahc_phase_table_entry* |
| ahc_lookup_phase_entry(int phase) |
| { |
| const struct ahc_phase_table_entry *entry; |
| const struct ahc_phase_table_entry *last_entry; |
| |
| /* |
| * num_phases doesn't include the default entry which |
| * will be returned if the phase doesn't match. |
| */ |
| last_entry = &ahc_phase_table[num_phases]; |
| for (entry = ahc_phase_table; entry < last_entry; entry++) { |
| if (phase == entry->phase) |
| break; |
| } |
| return (entry); |
| } |
| |
| void |
| ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target, |
| u_int lun, char channel, role_t role) |
| { |
| devinfo->our_scsiid = our_id; |
| devinfo->target = target; |
| devinfo->lun = lun; |
| devinfo->target_offset = target; |
| devinfo->channel = channel; |
| devinfo->role = role; |
| if (channel == 'B') |
| devinfo->target_offset += 8; |
| devinfo->target_mask = (0x01 << devinfo->target_offset); |
| } |
| |
| void |
| ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| printk("%s:%c:%d:%d: ", ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| |
| static void |
| ahc_scb_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct scb *scb) |
| { |
| role_t role; |
| int our_id; |
| |
| our_id = SCSIID_OUR_ID(scb->hscb->scsiid); |
| role = ROLE_INITIATOR; |
| if ((scb->flags & SCB_TARGET_SCB) != 0) |
| role = ROLE_TARGET; |
| ahc_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahc, scb), |
| SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahc, scb), role); |
| } |
| |
| |
| /************************ Message Phase Processing ****************************/ |
| static void |
| ahc_assert_atn(struct ahc_softc *ahc) |
| { |
| u_int scsisigo; |
| |
| scsisigo = ATNO; |
| if ((ahc->features & AHC_DT) == 0) |
| scsisigo |= ahc_inb(ahc, SCSISIGI); |
| ahc_outb(ahc, SCSISIGO, scsisigo); |
| } |
| |
| /* |
| * When an initiator transaction with the MK_MESSAGE flag either reconnects |
| * or enters the initial message out phase, we are interrupted. Fill our |
| * outgoing message buffer with the appropriate message and beging handing |
| * the message phase(s) manually. |
| */ |
| static void |
| ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct scb *scb) |
| { |
| /* |
| * To facilitate adding multiple messages together, |
| * each routine should increment the index and len |
| * variables instead of setting them explicitly. |
| */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| |
| if ((scb->flags & SCB_DEVICE_RESET) == 0 |
| && ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) { |
| u_int identify_msg; |
| |
| identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb); |
| if ((scb->hscb->control & DISCENB) != 0) |
| identify_msg |= MSG_IDENTIFY_DISCFLAG; |
| ahc->msgout_buf[ahc->msgout_index++] = identify_msg; |
| ahc->msgout_len++; |
| |
| if ((scb->hscb->control & TAG_ENB) != 0) { |
| ahc->msgout_buf[ahc->msgout_index++] = |
| scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE); |
| ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag; |
| ahc->msgout_len += 2; |
| } |
| } |
| |
| if (scb->flags & SCB_DEVICE_RESET) { |
| ahc->msgout_buf[ahc->msgout_index++] = MSG_BUS_DEV_RESET; |
| ahc->msgout_len++; |
| ahc_print_path(ahc, scb); |
| printk("Bus Device Reset Message Sent\n"); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO)); |
| } else if ((scb->flags & SCB_ABORT) != 0) { |
| if ((scb->hscb->control & TAG_ENB) != 0) |
| ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT_TAG; |
| else |
| ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT; |
| ahc->msgout_len++; |
| ahc_print_path(ahc, scb); |
| printk("Abort%s Message Sent\n", |
| (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : ""); |
| /* |
| * Clear our selection hardware in advance of |
| * the busfree. We may have an entry in the waiting |
| * Q for this target, and we don't want to go about |
| * selecting while we handle the busfree and blow it |
| * away. |
| */ |
| ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO)); |
| } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) { |
| ahc_build_transfer_msg(ahc, devinfo); |
| } else { |
| printk("ahc_intr: AWAITING_MSG for an SCB that " |
| "does not have a waiting message\n"); |
| printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid, |
| devinfo->target_mask); |
| panic("SCB = %d, SCB Control = %x, MSG_OUT = %x " |
| "SCB flags = %x", scb->hscb->tag, scb->hscb->control, |
| ahc_inb(ahc, MSG_OUT), scb->flags); |
| } |
| |
| /* |
| * Clear the MK_MESSAGE flag from the SCB so we aren't |
| * asked to send this message again. |
| */ |
| ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE); |
| scb->hscb->control &= ~MK_MESSAGE; |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| } |
| |
| /* |
| * Build an appropriate transfer negotiation message for the |
| * currently active target. |
| */ |
| static void |
| ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| /* |
| * We need to initiate transfer negotiations. |
| * If our current and goal settings are identical, |
| * we want to renegotiate due to a check condition. |
| */ |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| const struct ahc_syncrate *rate; |
| int dowide; |
| int dosync; |
| int doppr; |
| u_int period; |
| u_int ppr_options; |
| u_int offset; |
| |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| /* |
| * Filter our period based on the current connection. |
| * If we can't perform DT transfers on this segment (not in LVD |
| * mode for instance), then our decision to issue a PPR message |
| * may change. |
| */ |
| period = tinfo->goal.period; |
| offset = tinfo->goal.offset; |
| ppr_options = tinfo->goal.ppr_options; |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| ppr_options = 0; |
| rate = ahc_devlimited_syncrate(ahc, tinfo, &period, |
| &ppr_options, devinfo->role); |
| dowide = tinfo->curr.width != tinfo->goal.width; |
| dosync = tinfo->curr.offset != offset || tinfo->curr.period != period; |
| /* |
| * Only use PPR if we have options that need it, even if the device |
| * claims to support it. There might be an expander in the way |
| * that doesn't. |
| */ |
| doppr = ppr_options != 0; |
| |
| if (!dowide && !dosync && !doppr) { |
| dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT; |
| dosync = tinfo->goal.offset != 0; |
| } |
| |
| if (!dowide && !dosync && !doppr) { |
| /* |
| * Force async with a WDTR message if we have a wide bus, |
| * or just issue an SDTR with a 0 offset. |
| */ |
| if ((ahc->features & AHC_WIDE) != 0) |
| dowide = 1; |
| else |
| dosync = 1; |
| |
| if (bootverbose) { |
| ahc_print_devinfo(ahc, devinfo); |
| printk("Ensuring async\n"); |
| } |
| } |
| |
| /* Target initiated PPR is not allowed in the SCSI spec */ |
| if (devinfo->role == ROLE_TARGET) |
| doppr = 0; |
| |
| /* |
| * Both the PPR message and SDTR message require the |
| * goal syncrate to be limited to what the target device |
| * is capable of handling (based on whether an LVD->SE |
| * expander is on the bus), so combine these two cases. |
| * Regardless, guarantee that if we are using WDTR and SDTR |
| * messages that WDTR comes first. |
| */ |
| if (doppr || (dosync && !dowide)) { |
| |
| offset = tinfo->goal.offset; |
| ahc_validate_offset(ahc, tinfo, rate, &offset, |
| doppr ? tinfo->goal.width |
| : tinfo->curr.width, |
| devinfo->role); |
| if (doppr) { |
| ahc_construct_ppr(ahc, devinfo, period, offset, |
| tinfo->goal.width, ppr_options); |
| } else { |
| ahc_construct_sdtr(ahc, devinfo, period, offset); |
| } |
| } else { |
| ahc_construct_wdtr(ahc, devinfo, tinfo->goal.width); |
| } |
| } |
| |
| /* |
| * Build a synchronous negotiation message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahc_construct_sdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int period, u_int offset) |
| { |
| if (offset == 0) |
| period = AHC_ASYNC_XFER_PERIOD; |
| ahc->msgout_index += spi_populate_sync_msg( |
| ahc->msgout_buf + ahc->msgout_index, period, offset); |
| ahc->msgout_len += 5; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n", |
| ahc_name(ahc), devinfo->channel, devinfo->target, |
| devinfo->lun, period, offset); |
| } |
| } |
| |
| /* |
| * Build a wide negotiation message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahc_construct_wdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int bus_width) |
| { |
| ahc->msgout_index += spi_populate_width_msg( |
| ahc->msgout_buf + ahc->msgout_index, bus_width); |
| ahc->msgout_len += 4; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending WDTR %x\n", |
| ahc_name(ahc), devinfo->channel, devinfo->target, |
| devinfo->lun, bus_width); |
| } |
| } |
| |
| /* |
| * Build a parallel protocol request message in our message |
| * buffer based on the input parameters. |
| */ |
| static void |
| ahc_construct_ppr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| u_int period, u_int offset, u_int bus_width, |
| u_int ppr_options) |
| { |
| if (offset == 0) |
| period = AHC_ASYNC_XFER_PERIOD; |
| ahc->msgout_index += spi_populate_ppr_msg( |
| ahc->msgout_buf + ahc->msgout_index, period, offset, |
| bus_width, ppr_options); |
| ahc->msgout_len += 8; |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, " |
| "offset %x, ppr_options %x\n", ahc_name(ahc), |
| devinfo->channel, devinfo->target, devinfo->lun, |
| bus_width, period, offset, ppr_options); |
| } |
| } |
| |
| /* |
| * Clear any active message state. |
| */ |
| static void |
| ahc_clear_msg_state(struct ahc_softc *ahc) |
| { |
| ahc->msgout_len = 0; |
| ahc->msgin_index = 0; |
| ahc->msg_type = MSG_TYPE_NONE; |
| if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0) { |
| /* |
| * The target didn't care to respond to our |
| * message request, so clear ATN. |
| */ |
| ahc_outb(ahc, CLRSINT1, CLRATNO); |
| } |
| ahc_outb(ahc, MSG_OUT, MSG_NOOP); |
| ahc_outb(ahc, SEQ_FLAGS2, |
| ahc_inb(ahc, SEQ_FLAGS2) & ~TARGET_MSG_PENDING); |
| } |
| |
| static void |
| ahc_handle_proto_violation(struct ahc_softc *ahc) |
| { |
| struct ahc_devinfo devinfo; |
| struct scb *scb; |
| u_int scbid; |
| u_int seq_flags; |
| u_int curphase; |
| u_int lastphase; |
| int found; |
| |
| ahc_fetch_devinfo(ahc, &devinfo); |
| scbid = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scbid); |
| seq_flags = ahc_inb(ahc, SEQ_FLAGS); |
| curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| lastphase = ahc_inb(ahc, LASTPHASE); |
| if ((seq_flags & NOT_IDENTIFIED) != 0) { |
| |
| /* |
| * The reconnecting target either did not send an |
| * identify message, or did, but we didn't find an SCB |
| * to match. |
| */ |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("Target did not send an IDENTIFY message. " |
| "LASTPHASE = 0x%x.\n", lastphase); |
| scb = NULL; |
| } else if (scb == NULL) { |
| /* |
| * We don't seem to have an SCB active for this |
| * transaction. Print an error and reset the bus. |
| */ |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("No SCB found during protocol violation\n"); |
| goto proto_violation_reset; |
| } else { |
| ahc_set_transaction_status(scb, CAM_SEQUENCE_FAIL); |
| if ((seq_flags & NO_CDB_SENT) != 0) { |
| ahc_print_path(ahc, scb); |
| printk("No or incomplete CDB sent to device.\n"); |
| } else if ((ahc_inb(ahc, SCB_CONTROL) & STATUS_RCVD) == 0) { |
| /* |
| * The target never bothered to provide status to |
| * us prior to completing the command. Since we don't |
| * know the disposition of this command, we must attempt |
| * to abort it. Assert ATN and prepare to send an abort |
| * message. |
| */ |
| ahc_print_path(ahc, scb); |
| printk("Completed command without status.\n"); |
| } else { |
| ahc_print_path(ahc, scb); |
| printk("Unknown protocol violation.\n"); |
| ahc_dump_card_state(ahc); |
| } |
| } |
| if ((lastphase & ~P_DATAIN_DT) == 0 |
| || lastphase == P_COMMAND) { |
| proto_violation_reset: |
| /* |
| * Target either went directly to data/command |
| * phase or didn't respond to our ATN. |
| * The only safe thing to do is to blow |
| * it away with a bus reset. |
| */ |
| found = ahc_reset_channel(ahc, 'A', TRUE); |
| printk("%s: Issued Channel %c Bus Reset. " |
| "%d SCBs aborted\n", ahc_name(ahc), 'A', found); |
| } else { |
| /* |
| * Leave the selection hardware off in case |
| * this abort attempt will affect yet to |
| * be sent commands. |
| */ |
| ahc_outb(ahc, SCSISEQ, |
| ahc_inb(ahc, SCSISEQ) & ~ENSELO); |
| ahc_assert_atn(ahc); |
| ahc_outb(ahc, MSG_OUT, HOST_MSG); |
| if (scb == NULL) { |
| ahc_print_devinfo(ahc, &devinfo); |
| ahc->msgout_buf[0] = MSG_ABORT_TASK; |
| ahc->msgout_len = 1; |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| } else { |
| ahc_print_path(ahc, scb); |
| scb->flags |= SCB_ABORT; |
| } |
| printk("Protocol violation %s. Attempting to abort.\n", |
| ahc_lookup_phase_entry(curphase)->phasemsg); |
| } |
| } |
| |
| /* |
| * Manual message loop handler. |
| */ |
| static void |
| ahc_handle_message_phase(struct ahc_softc *ahc) |
| { |
| struct ahc_devinfo devinfo; |
| u_int bus_phase; |
| int end_session; |
| |
| ahc_fetch_devinfo(ahc, &devinfo); |
| end_session = FALSE; |
| bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK; |
| |
| reswitch: |
| switch (ahc->msg_type) { |
| case MSG_TYPE_INITIATOR_MSGOUT: |
| { |
| int lastbyte; |
| int phasemis; |
| int msgdone; |
| |
| if (ahc->msgout_len == 0) |
| panic("HOST_MSG_LOOP interrupt with no active message"); |
| |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) { |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("INITIATOR_MSG_OUT"); |
| } |
| #endif |
| phasemis = bus_phase != P_MESGOUT; |
| if (phasemis) { |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) { |
| printk(" PHASEMIS %s\n", |
| ahc_lookup_phase_entry(bus_phase) |
| ->phasemsg); |
| } |
| #endif |
| if (bus_phase == P_MESGIN) { |
| /* |
| * Change gears and see if |
| * this messages is of interest to |
| * us or should be passed back to |
| * the sequencer. |
| */ |
| ahc_outb(ahc, CLRSINT1, CLRATNO); |
| ahc->send_msg_perror = FALSE; |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN; |
| ahc->msgin_index = 0; |
| goto reswitch; |
| } |
| end_session = TRUE; |
| break; |
| } |
| |
| if (ahc->send_msg_perror) { |
| ahc_outb(ahc, CLRSINT1, CLRATNO); |
| ahc_outb(ahc, CLRSINT1, CLRREQINIT); |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", ahc->send_msg_perror); |
| #endif |
| ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR); |
| break; |
| } |
| |
| msgdone = ahc->msgout_index == ahc->msgout_len; |
| if (msgdone) { |
| /* |
| * The target has requested a retry. |
| * Re-assert ATN, reset our message index to |
| * 0, and try again. |
| */ |
| ahc->msgout_index = 0; |
| ahc_assert_atn(ahc); |
| } |
| |
| lastbyte = ahc->msgout_index == (ahc->msgout_len - 1); |
| if (lastbyte) { |
| /* Last byte is signified by dropping ATN */ |
| ahc_outb(ahc, CLRSINT1, CLRATNO); |
| } |
| |
| /* |
| * Clear our interrupt status and present |
| * the next byte on the bus. |
| */ |
| ahc_outb(ahc, CLRSINT1, CLRREQINIT); |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", |
| ahc->msgout_buf[ahc->msgout_index]); |
| #endif |
| ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]); |
| break; |
| } |
| case MSG_TYPE_INITIATOR_MSGIN: |
| { |
| int phasemis; |
| int message_done; |
| |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) { |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("INITIATOR_MSG_IN"); |
| } |
| #endif |
| phasemis = bus_phase != P_MESGIN; |
| if (phasemis) { |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) { |
| printk(" PHASEMIS %s\n", |
| ahc_lookup_phase_entry(bus_phase) |
| ->phasemsg); |
| } |
| #endif |
| ahc->msgin_index = 0; |
| if (bus_phase == P_MESGOUT |
| && (ahc->send_msg_perror == TRUE |
| || (ahc->msgout_len != 0 |
| && ahc->msgout_index == 0))) { |
| ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT; |
| goto reswitch; |
| } |
| end_session = TRUE; |
| break; |
| } |
| |
| /* Pull the byte in without acking it */ |
| ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL); |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) |
| printk(" byte 0x%x\n", |
| ahc->msgin_buf[ahc->msgin_index]); |
| #endif |
| |
| message_done = ahc_parse_msg(ahc, &devinfo); |
| |
| if (message_done) { |
| /* |
| * Clear our incoming message buffer in case there |
| * is another message following this one. |
| */ |
| ahc->msgin_index = 0; |
| |
| /* |
| * If this message illicited a response, |
| * assert ATN so the target takes us to the |
| * message out phase. |
| */ |
| if (ahc->msgout_len != 0) { |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) { |
| ahc_print_devinfo(ahc, &devinfo); |
| printk("Asserting ATN for response\n"); |
| } |
| #endif |
| ahc_assert_atn(ahc); |
| } |
| } else |
| ahc->msgin_index++; |
| |
| if (message_done == MSGLOOP_TERMINATED) { |
| end_session = TRUE; |
| } else { |
| /* Ack the byte */ |
| ahc_outb(ahc, CLRSINT1, CLRREQINIT); |
| ahc_inb(ahc, SCSIDATL); |
| } |
| break; |
| } |
| case MSG_TYPE_TARGET_MSGIN: |
| { |
| int msgdone; |
| int msgout_request; |
| |
| if (ahc->msgout_len == 0) |
| panic("Target MSGIN with no active message"); |
| |
| /* |
| * If we interrupted a mesgout session, the initiator |
| * will not know this until our first REQ. So, we |
| * only honor mesgout requests after we've sent our |
| * first byte. |
| */ |
| if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0 |
| && ahc->msgout_index > 0) |
| msgout_request = TRUE; |
| else |
| msgout_request = FALSE; |
| |
| if (msgout_request) { |
| |
| /* |
| * Change gears and see if |
| * this messages is of interest to |
| * us or should be passed back to |
| * the sequencer. |
| */ |
| ahc->msg_type = MSG_TYPE_TARGET_MSGOUT; |
| ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO); |
| ahc->msgin_index = 0; |
| /* Dummy read to REQ for first byte */ |
| ahc_inb(ahc, SCSIDATL); |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | SPIOEN); |
| break; |
| } |
| |
| msgdone = ahc->msgout_index == ahc->msgout_len; |
| if (msgdone) { |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) & ~SPIOEN); |
| end_session = TRUE; |
| break; |
| } |
| |
| /* |
| * Present the next byte on the bus. |
| */ |
| ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN); |
| ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]); |
| break; |
| } |
| case MSG_TYPE_TARGET_MSGOUT: |
| { |
| int lastbyte; |
| int msgdone; |
| |
| /* |
| * The initiator signals that this is |
| * the last byte by dropping ATN. |
| */ |
| lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0; |
| |
| /* |
| * Read the latched byte, but turn off SPIOEN first |
| * so that we don't inadvertently cause a REQ for the |
| * next byte. |
| */ |
| ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN); |
| ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL); |
| msgdone = ahc_parse_msg(ahc, &devinfo); |
| if (msgdone == MSGLOOP_TERMINATED) { |
| /* |
| * The message is *really* done in that it caused |
| * us to go to bus free. The sequencer has already |
| * been reset at this point, so pull the ejection |
| * handle. |
| */ |
| return; |
| } |
| |
| ahc->msgin_index++; |
| |
| /* |
| * XXX Read spec about initiator dropping ATN too soon |
| * and use msgdone to detect it. |
| */ |
| if (msgdone == MSGLOOP_MSGCOMPLETE) { |
| ahc->msgin_index = 0; |
| |
| /* |
| * If this message illicited a response, transition |
| * to the Message in phase and send it. |
| */ |
| if (ahc->msgout_len != 0) { |
| ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO); |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | SPIOEN); |
| ahc->msg_type = MSG_TYPE_TARGET_MSGIN; |
| ahc->msgin_index = 0; |
| break; |
| } |
| } |
| |
| if (lastbyte) |
| end_session = TRUE; |
| else { |
| /* Ask for the next byte. */ |
| ahc_outb(ahc, SXFRCTL0, |
| ahc_inb(ahc, SXFRCTL0) | SPIOEN); |
| } |
| |
| break; |
| } |
| default: |
| panic("Unknown REQINIT message type"); |
| } |
| |
| if (end_session) { |
| ahc_clear_msg_state(ahc); |
| ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP); |
| } else |
| ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP); |
| } |
| |
| /* |
| * See if we sent a particular extended message to the target. |
| * If "full" is true, return true only if the target saw the full |
| * message. If "full" is false, return true if the target saw at |
| * least the first byte of the message. |
| */ |
| static int |
| ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, u_int msgval, int full) |
| { |
| int found; |
| u_int index; |
| |
| found = FALSE; |
| index = 0; |
| |
| while (index < ahc->msgout_len) { |
| if (ahc->msgout_buf[index] == MSG_EXTENDED) { |
| u_int end_index; |
| |
| end_index = index + 1 + ahc->msgout_buf[index + 1]; |
| if (ahc->msgout_buf[index+2] == msgval |
| && type == AHCMSG_EXT) { |
| |
| if (full) { |
| if (ahc->msgout_index > end_index) |
| found = TRUE; |
| } else if (ahc->msgout_index > index) |
| found = TRUE; |
| } |
| index = end_index; |
| } else if (ahc->msgout_buf[index] >= MSG_SIMPLE_TASK |
| && ahc->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) { |
| |
| /* Skip tag type and tag id or residue param*/ |
| index += 2; |
| } else { |
| /* Single byte message */ |
| if (type == AHCMSG_1B |
| && ahc->msgout_buf[index] == msgval |
| && ahc->msgout_index > index) |
| found = TRUE; |
| index++; |
| } |
| |
| if (found) |
| break; |
| } |
| return (found); |
| } |
| |
| /* |
| * Wait for a complete incoming message, parse it, and respond accordingly. |
| */ |
| static int |
| ahc_parse_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| int reject; |
| int done; |
| int response; |
| u_int targ_scsirate; |
| |
| done = MSGLOOP_IN_PROG; |
| response = FALSE; |
| reject = FALSE; |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| targ_scsirate = tinfo->scsirate; |
| |
| /* |
| * Parse as much of the message as is available, |
| * rejecting it if we don't support it. When |
| * the entire message is available and has been |
| * handled, return MSGLOOP_MSGCOMPLETE, indicating |
| * that we have parsed an entire message. |
| * |
| * In the case of extended messages, we accept the length |
| * byte outright and perform more checking once we know the |
| * extended message type. |
| */ |
| switch (ahc->msgin_buf[0]) { |
| case MSG_DISCONNECT: |
| case MSG_SAVEDATAPOINTER: |
| case MSG_CMDCOMPLETE: |
| case MSG_RESTOREPOINTERS: |
| case MSG_IGN_WIDE_RESIDUE: |
| /* |
| * End our message loop as these are messages |
| * the sequencer handles on its own. |
| */ |
| done = MSGLOOP_TERMINATED; |
| break; |
| case MSG_MESSAGE_REJECT: |
| response = ahc_handle_msg_reject(ahc, devinfo); |
| /* FALLTHROUGH */ |
| case MSG_NOOP: |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| case MSG_EXTENDED: |
| { |
| /* Wait for enough of the message to begin validation */ |
| if (ahc->msgin_index < 2) |
| break; |
| switch (ahc->msgin_buf[2]) { |
| case MSG_EXT_SDTR: |
| { |
| const struct ahc_syncrate *syncrate; |
| u_int period; |
| u_int ppr_options; |
| u_int offset; |
| u_int saved_offset; |
| |
| if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have both args before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_SDTR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1)) |
| break; |
| |
| period = ahc->msgin_buf[3]; |
| ppr_options = 0; |
| saved_offset = offset = ahc->msgin_buf[4]; |
| syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period, |
| &ppr_options, |
| devinfo->role); |
| ahc_validate_offset(ahc, tinfo, syncrate, &offset, |
| targ_scsirate & WIDEXFER, |
| devinfo->role); |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received " |
| "SDTR period %x, offset %x\n\t" |
| "Filtered to period %x, offset %x\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| ahc->msgin_buf[3], saved_offset, |
| period, offset); |
| } |
| ahc_set_syncrate(ahc, devinfo, |
| syncrate, period, |
| offset, ppr_options, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| |
| /* |
| * See if we initiated Sync Negotiation |
| * and didn't have to fall down to async |
| * transfers. |
| */ |
| if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, TRUE)) { |
| /* We started it */ |
| if (saved_offset != offset) { |
| /* Went too low - force async */ |
| reject = TRUE; |
| } |
| } else { |
| /* |
| * Send our own SDTR in reply |
| */ |
| if (bootverbose |
| && devinfo->role == ROLE_INITIATOR) { |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated SDTR\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_construct_sdtr(ahc, devinfo, |
| period, offset); |
| ahc->msgout_index = 0; |
| response = TRUE; |
| } |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| case MSG_EXT_WDTR: |
| { |
| u_int bus_width; |
| u_int saved_width; |
| u_int sending_reply; |
| |
| sending_reply = FALSE; |
| if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have our arg before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_WDTR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1)) |
| break; |
| |
| bus_width = ahc->msgin_buf[3]; |
| saved_width = bus_width; |
| ahc_validate_width(ahc, tinfo, &bus_width, |
| devinfo->role); |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received WDTR " |
| "%x filtered to %x\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| saved_width, bus_width); |
| } |
| |
| if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, TRUE)) { |
| /* |
| * Don't send a WDTR back to the |
| * target, since we asked first. |
| * If the width went higher than our |
| * request, reject it. |
| */ |
| if (saved_width > bus_width) { |
| reject = TRUE; |
| printk("(%s:%c:%d:%d): requested %dBit " |
| "transfers. Rejecting...\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| 8 * (0x01 << bus_width)); |
| bus_width = 0; |
| } |
| } else { |
| /* |
| * Send our own WDTR in reply |
| */ |
| if (bootverbose |
| && devinfo->role == ROLE_INITIATOR) { |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated WDTR\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_construct_wdtr(ahc, devinfo, bus_width); |
| ahc->msgout_index = 0; |
| response = TRUE; |
| sending_reply = TRUE; |
| } |
| /* |
| * After a wide message, we are async, but |
| * some devices don't seem to honor this portion |
| * of the spec. Force a renegotiation of the |
| * sync component of our transfer agreement even |
| * if our goal is async. By updating our width |
| * after forcing the negotiation, we avoid |
| * renegotiating for width. |
| */ |
| ahc_update_neg_request(ahc, devinfo, tstate, |
| tinfo, AHC_NEG_ALWAYS); |
| ahc_set_width(ahc, devinfo, bus_width, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| if (sending_reply == FALSE && reject == FALSE) { |
| |
| /* |
| * We will always have an SDTR to send. |
| */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_build_transfer_msg(ahc, devinfo); |
| ahc->msgout_index = 0; |
| response = TRUE; |
| } |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| case MSG_EXT_PPR: |
| { |
| const struct ahc_syncrate *syncrate; |
| u_int period; |
| u_int offset; |
| u_int bus_width; |
| u_int ppr_options; |
| u_int saved_width; |
| u_int saved_offset; |
| u_int saved_ppr_options; |
| |
| if (ahc->msgin_buf[1] != MSG_EXT_PPR_LEN) { |
| reject = TRUE; |
| break; |
| } |
| |
| /* |
| * Wait until we have all args before validating |
| * and acting on this message. |
| * |
| * Add one to MSG_EXT_PPR_LEN to account for |
| * the extended message preamble. |
| */ |
| if (ahc->msgin_index < (MSG_EXT_PPR_LEN + 1)) |
| break; |
| |
| period = ahc->msgin_buf[3]; |
| offset = ahc->msgin_buf[5]; |
| bus_width = ahc->msgin_buf[6]; |
| saved_width = bus_width; |
| ppr_options = ahc->msgin_buf[7]; |
| /* |
| * According to the spec, a DT only |
| * period factor with no DT option |
| * set implies async. |
| */ |
| if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0 |
| && period == 9) |
| offset = 0; |
| saved_ppr_options = ppr_options; |
| saved_offset = offset; |
| |
| /* |
| * Mask out any options we don't support |
| * on any controller. Transfer options are |
| * only available if we are negotiating wide. |
| */ |
| ppr_options &= MSG_EXT_PPR_DT_REQ; |
| if (bus_width == 0) |
| ppr_options = 0; |
| |
| ahc_validate_width(ahc, tinfo, &bus_width, |
| devinfo->role); |
| syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period, |
| &ppr_options, |
| devinfo->role); |
| ahc_validate_offset(ahc, tinfo, syncrate, |
| &offset, bus_width, |
| devinfo->role); |
| |
| if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, TRUE)) { |
| /* |
| * If we are unable to do any of the |
| * requested options (we went too low), |
| * then we'll have to reject the message. |
| */ |
| if (saved_width > bus_width |
| || saved_offset != offset |
| || saved_ppr_options != ppr_options) { |
| reject = TRUE; |
| period = 0; |
| offset = 0; |
| bus_width = 0; |
| ppr_options = 0; |
| syncrate = NULL; |
| } |
| } else { |
| if (devinfo->role != ROLE_TARGET) |
| printk("(%s:%c:%d:%d): Target " |
| "Initiated PPR\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| else |
| printk("(%s:%c:%d:%d): Initiator " |
| "Initiated PPR\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_construct_ppr(ahc, devinfo, period, offset, |
| bus_width, ppr_options); |
| ahc->msgout_index = 0; |
| response = TRUE; |
| } |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): Received PPR width %x, " |
| "period %x, offset %x,options %x\n" |
| "\tFiltered to width %x, period %x, " |
| "offset %x, options %x\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun, |
| saved_width, ahc->msgin_buf[3], |
| saved_offset, saved_ppr_options, |
| bus_width, period, offset, ppr_options); |
| } |
| ahc_set_width(ahc, devinfo, bus_width, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| ahc_set_syncrate(ahc, devinfo, |
| syncrate, period, |
| offset, ppr_options, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| done = MSGLOOP_MSGCOMPLETE; |
| break; |
| } |
| default: |
| /* Unknown extended message. Reject it. */ |
| reject = TRUE; |
| break; |
| } |
| break; |
| } |
| #ifdef AHC_TARGET_MODE |
| case MSG_BUS_DEV_RESET: |
| ahc_handle_devreset(ahc, devinfo, |
| CAM_BDR_SENT, |
| "Bus Device Reset Received", |
| /*verbose_level*/0); |
| ahc_restart(ahc); |
| done = MSGLOOP_TERMINATED; |
| break; |
| case MSG_ABORT_TAG: |
| case MSG_ABORT: |
| case MSG_CLEAR_QUEUE: |
| { |
| int tag; |
| |
| /* Target mode messages */ |
| if (devinfo->role != ROLE_TARGET) { |
| reject = TRUE; |
| break; |
| } |
| tag = SCB_LIST_NULL; |
| if (ahc->msgin_buf[0] == MSG_ABORT_TAG) |
| tag = ahc_inb(ahc, INITIATOR_TAG); |
| ahc_abort_scbs(ahc, devinfo->target, devinfo->channel, |
| devinfo->lun, tag, ROLE_TARGET, |
| CAM_REQ_ABORTED); |
| |
| tstate = ahc->enabled_targets[devinfo->our_scsiid]; |
| if (tstate != NULL) { |
| struct ahc_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[devinfo->lun]; |
| if (lstate != NULL) { |
| ahc_queue_lstate_event(ahc, lstate, |
| devinfo->our_scsiid, |
| ahc->msgin_buf[0], |
| /*arg*/tag); |
| ahc_send_lstate_events(ahc, lstate); |
| } |
| } |
| ahc_restart(ahc); |
| done = MSGLOOP_TERMINATED; |
| break; |
| } |
| #endif |
| case MSG_TERM_IO_PROC: |
| default: |
| reject = TRUE; |
| break; |
| } |
| |
| if (reject) { |
| /* |
| * Setup to reject the message. |
| */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 1; |
| ahc->msgout_buf[0] = MSG_MESSAGE_REJECT; |
| done = MSGLOOP_MSGCOMPLETE; |
| response = TRUE; |
| } |
| |
| if (done != MSGLOOP_IN_PROG && !response) |
| /* Clear the outgoing message buffer */ |
| ahc->msgout_len = 0; |
| |
| return (done); |
| } |
| |
| /* |
| * Process a message reject message. |
| */ |
| static int |
| ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| /* |
| * What we care about here is if we had an |
| * outstanding SDTR or WDTR message for this |
| * target. If we did, this is a signal that |
| * the target is refusing negotiation. |
| */ |
| struct scb *scb; |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int scb_index; |
| u_int last_msg; |
| int response = 0; |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, |
| devinfo->our_scsiid, |
| devinfo->target, &tstate); |
| /* Might be necessary */ |
| last_msg = ahc_inb(ahc, LAST_MSG); |
| |
| if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) { |
| /* |
| * Target does not support the PPR message. |
| * Attempt to negotiate SPI-2 style. |
| */ |
| if (bootverbose) { |
| printk("(%s:%c:%d:%d): PPR Rejected. " |
| "Trying WDTR/SDTR\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } |
| tinfo->goal.ppr_options = 0; |
| tinfo->curr.transport_version = 2; |
| tinfo->goal.transport_version = 2; |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_build_transfer_msg(ahc, devinfo); |
| ahc->msgout_index = 0; |
| response = 1; |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) { |
| |
| /* note 8bit xfers */ |
| printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using " |
| "8bit transfers\n", ahc_name(ahc), |
| devinfo->channel, devinfo->target, devinfo->lun); |
| ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| /* |
| * No need to clear the sync rate. If the target |
| * did not accept the command, our syncrate is |
| * unaffected. If the target started the negotiation, |
| * but rejected our response, we already cleared the |
| * sync rate before sending our WDTR. |
| */ |
| if (tinfo->goal.offset != tinfo->curr.offset) { |
| |
| /* Start the sync negotiation */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| ahc_build_transfer_msg(ahc, devinfo); |
| ahc->msgout_index = 0; |
| response = 1; |
| } |
| } else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) { |
| /* note asynch xfers and clear flag */ |
| ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, /*period*/0, |
| /*offset*/0, /*ppr_options*/0, |
| AHC_TRANS_ACTIVE|AHC_TRANS_GOAL, |
| /*paused*/TRUE); |
| printk("(%s:%c:%d:%d): refuses synchronous negotiation. " |
| "Using asynchronous transfers\n", |
| ahc_name(ahc), devinfo->channel, |
| devinfo->target, devinfo->lun); |
| } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) { |
| int tag_type; |
| int mask; |
| |
| tag_type = (scb->hscb->control & MSG_SIMPLE_TASK); |
| |
| if (tag_type == MSG_SIMPLE_TASK) { |
| printk("(%s:%c:%d:%d): refuses tagged commands. " |
| "Performing non-tagged I/O\n", ahc_name(ahc), |
| devinfo->channel, devinfo->target, devinfo->lun); |
| ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_NONE); |
| mask = ~0x23; |
| } else { |
| printk("(%s:%c:%d:%d): refuses %s tagged commands. " |
| "Performing simple queue tagged I/O only\n", |
| ahc_name(ahc), devinfo->channel, devinfo->target, |
| devinfo->lun, tag_type == MSG_ORDERED_TASK |
| ? "ordered" : "head of queue"); |
| ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_BASIC); |
| mask = ~0x03; |
| } |
| |
| /* |
| * Resend the identify for this CCB as the target |
| * may believe that the selection is invalid otherwise. |
| */ |
| ahc_outb(ahc, SCB_CONTROL, |
| ahc_inb(ahc, SCB_CONTROL) & mask); |
| scb->hscb->control &= mask; |
| ahc_set_transaction_tag(scb, /*enabled*/FALSE, |
| /*type*/MSG_SIMPLE_TASK); |
| ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG); |
| ahc_assert_atn(ahc); |
| |
| /* |
| * This transaction is now at the head of |
| * the untagged queue for this target. |
| */ |
| if ((ahc->flags & AHC_SCB_BTT) == 0) { |
| struct scb_tailq *untagged_q; |
| |
| untagged_q = |
| &(ahc->untagged_queues[devinfo->target_offset]); |
| TAILQ_INSERT_HEAD(untagged_q, scb, links.tqe); |
| scb->flags |= SCB_UNTAGGEDQ; |
| } |
| ahc_busy_tcl(ahc, BUILD_TCL(scb->hscb->scsiid, devinfo->lun), |
| scb->hscb->tag); |
| |
| /* |
| * Requeue all tagged commands for this target |
| * currently in our possession so they can be |
| * converted to untagged commands. |
| */ |
| ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb), |
| SCB_GET_CHANNEL(ahc, scb), |
| SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL, |
| ROLE_INITIATOR, CAM_REQUEUE_REQ, |
| SEARCH_COMPLETE); |
| } else { |
| /* |
| * Otherwise, we ignore it. |
| */ |
| printk("%s:%c:%d: Message reject for %x -- ignored\n", |
| ahc_name(ahc), devinfo->channel, devinfo->target, |
| last_msg); |
| } |
| return (response); |
| } |
| |
| /* |
| * Process an ingnore wide residue message. |
| */ |
| static void |
| ahc_handle_ign_wide_residue(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) |
| { |
| u_int scb_index; |
| struct scb *scb; |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| /* |
| * XXX Actually check data direction in the sequencer? |
| * Perhaps add datadir to some spare bits in the hscb? |
| */ |
| if ((ahc_inb(ahc, SEQ_FLAGS) & DPHASE) == 0 |
| || ahc_get_transfer_dir(scb) != CAM_DIR_IN) { |
| /* |
| * Ignore the message if we haven't |
| * seen an appropriate data phase yet. |
| */ |
| } else { |
| /* |
| * If the residual occurred on the last |
| * transfer and the transfer request was |
| * expected to end on an odd count, do |
| * nothing. Otherwise, subtract a byte |
| * and update the residual count accordingly. |
| */ |
| uint32_t sgptr; |
| |
| sgptr = ahc_inb(ahc, SCB_RESIDUAL_SGPTR); |
| if ((sgptr & SG_LIST_NULL) != 0 |
| && (ahc_inb(ahc, SCB_LUN) & SCB_XFERLEN_ODD) != 0) { |
| /* |
| * If the residual occurred on the last |
| * transfer and the transfer request was |
| * expected to end on an odd count, do |
| * nothing. |
| */ |
| } else { |
| struct ahc_dma_seg *sg; |
| uint32_t data_cnt; |
| uint32_t data_addr; |
| uint32_t sglen; |
| |
| /* Pull in all of the sgptr */ |
| sgptr = ahc_inl(ahc, SCB_RESIDUAL_SGPTR); |
| data_cnt = ahc_inl(ahc, SCB_RESIDUAL_DATACNT); |
| |
| if ((sgptr & SG_LIST_NULL) != 0) { |
| /* |
| * The residual data count is not updated |
| * for the command run to completion case. |
| * Explicitly zero the count. |
| */ |
| data_cnt &= ~AHC_SG_LEN_MASK; |
| } |
| |
| data_addr = ahc_inl(ahc, SHADDR); |
| |
| data_cnt += 1; |
| data_addr -= 1; |
| sgptr &= SG_PTR_MASK; |
| |
| sg = ahc_sg_bus_to_virt(scb, sgptr); |
| |
| /* |
| * The residual sg ptr points to the next S/G |
| * to load so we must go back one. |
| */ |
| sg--; |
| sglen = ahc_le32toh(sg->len) & AHC_SG_LEN_MASK; |
| if (sg != scb->sg_list |
| && sglen < (data_cnt & AHC_SG_LEN_MASK)) { |
| |
| sg--; |
| sglen = ahc_le32toh(sg->len); |
| /* |
| * Preserve High Address and SG_LIST bits |
| * while setting the count to 1. |
| */ |
| data_cnt = 1 | (sglen & (~AHC_SG_LEN_MASK)); |
| data_addr = ahc_le32toh(sg->addr) |
| + (sglen & AHC_SG_LEN_MASK) - 1; |
| |
| /* |
| * Increment sg so it points to the |
| * "next" sg. |
| */ |
| sg++; |
| sgptr = ahc_sg_virt_to_bus(scb, sg); |
| } |
| ahc_outl(ahc, SCB_RESIDUAL_SGPTR, sgptr); |
| ahc_outl(ahc, SCB_RESIDUAL_DATACNT, data_cnt); |
| /* |
| * Toggle the "oddness" of the transfer length |
| * to handle this mid-transfer ignore wide |
| * residue. This ensures that the oddness is |
| * correct for subsequent data transfers. |
| */ |
| ahc_outb(ahc, SCB_LUN, |
| ahc_inb(ahc, SCB_LUN) ^ SCB_XFERLEN_ODD); |
| } |
| } |
| } |
| |
| |
| /* |
| * Reinitialize the data pointers for the active transfer |
| * based on its current residual. |
| */ |
| static void |
| ahc_reinitialize_dataptrs(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| struct ahc_dma_seg *sg; |
| u_int scb_index; |
| uint32_t sgptr; |
| uint32_t resid; |
| uint32_t dataptr; |
| |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| scb = ahc_lookup_scb(ahc, scb_index); |
| sgptr = (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 3) << 24) |
| | (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 2) << 16) |
| | (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 1) << 8) |
| | ahc_inb(ahc, SCB_RESIDUAL_SGPTR); |
| |
| sgptr &= SG_PTR_MASK; |
| sg = ahc_sg_bus_to_virt(scb, sgptr); |
| |
| /* The residual sg_ptr always points to the next sg */ |
| sg--; |
| |
| resid = (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 2) << 16) |
| | (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 1) << 8) |
| | ahc_inb(ahc, SCB_RESIDUAL_DATACNT); |
| |
| dataptr = ahc_le32toh(sg->addr) |
| + (ahc_le32toh(sg->len) & AHC_SG_LEN_MASK) |
| - resid; |
| if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) { |
| u_int dscommand1; |
| |
| dscommand1 = ahc_inb(ahc, DSCOMMAND1); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0); |
| ahc_outb(ahc, HADDR, |
| (ahc_le32toh(sg->len) >> 24) & SG_HIGH_ADDR_BITS); |
| ahc_outb(ahc, DSCOMMAND1, dscommand1); |
| } |
| ahc_outb(ahc, HADDR + 3, dataptr >> 24); |
| ahc_outb(ahc, HADDR + 2, dataptr >> 16); |
| ahc_outb(ahc, HADDR + 1, dataptr >> 8); |
| ahc_outb(ahc, HADDR, dataptr); |
| ahc_outb(ahc, HCNT + 2, resid >> 16); |
| ahc_outb(ahc, HCNT + 1, resid >> 8); |
| ahc_outb(ahc, HCNT, resid); |
| if ((ahc->features & AHC_ULTRA2) == 0) { |
| ahc_outb(ahc, STCNT + 2, resid >> 16); |
| ahc_outb(ahc, STCNT + 1, resid >> 8); |
| ahc_outb(ahc, STCNT, resid); |
| } |
| } |
| |
| /* |
| * Handle the effects of issuing a bus device reset message. |
| */ |
| static void |
| ahc_handle_devreset(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| cam_status status, char *message, int verbose_level) |
| { |
| #ifdef AHC_TARGET_MODE |
| struct ahc_tmode_tstate* tstate; |
| u_int lun; |
| #endif |
| int found; |
| |
| found = ahc_abort_scbs(ahc, devinfo->target, devinfo->channel, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, devinfo->role, |
| status); |
| |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Send an immediate notify ccb to all target mord peripheral |
| * drivers affected by this action. |
| */ |
| tstate = ahc->enabled_targets[devinfo->our_scsiid]; |
| if (tstate != NULL) { |
| for (lun = 0; lun < AHC_NUM_LUNS; lun++) { |
| struct ahc_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[lun]; |
| if (lstate == NULL) |
| continue; |
| |
| ahc_queue_lstate_event(ahc, lstate, devinfo->our_scsiid, |
| MSG_BUS_DEV_RESET, /*arg*/0); |
| ahc_send_lstate_events(ahc, lstate); |
| } |
| } |
| #endif |
| |
| /* |
| * Go back to async/narrow transfers and renegotiate. |
| */ |
| ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHC_TRANS_CUR, /*paused*/TRUE); |
| ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, |
| /*period*/0, /*offset*/0, /*ppr_options*/0, |
| AHC_TRANS_CUR, /*paused*/TRUE); |
| |
| if (status != CAM_SEL_TIMEOUT) |
| ahc_send_async(ahc, devinfo->channel, devinfo->target, |
| CAM_LUN_WILDCARD, AC_SENT_BDR); |
| |
| if (message != NULL |
| && (verbose_level <= bootverbose)) |
| printk("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc), |
| message, devinfo->channel, devinfo->target, found); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| static void |
| ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, |
| struct scb *scb) |
| { |
| |
| /* |
| * To facilitate adding multiple messages together, |
| * each routine should increment the index and len |
| * variables instead of setting them explicitly. |
| */ |
| ahc->msgout_index = 0; |
| ahc->msgout_len = 0; |
| |
| if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0) |
| ahc_build_transfer_msg(ahc, devinfo); |
| else |
| panic("ahc_intr: AWAITING target message with no message"); |
| |
| ahc->msgout_index = 0; |
| ahc->msg_type = MSG_TYPE_TARGET_MSGIN; |
| } |
| #endif |
| /**************************** Initialization **********************************/ |
| /* |
| * Allocate a controller structure for a new device |
| * and perform initial initializion. |
| */ |
| struct ahc_softc * |
| ahc_alloc(void *platform_arg, char *name) |
| { |
| struct ahc_softc *ahc; |
| int i; |
| |
| ahc = kmalloc(sizeof(*ahc), GFP_ATOMIC); |
| if (!ahc) { |
| printk("aic7xxx: cannot malloc softc!\n"); |
| kfree(name); |
| return NULL; |
| } |
| memset(ahc, 0, sizeof(*ahc)); |
| ahc->seep_config = kmalloc(sizeof(*ahc->seep_config), GFP_ATOMIC); |
| if (ahc->seep_config == NULL) { |
| kfree(ahc); |
| kfree(name); |
| return (NULL); |
| } |
| LIST_INIT(&ahc->pending_scbs); |
| /* We don't know our unit number until the OSM sets it */ |
| ahc->name = name; |
| ahc->unit = -1; |
| ahc->description = NULL; |
| ahc->channel = 'A'; |
| ahc->channel_b = 'B'; |
| ahc->chip = AHC_NONE; |
| ahc->features = AHC_FENONE; |
| ahc->bugs = AHC_BUGNONE; |
| ahc->flags = AHC_FNONE; |
| /* |
| * Default to all error reporting enabled with the |
| * sequencer operating at its fastest speed. |
| * The bus attach code may modify this. |
| */ |
| ahc->seqctl = FASTMODE; |
| |
| for (i = 0; i < AHC_NUM_TARGETS; i++) |
| TAILQ_INIT(&ahc->untagged_queues[i]); |
| if (ahc_platform_alloc(ahc, platform_arg) != 0) { |
| ahc_free(ahc); |
| ahc = NULL; |
| } |
| return (ahc); |
| } |
| |
| int |
| ahc_softc_init(struct ahc_softc *ahc) |
| { |
| |
| /* The IRQMS bit is only valid on VL and EISA chips */ |
| if ((ahc->chip & AHC_PCI) == 0) |
| ahc->unpause = ahc_inb(ahc, HCNTRL) & IRQMS; |
| else |
| ahc->unpause = 0; |
| ahc->pause = ahc->unpause | PAUSE; |
| /* XXX The shared scb data stuff should be deprecated */ |
| if (ahc->scb_data == NULL) { |
| ahc->scb_data = kzalloc(sizeof(*ahc->scb_data), GFP_ATOMIC); |
| if (ahc->scb_data == NULL) |
| return (ENOMEM); |
| } |
| |
| return (0); |
| } |
| |
| void |
| ahc_set_unit(struct ahc_softc *ahc, int unit) |
| { |
| ahc->unit = unit; |
| } |
| |
| void |
| ahc_set_name(struct ahc_softc *ahc, char *name) |
| { |
| if (ahc->name != NULL) |
| kfree(ahc->name); |
| ahc->name = name; |
| } |
| |
| void |
| ahc_free(struct ahc_softc *ahc) |
| { |
| int i; |
| |
| switch (ahc->init_level) { |
| default: |
| case 5: |
| ahc_shutdown(ahc); |
| /* FALLTHROUGH */ |
| case 4: |
| ahc_dmamap_unload(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap); |
| /* FALLTHROUGH */ |
| case 3: |
| ahc_dmamem_free(ahc, ahc->shared_data_dmat, ahc->qoutfifo, |
| ahc->shared_data_dmamap); |
| ahc_dmamap_destroy(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap); |
| /* FALLTHROUGH */ |
| case 2: |
| ahc_dma_tag_destroy(ahc, ahc->shared_data_dmat); |
| case 1: |
| break; |
| case 0: |
| break; |
| } |
| |
| ahc_platform_free(ahc); |
| ahc_fini_scbdata(ahc); |
| for (i = 0; i < AHC_NUM_TARGETS; i++) { |
| struct ahc_tmode_tstate *tstate; |
| |
| tstate = ahc->enabled_targets[i]; |
| if (tstate != NULL) { |
| #ifdef AHC_TARGET_MODE |
| int j; |
| |
| for (j = 0; j < AHC_NUM_LUNS; j++) { |
| struct ahc_tmode_lstate *lstate; |
| |
| lstate = tstate->enabled_luns[j]; |
| if (lstate != NULL) { |
| xpt_free_path(lstate->path); |
| kfree(lstate); |
| } |
| } |
| #endif |
| kfree(tstate); |
| } |
| } |
| #ifdef AHC_TARGET_MODE |
| if (ahc->black_hole != NULL) { |
| xpt_free_path(ahc->black_hole->path); |
| kfree(ahc->black_hole); |
| } |
| #endif |
| if (ahc->name != NULL) |
| kfree(ahc->name); |
| if (ahc->seep_config != NULL) |
| kfree(ahc->seep_config); |
| kfree(ahc); |
| return; |
| } |
| |
| static void |
| ahc_shutdown(void *arg) |
| { |
| struct ahc_softc *ahc; |
| int i; |
| |
| ahc = (struct ahc_softc *)arg; |
| |
| /* This will reset most registers to 0, but not all */ |
| ahc_reset(ahc, /*reinit*/FALSE); |
| ahc_outb(ahc, SCSISEQ, 0); |
| ahc_outb(ahc, SXFRCTL0, 0); |
| ahc_outb(ahc, DSPCISTATUS, 0); |
| |
| for (i = TARG_SCSIRATE; i < SCSICONF; i++) |
| ahc_outb(ahc, i, 0); |
| } |
| |
| /* |
| * Reset the controller and record some information about it |
| * that is only available just after a reset. If "reinit" is |
| * non-zero, this reset occurred after initial configuration |
| * and the caller requests that the chip be fully reinitialized |
| * to a runable state. Chip interrupts are *not* enabled after |
| * a reinitialization. The caller must enable interrupts via |
| * ahc_intr_enable(). |
| */ |
| int |
| ahc_reset(struct ahc_softc *ahc, int reinit) |
| { |
| u_int sblkctl; |
| u_int sxfrctl1_a, sxfrctl1_b; |
| int error; |
| int wait; |
| |
| /* |
| * Preserve the value of the SXFRCTL1 register for all channels. |
| * It contains settings that affect termination and we don't want |
| * to disturb the integrity of the bus. |
| */ |
| ahc_pause(ahc); |
| sxfrctl1_b = 0; |
| if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7770) { |
| u_int sblkctl; |
| |
| /* |
| * Save channel B's settings in case this chip |
| * is setup for TWIN channel operation. |
| */ |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB); |
| sxfrctl1_b = ahc_inb(ahc, SXFRCTL1); |
| ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB); |
| } |
| sxfrctl1_a = ahc_inb(ahc, SXFRCTL1); |
| |
| ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause); |
| |
| /* |
| * Ensure that the reset has finished. We delay 1000us |
| * prior to reading the register to make sure the chip |
| * has sufficiently completed its reset to handle register |
| * accesses. |
| */ |
| wait = 1000; |
| do { |
| ahc_delay(1000); |
| } while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK)); |
| |
| if (wait == 0) { |
| printk("%s: WARNING - Failed chip reset! " |
| "Trying to initialize anyway.\n", ahc_name(ahc)); |
| } |
| ahc_outb(ahc, HCNTRL, ahc->pause); |
| |
| /* Determine channel configuration */ |
| sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE); |
| /* No Twin Channel PCI cards */ |
| if ((ahc->chip & AHC_PCI) != 0) |
| sblkctl &= ~SELBUSB; |
| switch (sblkctl) { |
| case 0: |
| /* Single Narrow Channel */ |
| break; |
| case 2: |
| /* Wide Channel */ |
| ahc->features |= AHC_WIDE; |
| break; |
| case 8: |
| /* Twin Channel */ |
| ahc->features |= AHC_TWIN; |
| break; |
| default: |
| printk(" Unsupported adapter type. Ignoring\n"); |
| return(-1); |
| } |
| |
| /* |
| * Reload sxfrctl1. |
| * |
| * We must always initialize STPWEN to 1 before we |
| * restore the saved values. STPWEN is initialized |
| * to a tri-state condition which can only be cleared |
| * by turning it on. |
| */ |
| if ((ahc->features & AHC_TWIN) != 0) { |
| u_int sblkctl; |
| |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB); |
| ahc_outb(ahc, SXFRCTL1, sxfrctl1_b); |
| ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB); |
| } |
| ahc_outb(ahc, SXFRCTL1, sxfrctl1_a); |
| |
| error = 0; |
| if (reinit != 0) |
| /* |
| * If a recovery action has forced a chip reset, |
| * re-initialize the chip to our liking. |
| */ |
| error = ahc->bus_chip_init(ahc); |
| #ifdef AHC_DUMP_SEQ |
| else |
| ahc_dumpseq(ahc); |
| #endif |
| |
| return (error); |
| } |
| |
| /* |
| * Determine the number of SCBs available on the controller |
| */ |
| int |
| ahc_probe_scbs(struct ahc_softc *ahc) { |
| int i; |
| |
| for (i = 0; i < AHC_SCB_MAX; i++) { |
| |
| ahc_outb(ahc, SCBPTR, i); |
| ahc_outb(ahc, SCB_BASE, i); |
| if (ahc_inb(ahc, SCB_BASE) != i) |
| break; |
| ahc_outb(ahc, SCBPTR, 0); |
| if (ahc_inb(ahc, SCB_BASE) != 0) |
| break; |
| } |
| return (i); |
| } |
| |
| static void |
| ahc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) |
| { |
| dma_addr_t *baddr; |
| |
| baddr = (dma_addr_t *)arg; |
| *baddr = segs->ds_addr; |
| } |
| |
| static void |
| ahc_build_free_scb_list(struct ahc_softc *ahc) |
| { |
| int scbsize; |
| int i; |
| |
| scbsize = 32; |
| if ((ahc->flags & AHC_LSCBS_ENABLED) != 0) |
| scbsize = 64; |
| |
| for (i = 0; i < ahc->scb_data->maxhscbs; i++) { |
| int j; |
| |
| ahc_outb(ahc, SCBPTR, i); |
| |
| /* |
| * Touch all SCB bytes to avoid parity errors |
| * should one of our debugging routines read |
| * an otherwise uninitiatlized byte. |
| */ |
| for (j = 0; j < scbsize; j++) |
| ahc_outb(ahc, SCB_BASE+j, 0xFF); |
| |
| /* Clear the control byte. */ |
| ahc_outb(ahc, SCB_CONTROL, 0); |
| |
| /* Set the next pointer */ |
| if ((ahc->flags & AHC_PAGESCBS) != 0) |
| ahc_outb(ahc, SCB_NEXT, i+1); |
| else |
| ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL); |
| |
| /* Make the tag number, SCSIID, and lun invalid */ |
| ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL); |
| ahc_outb(ahc, SCB_SCSIID, 0xFF); |
| ahc_outb(ahc, SCB_LUN, 0xFF); |
| } |
| |
| if ((ahc->flags & AHC_PAGESCBS) != 0) { |
| /* SCB 0 heads the free list. */ |
| ahc_outb(ahc, FREE_SCBH, 0); |
| } else { |
| /* No free list. */ |
| ahc_outb(ahc, FREE_SCBH, SCB_LIST_NULL); |
| } |
| |
| /* Make sure that the last SCB terminates the free list */ |
| ahc_outb(ahc, SCBPTR, i-1); |
| ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL); |
| } |
| |
| static int |
| ahc_init_scbdata(struct ahc_softc *ahc) |
| { |
| struct scb_data *scb_data; |
| |
| scb_data = ahc->scb_data; |
| SLIST_INIT(&scb_data->free_scbs); |
| SLIST_INIT(&scb_data->sg_maps); |
| |
| /* Allocate SCB resources */ |
| scb_data->scbarray = kcalloc(AHC_SCB_MAX_ALLOC, sizeof(struct scb), |
| GFP_ATOMIC); |
| if (scb_data->scbarray == NULL) |
| return (ENOMEM); |
| |
| /* Determine the number of hardware SCBs and initialize them */ |
| |
| scb_data->maxhscbs = ahc_probe_scbs(ahc); |
| if (ahc->scb_data->maxhscbs == 0) { |
| printk("%s: No SCB space found\n", ahc_name(ahc)); |
| return (ENXIO); |
| } |
| |
| /* |
| * Create our DMA tags. These tags define the kinds of device |
| * accessible memory allocations and memory mappings we will |
| * need to perform during normal operation. |
| * |
| * Unless we need to further restrict the allocation, we rely |
| * on the restrictions of the parent dmat, hence the common |
| * use of MAXADDR and MAXSIZE. |
| */ |
| |
| /* DMA tag for our hardware scb structures */ |
| if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb), |
| /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->hscb_dmat) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* Allocation for our hscbs */ |
| if (ahc_dmamem_alloc(ahc, scb_data->hscb_dmat, |
| (void **)&scb_data->hscbs, |
| BUS_DMA_NOWAIT, &scb_data->hscb_dmamap) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* And permanently map them */ |
| ahc_dmamap_load(ahc, scb_data->hscb_dmat, scb_data->hscb_dmamap, |
| scb_data->hscbs, |
| AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb), |
| ahc_dmamap_cb, &scb_data->hscb_busaddr, /*flags*/0); |
| |
| scb_data->init_level++; |
| |
| /* DMA tag for our sense buffers */ |
| if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data), |
| /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->sense_dmat) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* Allocate them */ |
| if (ahc_dmamem_alloc(ahc, scb_data->sense_dmat, |
| (void **)&scb_data->sense, |
| BUS_DMA_NOWAIT, &scb_data->sense_dmamap) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* And permanently map them */ |
| ahc_dmamap_load(ahc, scb_data->sense_dmat, scb_data->sense_dmamap, |
| scb_data->sense, |
| AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data), |
| ahc_dmamap_cb, &scb_data->sense_busaddr, /*flags*/0); |
| |
| scb_data->init_level++; |
| |
| /* DMA tag for our S/G structures. We allocate in page sized chunks */ |
| if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/8, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| PAGE_SIZE, /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &scb_data->sg_dmat) != 0) { |
| goto error_exit; |
| } |
| |
| scb_data->init_level++; |
| |
| /* Perform initial CCB allocation */ |
| memset(scb_data->hscbs, 0, |
| AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb)); |
| ahc_alloc_scbs(ahc); |
| |
| if (scb_data->numscbs == 0) { |
| printk("%s: ahc_init_scbdata - " |
| "Unable to allocate initial scbs\n", |
| ahc_name(ahc)); |
| goto error_exit; |
| } |
| |
| /* |
| * Reserve the next queued SCB. |
| */ |
| ahc->next_queued_scb = ahc_get_scb(ahc); |
| |
| /* |
| * Note that we were successful |
| */ |
| return (0); |
| |
| error_exit: |
| |
| return (ENOMEM); |
| } |
| |
| static void |
| ahc_fini_scbdata(struct ahc_softc *ahc) |
| { |
| struct scb_data *scb_data; |
| |
| scb_data = ahc->scb_data; |
| if (scb_data == NULL) |
| return; |
| |
| switch (scb_data->init_level) { |
| default: |
| case 7: |
| { |
| struct sg_map_node *sg_map; |
| |
| while ((sg_map = SLIST_FIRST(&scb_data->sg_maps))!= NULL) { |
| SLIST_REMOVE_HEAD(&scb_data->sg_maps, links); |
| ahc_dmamap_unload(ahc, scb_data->sg_dmat, |
| sg_map->sg_dmamap); |
| ahc_dmamem_free(ahc, scb_data->sg_dmat, |
| sg_map->sg_vaddr, |
| sg_map->sg_dmamap); |
| kfree(sg_map); |
| } |
| ahc_dma_tag_destroy(ahc, scb_data->sg_dmat); |
| } |
| /* fall through */ |
| case 6: |
| ahc_dmamap_unload(ahc, scb_data->sense_dmat, |
| scb_data->sense_dmamap); |
| /* fall through */ |
| case 5: |
| ahc_dmamem_free(ahc, scb_data->sense_dmat, scb_data->sense, |
| scb_data->sense_dmamap); |
| ahc_dmamap_destroy(ahc, scb_data->sense_dmat, |
| scb_data->sense_dmamap); |
| /* fall through */ |
| case 4: |
| ahc_dma_tag_destroy(ahc, scb_data->sense_dmat); |
| /* fall through */ |
| case 3: |
| ahc_dmamap_unload(ahc, scb_data->hscb_dmat, |
| scb_data->hscb_dmamap); |
| /* fall through */ |
| case 2: |
| ahc_dmamem_free(ahc, scb_data->hscb_dmat, scb_data->hscbs, |
| scb_data->hscb_dmamap); |
| ahc_dmamap_destroy(ahc, scb_data->hscb_dmat, |
| scb_data->hscb_dmamap); |
| /* fall through */ |
| case 1: |
| ahc_dma_tag_destroy(ahc, scb_data->hscb_dmat); |
| break; |
| case 0: |
| break; |
| } |
| if (scb_data->scbarray != NULL) |
| kfree(scb_data->scbarray); |
| } |
| |
| static void |
| ahc_alloc_scbs(struct ahc_softc *ahc) |
| { |
| struct scb_data *scb_data; |
| struct scb *next_scb; |
| struct sg_map_node *sg_map; |
| dma_addr_t physaddr; |
| struct ahc_dma_seg *segs; |
| int newcount; |
| int i; |
| |
| scb_data = ahc->scb_data; |
| if (scb_data->numscbs >= AHC_SCB_MAX_ALLOC) |
| /* Can't allocate any more */ |
| return; |
| |
| next_scb = &scb_data->scbarray[scb_data->numscbs]; |
| |
| sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC); |
| |
| if (sg_map == NULL) |
| return; |
| |
| /* Allocate S/G space for the next batch of SCBS */ |
| if (ahc_dmamem_alloc(ahc, scb_data->sg_dmat, |
| (void **)&sg_map->sg_vaddr, |
| BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) { |
| kfree(sg_map); |
| return; |
| } |
| |
| SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links); |
| |
| ahc_dmamap_load(ahc, scb_data->sg_dmat, sg_map->sg_dmamap, |
| sg_map->sg_vaddr, PAGE_SIZE, ahc_dmamap_cb, |
| &sg_map->sg_physaddr, /*flags*/0); |
| |
| segs = sg_map->sg_vaddr; |
| physaddr = sg_map->sg_physaddr; |
| |
| newcount = (PAGE_SIZE / (AHC_NSEG * sizeof(struct ahc_dma_seg))); |
| newcount = min(newcount, (AHC_SCB_MAX_ALLOC - scb_data->numscbs)); |
| for (i = 0; i < newcount; i++) { |
| struct scb_platform_data *pdata; |
| |
| pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC); |
| if (pdata == NULL) |
| break; |
| next_scb->platform_data = pdata; |
| next_scb->sg_map = sg_map; |
| next_scb->sg_list = segs; |
| /* |
| * The sequencer always starts with the second entry. |
| * The first entry is embedded in the scb. |
| */ |
| next_scb->sg_list_phys = physaddr + sizeof(struct ahc_dma_seg); |
| next_scb->ahc_softc = ahc; |
| next_scb->flags = SCB_FREE; |
| next_scb->hscb = &scb_data->hscbs[scb_data->numscbs]; |
| next_scb->hscb->tag = ahc->scb_data->numscbs; |
| SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, |
| next_scb, links.sle); |
| segs += AHC_NSEG; |
| physaddr += (AHC_NSEG * sizeof(struct ahc_dma_seg)); |
| next_scb++; |
| ahc->scb_data->numscbs++; |
| } |
| } |
| |
| void |
| ahc_controller_info(struct ahc_softc *ahc, char *buf) |
| { |
| int len; |
| |
| len = sprintf(buf, "%s: ", ahc_chip_names[ahc->chip & AHC_CHIPID_MASK]); |
| buf += len; |
| if ((ahc->features & AHC_TWIN) != 0) |
| len = sprintf(buf, "Twin Channel, A SCSI Id=%d, " |
| "B SCSI Id=%d, primary %c, ", |
| ahc->our_id, ahc->our_id_b, |
| (ahc->flags & AHC_PRIMARY_CHANNEL) + 'A'); |
| else { |
| const char *speed; |
| const char *type; |
| |
| speed = ""; |
| if ((ahc->features & AHC_ULTRA) != 0) { |
| speed = "Ultra "; |
| } else if ((ahc->features & AHC_DT) != 0) { |
| speed = "Ultra160 "; |
| } else if ((ahc->features & AHC_ULTRA2) != 0) { |
| speed = "Ultra2 "; |
| } |
| if ((ahc->features & AHC_WIDE) != 0) { |
| type = "Wide"; |
| } else { |
| type = "Single"; |
| } |
| len = sprintf(buf, "%s%s Channel %c, SCSI Id=%d, ", |
| speed, type, ahc->channel, ahc->our_id); |
| } |
| buf += len; |
| |
| if ((ahc->flags & AHC_PAGESCBS) != 0) |
| sprintf(buf, "%d/%d SCBs", |
| ahc->scb_data->maxhscbs, AHC_MAX_QUEUE); |
| else |
| sprintf(buf, "%d SCBs", ahc->scb_data->maxhscbs); |
| } |
| |
| int |
| ahc_chip_init(struct ahc_softc *ahc) |
| { |
| int term; |
| int error; |
| u_int i; |
| u_int scsi_conf; |
| u_int scsiseq_template; |
| uint32_t physaddr; |
| |
| ahc_outb(ahc, SEQ_FLAGS, 0); |
| ahc_outb(ahc, SEQ_FLAGS2, 0); |
| |
| /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/ |
| if (ahc->features & AHC_TWIN) { |
| |
| /* |
| * Setup Channel B first. |
| */ |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) | SELBUSB); |
| term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0; |
| ahc_outb(ahc, SCSIID, ahc->our_id_b); |
| scsi_conf = ahc_inb(ahc, SCSICONF + 1); |
| ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL)) |
| |term|ahc->seltime_b|ENSTIMER|ACTNEGEN); |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR); |
| ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); |
| ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN); |
| |
| /* Select Channel A */ |
| ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB); |
| } |
| term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0; |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id); |
| else |
| ahc_outb(ahc, SCSIID, ahc->our_id); |
| scsi_conf = ahc_inb(ahc, SCSICONF); |
| ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL)) |
| |term|ahc->seltime |
| |ENSTIMER|ACTNEGEN); |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR); |
| ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); |
| ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN); |
| |
| /* There are no untagged SCBs active yet. */ |
| for (i = 0; i < 16; i++) { |
| ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, 0)); |
| if ((ahc->flags & AHC_SCB_BTT) != 0) { |
| int lun; |
| |
| /* |
| * The SCB based BTT allows an entry per |
| * target and lun pair. |
| */ |
| for (lun = 1; lun < AHC_NUM_LUNS; lun++) |
| ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, lun)); |
| } |
| } |
| |
| /* All of our queues are empty */ |
| for (i = 0; i < 256; i++) |
| ahc->qoutfifo[i] = SCB_LIST_NULL; |
| ahc_sync_qoutfifo(ahc, BUS_DMASYNC_PREREAD); |
| |
| for (i = 0; i < 256; i++) |
| ahc->qinfifo[i] = SCB_LIST_NULL; |
| |
| if ((ahc->features & AHC_MULTI_TID) != 0) { |
| ahc_outb(ahc, TARGID, 0); |
| ahc_outb(ahc, TARGID + 1, 0); |
| } |
| |
| /* |
| * Tell the sequencer where it can find our arrays in memory. |
| */ |
| physaddr = ahc->scb_data->hscb_busaddr; |
| ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF); |
| ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF); |
| ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF); |
| ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF); |
| |
| physaddr = ahc->shared_data_busaddr; |
| ahc_outb(ahc, SHARED_DATA_ADDR, physaddr & 0xFF); |
| ahc_outb(ahc, SHARED_DATA_ADDR + 1, (physaddr >> 8) & 0xFF); |
| ahc_outb(ahc, SHARED_DATA_ADDR + 2, (physaddr >> 16) & 0xFF); |
| ahc_outb(ahc, SHARED_DATA_ADDR + 3, (physaddr >> 24) & 0xFF); |
| |
| /* |
| * Initialize the group code to command length table. |
| * This overrides the values in TARG_SCSIRATE, so only |
| * setup the table after we have processed that information. |
| */ |
| ahc_outb(ahc, CMDSIZE_TABLE, 5); |
| ahc_outb(ahc, CMDSIZE_TABLE + 1, 9); |
| ahc_outb(ahc, CMDSIZE_TABLE + 2, 9); |
| ahc_outb(ahc, CMDSIZE_TABLE + 3, 0); |
| ahc_outb(ahc, CMDSIZE_TABLE + 4, 15); |
| ahc_outb(ahc, CMDSIZE_TABLE + 5, 11); |
| ahc_outb(ahc, CMDSIZE_TABLE + 6, 0); |
| ahc_outb(ahc, CMDSIZE_TABLE + 7, 0); |
| |
| if ((ahc->features & AHC_HS_MAILBOX) != 0) |
| ahc_outb(ahc, HS_MAILBOX, 0); |
| |
| /* Tell the sequencer of our initial queue positions */ |
| if ((ahc->features & AHC_TARGETMODE) != 0) { |
| ahc->tqinfifonext = 1; |
| ahc_outb(ahc, KERNEL_TQINPOS, ahc->tqinfifonext - 1); |
| ahc_outb(ahc, TQINPOS, ahc->tqinfifonext); |
| } |
| ahc->qinfifonext = 0; |
| ahc->qoutfifonext = 0; |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256); |
| ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); |
| ahc_outb(ahc, SNSCB_QOFF, ahc->qinfifonext); |
| ahc_outb(ahc, SDSCB_QOFF, 0); |
| } else { |
| ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); |
| ahc_outb(ahc, QINPOS, ahc->qinfifonext); |
| ahc_outb(ahc, QOUTPOS, ahc->qoutfifonext); |
| } |
| |
| /* We don't have any waiting selections */ |
| ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL); |
| |
| /* Our disconnection list is empty too */ |
| ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL); |
| |
| /* Message out buffer starts empty */ |
| ahc_outb(ahc, MSG_OUT, MSG_NOOP); |
| |
| /* |
| * Setup the allowed SCSI Sequences based on operational mode. |
| * If we are a target, we'll enable select in operations once |
| * we've had a lun enabled. |
| */ |
| scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP; |
| if ((ahc->flags & AHC_INITIATORROLE) != 0) |
| scsiseq_template |= ENRSELI; |
| ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template); |
| |
| /* Initialize our list of free SCBs. */ |
| ahc_build_free_scb_list(ahc); |
| |
| /* |
| * Tell the sequencer which SCB will be the next one it receives. |
| */ |
| ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag); |
| |
| /* |
| * Load the Sequencer program and Enable the adapter |
| * in "fast" mode. |
| */ |
| if (bootverbose) |
| printk("%s: Downloading Sequencer Program...", |
| ahc_name(ahc)); |
| |
| error = ahc_loadseq(ahc); |
| if (error != 0) |
| return (error); |
| |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| int wait; |
| |
| /* |
| * Wait for up to 500ms for our transceivers |
| * to settle. If the adapter does not have |
| * a cable attached, the transceivers may |
| * never settle, so don't complain if we |
| * fail here. |
| */ |
| for (wait = 5000; |
| (ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait; |
| wait--) |
| ahc_delay(100); |
| } |
| ahc_restart(ahc); |
| return (0); |
| } |
| |
| /* |
| * Start the board, ready for normal operation |
| */ |
| int |
| ahc_init(struct ahc_softc *ahc) |
| { |
| int max_targ; |
| u_int i; |
| u_int scsi_conf; |
| u_int ultraenb; |
| u_int discenable; |
| u_int tagenable; |
| size_t driver_data_size; |
| |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_DEBUG_SEQUENCER) != 0) |
| ahc->flags |= AHC_SEQUENCER_DEBUG; |
| #endif |
| |
| #ifdef AHC_PRINT_SRAM |
| printk("Scratch Ram:"); |
| for (i = 0x20; i < 0x5f; i++) { |
| if (((i % 8) == 0) && (i != 0)) { |
| printk ("\n "); |
| } |
| printk (" 0x%x", ahc_inb(ahc, i)); |
| } |
| if ((ahc->features & AHC_MORE_SRAM) != 0) { |
| for (i = 0x70; i < 0x7f; i++) { |
| if (((i % 8) == 0) && (i != 0)) { |
| printk ("\n "); |
| } |
| printk (" 0x%x", ahc_inb(ahc, i)); |
| } |
| } |
| printk ("\n"); |
| /* |
| * Reading uninitialized scratch ram may |
| * generate parity errors. |
| */ |
| ahc_outb(ahc, CLRINT, CLRPARERR); |
| ahc_outb(ahc, CLRINT, CLRBRKADRINT); |
| #endif |
| max_targ = 15; |
| |
| /* |
| * Assume we have a board at this stage and it has been reset. |
| */ |
| if ((ahc->flags & AHC_USEDEFAULTS) != 0) |
| ahc->our_id = ahc->our_id_b = 7; |
| |
| /* |
| * Default to allowing initiator operations. |
| */ |
| ahc->flags |= AHC_INITIATORROLE; |
| |
| /* |
| * Only allow target mode features if this unit has them enabled. |
| */ |
| if ((AHC_TMODE_ENABLE & (0x1 << ahc->unit)) == 0) |
| ahc->features &= ~AHC_TARGETMODE; |
| |
| ahc->init_level++; |
| |
| /* |
| * DMA tag for our command fifos and other data in system memory |
| * the card's sequencer must be able to access. For initiator |
| * roles, we need to allocate space for the qinfifo and qoutfifo. |
| * The qinfifo and qoutfifo are composed of 256 1 byte elements. |
| * When providing for the target mode role, we must additionally |
| * provide space for the incoming target command fifo and an extra |
| * byte to deal with a dma bug in some chip versions. |
| */ |
| driver_data_size = 2 * 256 * sizeof(uint8_t); |
| if ((ahc->features & AHC_TARGETMODE) != 0) |
| driver_data_size += AHC_TMODE_CMDS * sizeof(struct target_cmd) |
| + /*DMA WideOdd Bug Buffer*/1; |
| if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1, |
| /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, |
| /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, |
| /*highaddr*/BUS_SPACE_MAXADDR, |
| /*filter*/NULL, /*filterarg*/NULL, |
| driver_data_size, |
| /*nsegments*/1, |
| /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, |
| /*flags*/0, &ahc->shared_data_dmat) != 0) { |
| return (ENOMEM); |
| } |
| |
| ahc->init_level++; |
| |
| /* Allocation of driver data */ |
| if (ahc_dmamem_alloc(ahc, ahc->shared_data_dmat, |
| (void **)&ahc->qoutfifo, |
| BUS_DMA_NOWAIT, &ahc->shared_data_dmamap) != 0) { |
| return (ENOMEM); |
| } |
| |
| ahc->init_level++; |
| |
| /* And permanently map it in */ |
| ahc_dmamap_load(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap, |
| ahc->qoutfifo, driver_data_size, ahc_dmamap_cb, |
| &ahc->shared_data_busaddr, /*flags*/0); |
| |
| if ((ahc->features & AHC_TARGETMODE) != 0) { |
| ahc->targetcmds = (struct target_cmd *)ahc->qoutfifo; |
| ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[AHC_TMODE_CMDS]; |
| ahc->dma_bug_buf = ahc->shared_data_busaddr |
| + driver_data_size - 1; |
| /* All target command blocks start out invalid. */ |
| for (i = 0; i < AHC_TMODE_CMDS; i++) |
| ahc->targetcmds[i].cmd_valid = 0; |
| ahc_sync_tqinfifo(ahc, BUS_DMASYNC_PREREAD); |
| ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[256]; |
| } |
| ahc->qinfifo = &ahc->qoutfifo[256]; |
| |
| ahc->init_level++; |
| |
| /* Allocate SCB data now that buffer_dmat is initialized */ |
| if (ahc->scb_data->maxhscbs == 0) |
| if (ahc_init_scbdata(ahc) != 0) |
| return (ENOMEM); |
| |
| /* |
| * Allocate a tstate to house information for our |
| * initiator presence on the bus as well as the user |
| * data for any target mode initiator. |
| */ |
| if (ahc_alloc_tstate(ahc, ahc->our_id, 'A') == NULL) { |
| printk("%s: unable to allocate ahc_tmode_tstate. " |
| "Failing attach\n", ahc_name(ahc)); |
| return (ENOMEM); |
| } |
| |
| if ((ahc->features & AHC_TWIN) != 0) { |
| if (ahc_alloc_tstate(ahc, ahc->our_id_b, 'B') == NULL) { |
| printk("%s: unable to allocate ahc_tmode_tstate. " |
| "Failing attach\n", ahc_name(ahc)); |
| return (ENOMEM); |
| } |
| } |
| |
| if (ahc->scb_data->maxhscbs < AHC_SCB_MAX_ALLOC) { |
| ahc->flags |= AHC_PAGESCBS; |
| } else { |
| ahc->flags &= ~AHC_PAGESCBS; |
| } |
| |
| #ifdef AHC_DEBUG |
| if (ahc_debug & AHC_SHOW_MISC) { |
| printk("%s: hardware scb %u bytes; kernel scb %u bytes; " |
| "ahc_dma %u bytes\n", |
| ahc_name(ahc), |
| (u_int)sizeof(struct hardware_scb), |
| (u_int)sizeof(struct scb), |
| (u_int)sizeof(struct ahc_dma_seg)); |
| } |
| #endif /* AHC_DEBUG */ |
| |
| /* |
| * Look at the information that board initialization or |
| * the board bios has left us. |
| */ |
| if (ahc->features & AHC_TWIN) { |
| scsi_conf = ahc_inb(ahc, SCSICONF + 1); |
| if ((scsi_conf & RESET_SCSI) != 0 |
| && (ahc->flags & AHC_INITIATORROLE) != 0) |
| ahc->flags |= AHC_RESET_BUS_B; |
| } |
| |
| scsi_conf = ahc_inb(ahc, SCSICONF); |
| if ((scsi_conf & RESET_SCSI) != 0 |
| && (ahc->flags & AHC_INITIATORROLE) != 0) |
| ahc->flags |= AHC_RESET_BUS_A; |
| |
| ultraenb = 0; |
| tagenable = ALL_TARGETS_MASK; |
| |
| /* Grab the disconnection disable table and invert it for our needs */ |
| if ((ahc->flags & AHC_USEDEFAULTS) != 0) { |
| printk("%s: Host Adapter Bios disabled. Using default SCSI " |
| "device parameters\n", ahc_name(ahc)); |
| ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B| |
| AHC_TERM_ENB_A|AHC_TERM_ENB_B; |
| discenable = ALL_TARGETS_MASK; |
| if ((ahc->features & AHC_ULTRA) != 0) |
| ultraenb = ALL_TARGETS_MASK; |
| } else { |
| discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8) |
| | ahc_inb(ahc, DISC_DSB)); |
| if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0) |
| ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8) |
| | ahc_inb(ahc, ULTRA_ENB); |
| } |
| |
| if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0) |
| max_targ = 7; |
| |
| for (i = 0; i <= max_targ; i++) { |
| struct ahc_initiator_tinfo *tinfo; |
| struct ahc_tmode_tstate *tstate; |
| u_int our_id; |
| u_int target_id; |
| char channel; |
| |
| channel = 'A'; |
| our_id = ahc->our_id; |
| target_id = i; |
| if (i > 7 && (ahc->features & AHC_TWIN) != 0) { |
| channel = 'B'; |
| our_id = ahc->our_id_b; |
| target_id = i % 8; |
| } |
| tinfo = ahc_fetch_transinfo(ahc, channel, our_id, |
| target_id, &tstate); |
| /* Default to async narrow across the board */ |
| memset(tinfo, 0, sizeof(*tinfo)); |
| if (ahc->flags & AHC_USEDEFAULTS) { |
| if ((ahc->features & AHC_WIDE) != 0) |
| tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT; |
| |
| /* |
| * These will be truncated when we determine the |
| * connection type we have with the target. |
| */ |
| tinfo->user.period = ahc_syncrates->period; |
| tinfo->user.offset = MAX_OFFSET; |
| } else { |
| u_int scsirate; |
| uint16_t mask; |
| |
| /* Take the settings leftover in scratch RAM. */ |
| scsirate = ahc_inb(ahc, TARG_SCSIRATE + i); |
| mask = (0x01 << i); |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| u_int offset; |
| u_int maxsync; |
| |
| if ((scsirate & SOFS) == 0x0F) { |
| /* |
| * Haven't negotiated yet, |
| * so the format is different. |
| */ |
| scsirate = (scsirate & SXFR) >> 4 |
| | (ultraenb & mask) |
| ? 0x08 : 0x0 |
| | (scsirate & WIDEXFER); |
| offset = MAX_OFFSET_ULTRA2; |
| } else |
| offset = ahc_inb(ahc, TARG_OFFSET + i); |
| if ((scsirate & ~WIDEXFER) == 0 && offset != 0) |
| /* Set to the lowest sync rate, 5MHz */ |
| scsirate |= 0x1c; |
| maxsync = AHC_SYNCRATE_ULTRA2; |
| if ((ahc->features & AHC_DT) != 0) |
| maxsync = AHC_SYNCRATE_DT; |
| tinfo->user.period = |
| ahc_find_period(ahc, scsirate, maxsync); |
| if (offset == 0) |
| tinfo->user.period = 0; |
| else |
| tinfo->user.offset = MAX_OFFSET; |
| if ((scsirate & SXFR_ULTRA2) <= 8/*10MHz*/ |
| && (ahc->features & AHC_DT) != 0) |
| tinfo->user.ppr_options = |
| MSG_EXT_PPR_DT_REQ; |
| } else if ((scsirate & SOFS) != 0) { |
| if ((scsirate & SXFR) == 0x40 |
| && (ultraenb & mask) != 0) { |
| /* Treat 10MHz as a non-ultra speed */ |
| scsirate &= ~SXFR; |
| ultraenb &= ~mask; |
| } |
| tinfo->user.period = |
| ahc_find_period(ahc, scsirate, |
| (ultraenb & mask) |
| ? AHC_SYNCRATE_ULTRA |
| : AHC_SYNCRATE_FAST); |
| if (tinfo->user.period != 0) |
| tinfo->user.offset = MAX_OFFSET; |
| } |
| if (tinfo->user.period == 0) |
| tinfo->user.offset = 0; |
| if ((scsirate & WIDEXFER) != 0 |
| && (ahc->features & AHC_WIDE) != 0) |
| tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT; |
| tinfo->user.protocol_version = 4; |
| if ((ahc->features & AHC_DT) != 0) |
| tinfo->user.transport_version = 3; |
| else |
| tinfo->user.transport_version = 2; |
| tinfo->goal.protocol_version = 2; |
| tinfo->goal.transport_version = 2; |
| tinfo->curr.protocol_version = 2; |
| tinfo->curr.transport_version = 2; |
| } |
| tstate->ultraenb = 0; |
| } |
| ahc->user_discenable = discenable; |
| ahc->user_tagenable = tagenable; |
| |
| return (ahc->bus_chip_init(ahc)); |
| } |
| |
| void |
| ahc_intr_enable(struct ahc_softc *ahc, int enable) |
| { |
| u_int hcntrl; |
| |
| hcntrl = ahc_inb(ahc, HCNTRL); |
| hcntrl &= ~INTEN; |
| ahc->pause &= ~INTEN; |
| ahc->unpause &= ~INTEN; |
| if (enable) { |
| hcntrl |= INTEN; |
| ahc->pause |= INTEN; |
| ahc->unpause |= INTEN; |
| } |
| ahc_outb(ahc, HCNTRL, hcntrl); |
| } |
| |
| /* |
| * Ensure that the card is paused in a location |
| * outside of all critical sections and that all |
| * pending work is completed prior to returning. |
| * This routine should only be called from outside |
| * an interrupt context. |
| */ |
| void |
| ahc_pause_and_flushwork(struct ahc_softc *ahc) |
| { |
| int intstat; |
| int maxloops; |
| int paused; |
| |
| maxloops = 1000; |
| ahc->flags |= AHC_ALL_INTERRUPTS; |
| paused = FALSE; |
| do { |
| if (paused) { |
| ahc_unpause(ahc); |
| /* |
| * Give the sequencer some time to service |
| * any active selections. |
| */ |
| ahc_delay(500); |
| } |
| ahc_intr(ahc); |
| ahc_pause(ahc); |
| paused = TRUE; |
| ahc_outb(ahc, SCSISEQ, ahc_inb(ahc, SCSISEQ) & ~ENSELO); |
| intstat = ahc_inb(ahc, INTSTAT); |
| if ((intstat & INT_PEND) == 0) { |
| ahc_clear_critical_section(ahc); |
| intstat = ahc_inb(ahc, INTSTAT); |
| } |
| } while (--maxloops |
| && (intstat != 0xFF || (ahc->features & AHC_REMOVABLE) == 0) |
| && ((intstat & INT_PEND) != 0 |
| || (ahc_inb(ahc, SSTAT0) & (SELDO|SELINGO)) != 0)); |
| if (maxloops == 0) { |
| printk("Infinite interrupt loop, INTSTAT = %x", |
| ahc_inb(ahc, INTSTAT)); |
| } |
| ahc_platform_flushwork(ahc); |
| ahc->flags &= ~AHC_ALL_INTERRUPTS; |
| } |
| |
| #ifdef CONFIG_PM |
| int |
| ahc_suspend(struct ahc_softc *ahc) |
| { |
| |
| ahc_pause_and_flushwork(ahc); |
| |
| if (LIST_FIRST(&ahc->pending_scbs) != NULL) { |
| ahc_unpause(ahc); |
| return (EBUSY); |
| } |
| |
| #ifdef AHC_TARGET_MODE |
| /* |
| * XXX What about ATIOs that have not yet been serviced? |
| * Perhaps we should just refuse to be suspended if we |
| * are acting in a target role. |
| */ |
| if (ahc->pending_device != NULL) { |
| ahc_unpause(ahc); |
| return (EBUSY); |
| } |
| #endif |
| ahc_shutdown(ahc); |
| return (0); |
| } |
| |
| int |
| ahc_resume(struct ahc_softc *ahc) |
| { |
| |
| ahc_reset(ahc, /*reinit*/TRUE); |
| ahc_intr_enable(ahc, TRUE); |
| ahc_restart(ahc); |
| return (0); |
| } |
| #endif |
| /************************** Busy Target Table *********************************/ |
| /* |
| * Return the untagged transaction id for a given target/channel lun. |
| * Optionally, clear the entry. |
| */ |
| static u_int |
| ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl) |
| { |
| u_int scbid; |
| u_int target_offset; |
| |
| if ((ahc->flags & AHC_SCB_BTT) != 0) { |
| u_int saved_scbptr; |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| ahc_outb(ahc, SCBPTR, TCL_LUN(tcl)); |
| scbid = ahc_inb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl)); |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| } else { |
| target_offset = TCL_TARGET_OFFSET(tcl); |
| scbid = ahc_inb(ahc, BUSY_TARGETS + target_offset); |
| } |
| |
| return (scbid); |
| } |
| |
| static void |
| ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl) |
| { |
| u_int target_offset; |
| |
| if ((ahc->flags & AHC_SCB_BTT) != 0) { |
| u_int saved_scbptr; |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| ahc_outb(ahc, SCBPTR, TCL_LUN(tcl)); |
| ahc_outb(ahc, SCB_64_BTT+TCL_TARGET_OFFSET(tcl), SCB_LIST_NULL); |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| } else { |
| target_offset = TCL_TARGET_OFFSET(tcl); |
| ahc_outb(ahc, BUSY_TARGETS + target_offset, SCB_LIST_NULL); |
| } |
| } |
| |
| static void |
| ahc_busy_tcl(struct ahc_softc *ahc, u_int tcl, u_int scbid) |
| { |
| u_int target_offset; |
| |
| if ((ahc->flags & AHC_SCB_BTT) != 0) { |
| u_int saved_scbptr; |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| ahc_outb(ahc, SCBPTR, TCL_LUN(tcl)); |
| ahc_outb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl), scbid); |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| } else { |
| target_offset = TCL_TARGET_OFFSET(tcl); |
| ahc_outb(ahc, BUSY_TARGETS + target_offset, scbid); |
| } |
| } |
| |
| /************************** SCB and SCB queue management **********************/ |
| int |
| ahc_match_scb(struct ahc_softc *ahc, struct scb *scb, int target, |
| char channel, int lun, u_int tag, role_t role) |
| { |
| int targ = SCB_GET_TARGET(ahc, scb); |
| char chan = SCB_GET_CHANNEL(ahc, scb); |
| int slun = SCB_GET_LUN(scb); |
| int match; |
| |
| match = ((chan == channel) || (channel == ALL_CHANNELS)); |
| if (match != 0) |
| match = ((targ == target) || (target == CAM_TARGET_WILDCARD)); |
| if (match != 0) |
| match = ((lun == slun) || (lun == CAM_LUN_WILDCARD)); |
| if (match != 0) { |
| #ifdef AHC_TARGET_MODE |
| int group; |
| |
| group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code); |
| if (role == ROLE_INITIATOR) { |
| match = (group != XPT_FC_GROUP_TMODE) |
| && ((tag == scb->hscb->tag) |
| || (tag == SCB_LIST_NULL)); |
| } else if (role == ROLE_TARGET) { |
| match = (group == XPT_FC_GROUP_TMODE) |
| && ((tag == scb->io_ctx->csio.tag_id) |
| || (tag == SCB_LIST_NULL)); |
| } |
| #else /* !AHC_TARGET_MODE */ |
| match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL)); |
| #endif /* AHC_TARGET_MODE */ |
| } |
| |
| return match; |
| } |
| |
| static void |
| ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb) |
| { |
| int target; |
| char channel; |
| int lun; |
| |
| target = SCB_GET_TARGET(ahc, scb); |
| lun = SCB_GET_LUN(scb); |
| channel = SCB_GET_CHANNEL(ahc, scb); |
| |
| ahc_search_qinfifo(ahc, target, channel, lun, |
| /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN, |
| CAM_REQUEUE_REQ, SEARCH_COMPLETE); |
| |
| ahc_platform_freeze_devq(ahc, scb); |
| } |
| |
| void |
| ahc_qinfifo_requeue_tail(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct scb *prev_scb; |
| |
| prev_scb = NULL; |
| if (ahc_qinfifo_count(ahc) != 0) { |
| u_int prev_tag; |
| uint8_t prev_pos; |
| |
| prev_pos = ahc->qinfifonext - 1; |
| prev_tag = ahc->qinfifo[prev_pos]; |
| prev_scb = ahc_lookup_scb(ahc, prev_tag); |
| } |
| ahc_qinfifo_requeue(ahc, prev_scb, scb); |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); |
| } else { |
| ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); |
| } |
| } |
| |
| static void |
| ahc_qinfifo_requeue(struct ahc_softc *ahc, struct scb *prev_scb, |
| struct scb *scb) |
| { |
| if (prev_scb == NULL) { |
| ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag); |
| } else { |
| prev_scb->hscb->next = scb->hscb->tag; |
| ahc_sync_scb(ahc, prev_scb, |
| BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| } |
| ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag; |
| scb->hscb->next = ahc->next_queued_scb->hscb->tag; |
| ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); |
| } |
| |
| static int |
| ahc_qinfifo_count(struct ahc_softc *ahc) |
| { |
| uint8_t qinpos; |
| uint8_t diff; |
| |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| qinpos = ahc_inb(ahc, SNSCB_QOFF); |
| ahc_outb(ahc, SNSCB_QOFF, qinpos); |
| } else |
| qinpos = ahc_inb(ahc, QINPOS); |
| diff = ahc->qinfifonext - qinpos; |
| return (diff); |
| } |
| |
| int |
| ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel, |
| int lun, u_int tag, role_t role, uint32_t status, |
| ahc_search_action action) |
| { |
| struct scb *scb; |
| struct scb *prev_scb; |
| uint8_t qinstart; |
| uint8_t qinpos; |
| uint8_t qintail; |
| uint8_t next; |
| uint8_t prev; |
| uint8_t curscbptr; |
| int found; |
| int have_qregs; |
| |
| qintail = ahc->qinfifonext; |
| have_qregs = (ahc->features & AHC_QUEUE_REGS) != 0; |
| if (have_qregs) { |
| qinstart = ahc_inb(ahc, SNSCB_QOFF); |
| ahc_outb(ahc, SNSCB_QOFF, qinstart); |
| } else |
| qinstart = ahc_inb(ahc, QINPOS); |
| qinpos = qinstart; |
| found = 0; |
| prev_scb = NULL; |
| |
| if (action == SEARCH_COMPLETE) { |
| /* |
| * Don't attempt to run any queued untagged transactions |
| * until we are done with the abort process. |
| */ |
| ahc_freeze_untagged_queues(ahc); |
| } |
| |
| /* |
| * Start with an empty queue. Entries that are not chosen |
| * for removal will be re-added to the queue as we go. |
| */ |
| ahc->qinfifonext = qinpos; |
| ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag); |
| |
| while (qinpos != qintail) { |
| scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinpos]); |
| if (scb == NULL) { |
| printk("qinpos = %d, SCB index = %d\n", |
| qinpos, ahc->qinfifo[qinpos]); |
| panic("Loop 1\n"); |
| } |
| |
| if (ahc_match_scb(ahc, scb, target, channel, lun, tag, role)) { |
| /* |
| * We found an scb that needs to be acted on. |
| */ |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| { |
| cam_status ostat; |
| cam_status cstat; |
| |
| ostat = ahc_get_transaction_status(scb); |
| if (ostat == CAM_REQ_INPROG) |
| ahc_set_transaction_status(scb, status); |
| cstat = ahc_get_transaction_status(scb); |
| if (cstat != CAM_REQ_CMP) |
| ahc_freeze_scb(scb); |
| if ((scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB in qinfifo\n"); |
| ahc_done(ahc, scb); |
| |
| /* FALLTHROUGH */ |
| } |
| case SEARCH_REMOVE: |
| break; |
| case SEARCH_COUNT: |
| ahc_qinfifo_requeue(ahc, prev_scb, scb); |
| prev_scb = scb; |
| break; |
| } |
| } else { |
| ahc_qinfifo_requeue(ahc, prev_scb, scb); |
| prev_scb = scb; |
| } |
| qinpos++; |
| } |
| |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); |
| } else { |
| ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); |
| } |
| |
| if (action != SEARCH_COUNT |
| && (found != 0) |
| && (qinstart != ahc->qinfifonext)) { |
| /* |
| * The sequencer may be in the process of dmaing |
| * down the SCB at the beginning of the queue. |
| * This could be problematic if either the first, |
| * or the second SCB is removed from the queue |
| * (the first SCB includes a pointer to the "next" |
| * SCB to dma). If we have removed any entries, swap |
| * the first element in the queue with the next HSCB |
| * so the sequencer will notice that NEXT_QUEUED_SCB |
| * has changed during its dma attempt and will retry |
| * the DMA. |
| */ |
| scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinstart]); |
| |
| if (scb == NULL) { |
| printk("found = %d, qinstart = %d, qinfifionext = %d\n", |
| found, qinstart, ahc->qinfifonext); |
| panic("First/Second Qinfifo fixup\n"); |
| } |
| /* |
| * ahc_swap_with_next_hscb forces our next pointer to |
| * point to the reserved SCB for future commands. Save |
| * and restore our original next pointer to maintain |
| * queue integrity. |
| */ |
| next = scb->hscb->next; |
| ahc->scb_data->scbindex[scb->hscb->tag] = NULL; |
| ahc_swap_with_next_hscb(ahc, scb); |
| scb->hscb->next = next; |
| ahc->qinfifo[qinstart] = scb->hscb->tag; |
| |
| /* Tell the card about the new head of the qinfifo. */ |
| ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag); |
| |
| /* Fixup the tail "next" pointer. */ |
| qintail = ahc->qinfifonext - 1; |
| scb = ahc_lookup_scb(ahc, ahc->qinfifo[qintail]); |
| scb->hscb->next = ahc->next_queued_scb->hscb->tag; |
| } |
| |
| /* |
| * Search waiting for selection list. |
| */ |
| curscbptr = ahc_inb(ahc, SCBPTR); |
| next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */ |
| prev = SCB_LIST_NULL; |
| |
| while (next != SCB_LIST_NULL) { |
| uint8_t scb_index; |
| |
| ahc_outb(ahc, SCBPTR, next); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| if (scb_index >= ahc->scb_data->numscbs) { |
| printk("Waiting List inconsistency. " |
| "SCB index == %d, yet numscbs == %d.", |
| scb_index, ahc->scb_data->numscbs); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| } |
| scb = ahc_lookup_scb(ahc, scb_index); |
| if (scb == NULL) { |
| printk("scb_index = %d, next = %d\n", |
| scb_index, next); |
| panic("Waiting List traversal\n"); |
| } |
| if (ahc_match_scb(ahc, scb, target, channel, |
| lun, SCB_LIST_NULL, role)) { |
| /* |
| * We found an scb that needs to be acted on. |
| */ |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| { |
| cam_status ostat; |
| cam_status cstat; |
| |
| ostat = ahc_get_transaction_status(scb); |
| if (ostat == CAM_REQ_INPROG) |
| ahc_set_transaction_status(scb, |
| status); |
| cstat = ahc_get_transaction_status(scb); |
| if (cstat != CAM_REQ_CMP) |
| ahc_freeze_scb(scb); |
| if ((scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB in Waiting List\n"); |
| ahc_done(ahc, scb); |
| } |
| /* fall through */ |
| case SEARCH_REMOVE: |
| next = ahc_rem_wscb(ahc, next, prev); |
| break; |
| case SEARCH_COUNT: |
| prev = next; |
| next = ahc_inb(ahc, SCB_NEXT); |
| break; |
| } |
| } else { |
| |
| prev = next; |
| next = ahc_inb(ahc, SCB_NEXT); |
| } |
| } |
| ahc_outb(ahc, SCBPTR, curscbptr); |
| |
| found += ahc_search_untagged_queues(ahc, /*ahc_io_ctx_t*/NULL, target, |
| channel, lun, status, action); |
| |
| if (action == SEARCH_COMPLETE) |
| ahc_release_untagged_queues(ahc); |
| return (found); |
| } |
| |
| int |
| ahc_search_untagged_queues(struct ahc_softc *ahc, ahc_io_ctx_t ctx, |
| int target, char channel, int lun, uint32_t status, |
| ahc_search_action action) |
| { |
| struct scb *scb; |
| int maxtarget; |
| int found; |
| int i; |
| |
| if (action == SEARCH_COMPLETE) { |
| /* |
| * Don't attempt to run any queued untagged transactions |
| * until we are done with the abort process. |
| */ |
| ahc_freeze_untagged_queues(ahc); |
| } |
| |
| found = 0; |
| i = 0; |
| if ((ahc->flags & AHC_SCB_BTT) == 0) { |
| |
| maxtarget = 16; |
| if (target != CAM_TARGET_WILDCARD) { |
| |
| i = target; |
| if (channel == 'B') |
| i += 8; |
| maxtarget = i + 1; |
| } |
| } else { |
| maxtarget = 0; |
| } |
| |
| for (; i < maxtarget; i++) { |
| struct scb_tailq *untagged_q; |
| struct scb *next_scb; |
| |
| untagged_q = &(ahc->untagged_queues[i]); |
| next_scb = TAILQ_FIRST(untagged_q); |
| while (next_scb != NULL) { |
| |
| scb = next_scb; |
| next_scb = TAILQ_NEXT(scb, links.tqe); |
| |
| /* |
| * The head of the list may be the currently |
| * active untagged command for a device. |
| * We're only searching for commands that |
| * have not been started. A transaction |
| * marked active but still in the qinfifo |
| * is removed by the qinfifo scanning code |
| * above. |
| */ |
| if ((scb->flags & SCB_ACTIVE) != 0) |
| continue; |
| |
| if (ahc_match_scb(ahc, scb, target, channel, lun, |
| SCB_LIST_NULL, ROLE_INITIATOR) == 0 |
| || (ctx != NULL && ctx != scb->io_ctx)) |
| continue; |
| |
| /* |
| * We found an scb that needs to be acted on. |
| */ |
| found++; |
| switch (action) { |
| case SEARCH_COMPLETE: |
| { |
| cam_status ostat; |
| cam_status cstat; |
| |
| ostat = ahc_get_transaction_status(scb); |
| if (ostat == CAM_REQ_INPROG) |
| ahc_set_transaction_status(scb, status); |
| cstat = ahc_get_transaction_status(scb); |
| if (cstat != CAM_REQ_CMP) |
| ahc_freeze_scb(scb); |
| if ((scb->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB in untaggedQ\n"); |
| ahc_done(ahc, scb); |
| break; |
| } |
| case SEARCH_REMOVE: |
| scb->flags &= ~SCB_UNTAGGEDQ; |
| TAILQ_REMOVE(untagged_q, scb, links.tqe); |
| break; |
| case SEARCH_COUNT: |
| break; |
| } |
| } |
| } |
| |
| if (action == SEARCH_COMPLETE) |
| ahc_release_untagged_queues(ahc); |
| return (found); |
| } |
| |
| int |
| ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel, |
| int lun, u_int tag, int stop_on_first, int remove, |
| int save_state) |
| { |
| struct scb *scbp; |
| u_int next; |
| u_int prev; |
| u_int count; |
| u_int active_scb; |
| |
| count = 0; |
| next = ahc_inb(ahc, DISCONNECTED_SCBH); |
| prev = SCB_LIST_NULL; |
| |
| if (save_state) { |
| /* restore this when we're done */ |
| active_scb = ahc_inb(ahc, SCBPTR); |
| } else |
| /* Silence compiler */ |
| active_scb = SCB_LIST_NULL; |
| |
| while (next != SCB_LIST_NULL) { |
| u_int scb_index; |
| |
| ahc_outb(ahc, SCBPTR, next); |
| scb_index = ahc_inb(ahc, SCB_TAG); |
| if (scb_index >= ahc->scb_data->numscbs) { |
| printk("Disconnected List inconsistency. " |
| "SCB index == %d, yet numscbs == %d.", |
| scb_index, ahc->scb_data->numscbs); |
| ahc_dump_card_state(ahc); |
| panic("for safety"); |
| } |
| |
| if (next == prev) { |
| panic("Disconnected List Loop. " |
| "cur SCBPTR == %x, prev SCBPTR == %x.", |
| next, prev); |
| } |
| scbp = ahc_lookup_scb(ahc, scb_index); |
| if (ahc_match_scb(ahc, scbp, target, channel, lun, |
| tag, ROLE_INITIATOR)) { |
| count++; |
| if (remove) { |
| next = |
| ahc_rem_scb_from_disc_list(ahc, prev, next); |
| } else { |
| prev = next; |
| next = ahc_inb(ahc, SCB_NEXT); |
| } |
| if (stop_on_first) |
| break; |
| } else { |
| prev = next; |
| next = ahc_inb(ahc, SCB_NEXT); |
| } |
| } |
| if (save_state) |
| ahc_outb(ahc, SCBPTR, active_scb); |
| return (count); |
| } |
| |
| /* |
| * Remove an SCB from the on chip list of disconnected transactions. |
| * This is empty/unused if we are not performing SCB paging. |
| */ |
| static u_int |
| ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr) |
| { |
| u_int next; |
| |
| ahc_outb(ahc, SCBPTR, scbptr); |
| next = ahc_inb(ahc, SCB_NEXT); |
| |
| ahc_outb(ahc, SCB_CONTROL, 0); |
| |
| ahc_add_curscb_to_free_list(ahc); |
| |
| if (prev != SCB_LIST_NULL) { |
| ahc_outb(ahc, SCBPTR, prev); |
| ahc_outb(ahc, SCB_NEXT, next); |
| } else |
| ahc_outb(ahc, DISCONNECTED_SCBH, next); |
| |
| return (next); |
| } |
| |
| /* |
| * Add the SCB as selected by SCBPTR onto the on chip list of |
| * free hardware SCBs. This list is empty/unused if we are not |
| * performing SCB paging. |
| */ |
| static void |
| ahc_add_curscb_to_free_list(struct ahc_softc *ahc) |
| { |
| /* |
| * Invalidate the tag so that our abort |
| * routines don't think it's active. |
| */ |
| ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL); |
| |
| if ((ahc->flags & AHC_PAGESCBS) != 0) { |
| ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH)); |
| ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR)); |
| } |
| } |
| |
| /* |
| * Manipulate the waiting for selection list and return the |
| * scb that follows the one that we remove. |
| */ |
| static u_int |
| ahc_rem_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev) |
| { |
| u_int curscb, next; |
| |
| /* |
| * Select the SCB we want to abort and |
| * pull the next pointer out of it. |
| */ |
| curscb = ahc_inb(ahc, SCBPTR); |
| ahc_outb(ahc, SCBPTR, scbpos); |
| next = ahc_inb(ahc, SCB_NEXT); |
| |
| /* Clear the necessary fields */ |
| ahc_outb(ahc, SCB_CONTROL, 0); |
| |
| ahc_add_curscb_to_free_list(ahc); |
| |
| /* update the waiting list */ |
| if (prev == SCB_LIST_NULL) { |
| /* First in the list */ |
| ahc_outb(ahc, WAITING_SCBH, next); |
| |
| /* |
| * Ensure we aren't attempting to perform |
| * selection for this entry. |
| */ |
| ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO)); |
| } else { |
| /* |
| * Select the scb that pointed to us |
| * and update its next pointer. |
| */ |
| ahc_outb(ahc, SCBPTR, prev); |
| ahc_outb(ahc, SCB_NEXT, next); |
| } |
| |
| /* |
| * Point us back at the original scb position. |
| */ |
| ahc_outb(ahc, SCBPTR, curscb); |
| return next; |
| } |
| |
| /******************************** Error Handling ******************************/ |
| /* |
| * Abort all SCBs that match the given description (target/channel/lun/tag), |
| * setting their status to the passed in status if the status has not already |
| * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer |
| * is paused before it is called. |
| */ |
| static int |
| ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel, |
| int lun, u_int tag, role_t role, uint32_t status) |
| { |
| struct scb *scbp; |
| struct scb *scbp_next; |
| u_int active_scb; |
| int i, j; |
| int maxtarget; |
| int minlun; |
| int maxlun; |
| |
| int found; |
| |
| /* |
| * Don't attempt to run any queued untagged transactions |
| * until we are done with the abort process. |
| */ |
| ahc_freeze_untagged_queues(ahc); |
| |
| /* restore this when we're done */ |
| active_scb = ahc_inb(ahc, SCBPTR); |
| |
| found = ahc_search_qinfifo(ahc, target, channel, lun, SCB_LIST_NULL, |
| role, CAM_REQUEUE_REQ, SEARCH_COMPLETE); |
| |
| /* |
| * Clean out the busy target table for any untagged commands. |
| */ |
| i = 0; |
| maxtarget = 16; |
| if (target != CAM_TARGET_WILDCARD) { |
| i = target; |
| if (channel == 'B') |
| i += 8; |
| maxtarget = i + 1; |
| } |
| |
| if (lun == CAM_LUN_WILDCARD) { |
| |
| /* |
| * Unless we are using an SCB based |
| * busy targets table, there is only |
| * one table entry for all luns of |
| * a target. |
| */ |
| minlun = 0; |
| maxlun = 1; |
| if ((ahc->flags & AHC_SCB_BTT) != 0) |
| maxlun = AHC_NUM_LUNS; |
| } else { |
| minlun = lun; |
| maxlun = lun + 1; |
| } |
| |
| if (role != ROLE_TARGET) { |
| for (;i < maxtarget; i++) { |
| for (j = minlun;j < maxlun; j++) { |
| u_int scbid; |
| u_int tcl; |
| |
| tcl = BUILD_TCL(i << 4, j); |
| scbid = ahc_index_busy_tcl(ahc, tcl); |
| scbp = ahc_lookup_scb(ahc, scbid); |
| if (scbp == NULL |
| || ahc_match_scb(ahc, scbp, target, channel, |
| lun, tag, role) == 0) |
| continue; |
| ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, j)); |
| } |
| } |
| |
| /* |
| * Go through the disconnected list and remove any entries we |
| * have queued for completion, 0'ing their control byte too. |
| * We save the active SCB and restore it ourselves, so there |
| * is no reason for this search to restore it too. |
| */ |
| ahc_search_disc_list(ahc, target, channel, lun, tag, |
| /*stop_on_first*/FALSE, /*remove*/TRUE, |
| /*save_state*/FALSE); |
| } |
| |
| /* |
| * Go through the hardware SCB array looking for commands that |
| * were active but not on any list. In some cases, these remnants |
| * might not still have mappings in the scbindex array (e.g. unexpected |
| * bus free with the same scb queued for an abort). Don't hold this |
| * against them. |
| */ |
| for (i = 0; i < ahc->scb_data->maxhscbs; i++) { |
| u_int scbid; |
| |
| ahc_outb(ahc, SCBPTR, i); |
| scbid = ahc_inb(ahc, SCB_TAG); |
| scbp = ahc_lookup_scb(ahc, scbid); |
| if ((scbp == NULL && scbid != SCB_LIST_NULL) |
| || (scbp != NULL |
| && ahc_match_scb(ahc, scbp, target, channel, lun, tag, role))) |
| ahc_add_curscb_to_free_list(ahc); |
| } |
| |
| /* |
| * Go through the pending CCB list and look for |
| * commands for this target that are still active. |
| * These are other tagged commands that were |
| * disconnected when the reset occurred. |
| */ |
| scbp_next = LIST_FIRST(&ahc->pending_scbs); |
| while (scbp_next != NULL) { |
| scbp = scbp_next; |
| scbp_next = LIST_NEXT(scbp, pending_links); |
| if (ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)) { |
| cam_status ostat; |
| |
| ostat = ahc_get_transaction_status(scbp); |
| if (ostat == CAM_REQ_INPROG) |
| ahc_set_transaction_status(scbp, status); |
| if (ahc_get_transaction_status(scbp) != CAM_REQ_CMP) |
| ahc_freeze_scb(scbp); |
| if ((scbp->flags & SCB_ACTIVE) == 0) |
| printk("Inactive SCB on pending list\n"); |
| ahc_done(ahc, scbp); |
| found++; |
| } |
| } |
| ahc_outb(ahc, SCBPTR, active_scb); |
| ahc_platform_abort_scbs(ahc, target, channel, lun, tag, role, status); |
| ahc_release_untagged_queues(ahc); |
| return found; |
| } |
| |
| static void |
| ahc_reset_current_bus(struct ahc_softc *ahc) |
| { |
| uint8_t scsiseq; |
| |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST); |
| scsiseq = ahc_inb(ahc, SCSISEQ); |
| ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO); |
| ahc_flush_device_writes(ahc); |
| ahc_delay(AHC_BUSRESET_DELAY); |
| /* Turn off the bus reset */ |
| ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO); |
| |
| ahc_clear_intstat(ahc); |
| |
| /* Re-enable reset interrupts */ |
| ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST); |
| } |
| |
| int |
| ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset) |
| { |
| struct ahc_devinfo devinfo; |
| u_int initiator, target, max_scsiid; |
| u_int sblkctl; |
| u_int scsiseq; |
| u_int simode1; |
| int found; |
| int restart_needed; |
| char cur_channel; |
| |
| ahc->pending_device = NULL; |
| |
| ahc_compile_devinfo(&devinfo, |
| CAM_TARGET_WILDCARD, |
| CAM_TARGET_WILDCARD, |
| CAM_LUN_WILDCARD, |
| channel, ROLE_UNKNOWN); |
| ahc_pause(ahc); |
| |
| /* Make sure the sequencer is in a safe location. */ |
| ahc_clear_critical_section(ahc); |
| |
| /* |
| * Run our command complete fifos to ensure that we perform |
| * completion processing on any commands that 'completed' |
| * before the reset occurred. |
| */ |
| ahc_run_qoutfifo(ahc); |
| #ifdef AHC_TARGET_MODE |
| /* |
| * XXX - In Twin mode, the tqinfifo may have commands |
| * for an unaffected channel in it. However, if |
| * we have run out of ATIO resources to drain that |
| * queue, we may not get them all out here. Further, |
| * the blocked transactions for the reset channel |
| * should just be killed off, irrespecitve of whether |
| * we are blocked on ATIO resources. Write a routine |
| * to compact the tqinfifo appropriately. |
| */ |
| if ((ahc->flags & AHC_TARGETROLE) != 0) { |
| ahc_run_tqinfifo(ahc, /*paused*/TRUE); |
| } |
| #endif |
| |
| /* |
| * Reset the bus if we are initiating this reset |
| */ |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| cur_channel = 'A'; |
| if ((ahc->features & AHC_TWIN) != 0 |
| && ((sblkctl & SELBUSB) != 0)) |
| cur_channel = 'B'; |
| scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE); |
| if (cur_channel != channel) { |
| /* Case 1: Command for another bus is active |
| * Stealthily reset the other bus without |
| * upsetting the current bus. |
| */ |
| ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB); |
| simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST); |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Bus resets clear ENSELI, so we cannot |
| * defer re-enabling bus reset interrupts |
| * if we are in target mode. |
| */ |
| if ((ahc->flags & AHC_TARGETROLE) != 0) |
| simode1 |= ENSCSIRST; |
| #endif |
| ahc_outb(ahc, SIMODE1, simode1); |
| if (initiate_reset) |
| ahc_reset_current_bus(ahc); |
| ahc_clear_intstat(ahc); |
| ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP)); |
| ahc_outb(ahc, SBLKCTL, sblkctl); |
| restart_needed = FALSE; |
| } else { |
| /* Case 2: A command from this bus is active or we're idle */ |
| simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST); |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Bus resets clear ENSELI, so we cannot |
| * defer re-enabling bus reset interrupts |
| * if we are in target mode. |
| */ |
| if ((ahc->flags & AHC_TARGETROLE) != 0) |
| simode1 |= ENSCSIRST; |
| #endif |
| ahc_outb(ahc, SIMODE1, simode1); |
| if (initiate_reset) |
| ahc_reset_current_bus(ahc); |
| ahc_clear_intstat(ahc); |
| ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP)); |
| restart_needed = TRUE; |
| } |
| |
| /* |
| * Clean up all the state information for the |
| * pending transactions on this bus. |
| */ |
| found = ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, channel, |
| CAM_LUN_WILDCARD, SCB_LIST_NULL, |
| ROLE_UNKNOWN, CAM_SCSI_BUS_RESET); |
| |
| max_scsiid = (ahc->features & AHC_WIDE) ? 15 : 7; |
| |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Send an immediate notify ccb to all target more peripheral |
| * drivers affected by this action. |
| */ |
| for (target = 0; target <= max_scsiid; target++) { |
| struct ahc_tmode_tstate* tstate; |
| u_int lun; |
| |
| tstate = ahc->enabled_targets[target]; |
| if (tstate == NULL) |
| continue; |
| for (lun = 0; lun < AHC_NUM_LUNS; lun++) { |
| struct ahc_tmode_lstate* lstate; |
| |
| lstate = tstate->enabled_luns[lun]; |
| if (lstate == NULL) |
| continue; |
| |
| ahc_queue_lstate_event(ahc, lstate, CAM_TARGET_WILDCARD, |
| EVENT_TYPE_BUS_RESET, /*arg*/0); |
| ahc_send_lstate_events(ahc, lstate); |
| } |
| } |
| #endif |
| /* Notify the XPT that a bus reset occurred */ |
| ahc_send_async(ahc, devinfo.channel, CAM_TARGET_WILDCARD, |
| CAM_LUN_WILDCARD, AC_BUS_RESET); |
| |
| /* |
| * Revert to async/narrow transfers until we renegotiate. |
| */ |
| for (target = 0; target <= max_scsiid; target++) { |
| |
| if (ahc->enabled_targets[target] == NULL) |
| continue; |
| for (initiator = 0; initiator <= max_scsiid; initiator++) { |
| struct ahc_devinfo devinfo; |
| |
| ahc_compile_devinfo(&devinfo, target, initiator, |
| CAM_LUN_WILDCARD, |
| channel, ROLE_UNKNOWN); |
| ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, |
| AHC_TRANS_CUR, /*paused*/TRUE); |
| ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL, |
| /*period*/0, /*offset*/0, |
| /*ppr_options*/0, AHC_TRANS_CUR, |
| /*paused*/TRUE); |
| } |
| } |
| |
| if (restart_needed) |
| ahc_restart(ahc); |
| else |
| ahc_unpause(ahc); |
| return found; |
| } |
| |
| |
| /***************************** Residual Processing ****************************/ |
| /* |
| * Calculate the residual for a just completed SCB. |
| */ |
| static void |
| ahc_calc_residual(struct ahc_softc *ahc, struct scb *scb) |
| { |
| struct hardware_scb *hscb; |
| struct status_pkt *spkt; |
| uint32_t sgptr; |
| uint32_t resid_sgptr; |
| uint32_t resid; |
| |
| /* |
| * 5 cases. |
| * 1) No residual. |
| * SG_RESID_VALID clear in sgptr. |
| * 2) Transferless command |
| * 3) Never performed any transfers. |
| * sgptr has SG_FULL_RESID set. |
| * 4) No residual but target did not |
| * save data pointers after the |
| * last transfer, so sgptr was |
| * never updated. |
| * 5) We have a partial residual. |
| * Use residual_sgptr to determine |
| * where we are. |
| */ |
| |
| hscb = scb->hscb; |
| sgptr = ahc_le32toh(hscb->sgptr); |
| if ((sgptr & SG_RESID_VALID) == 0) |
| /* Case 1 */ |
| return; |
| sgptr &= ~SG_RESID_VALID; |
| |
| if ((sgptr & SG_LIST_NULL) != 0) |
| /* Case 2 */ |
| return; |
| |
| spkt = &hscb->shared_data.status; |
| resid_sgptr = ahc_le32toh(spkt->residual_sg_ptr); |
| if ((sgptr & SG_FULL_RESID) != 0) { |
| /* Case 3 */ |
| resid = ahc_get_transfer_length(scb); |
| } else if ((resid_sgptr & SG_LIST_NULL) != 0) { |
| /* Case 4 */ |
| return; |
| } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) { |
| panic("Bogus resid sgptr value 0x%x\n", resid_sgptr); |
| } else { |
| struct ahc_dma_seg *sg; |
| |
| /* |
| * Remainder of the SG where the transfer |
| * stopped. |
| */ |
| resid = ahc_le32toh(spkt->residual_datacnt) & AHC_SG_LEN_MASK; |
| sg = ahc_sg_bus_to_virt(scb, resid_sgptr & SG_PTR_MASK); |
| |
| /* The residual sg_ptr always points to the next sg */ |
| sg--; |
| |
| /* |
| * Add up the contents of all residual |
| * SG segments that are after the SG where |
| * the transfer stopped. |
| */ |
| while ((ahc_le32toh(sg->len) & AHC_DMA_LAST_SEG) == 0) { |
| sg++; |
| resid += ahc_le32toh(sg->len) & AHC_SG_LEN_MASK; |
| } |
| } |
| if ((scb->flags & SCB_SENSE) == 0) |
| ahc_set_residual(scb, resid); |
| else |
| ahc_set_sense_residual(scb, resid); |
| |
| #ifdef AHC_DEBUG |
| if ((ahc_debug & AHC_SHOW_MISC) != 0) { |
| ahc_print_path(ahc, scb); |
| printk("Handled %sResidual of %d bytes\n", |
| (scb->flags & SCB_SENSE) ? "Sense " : "", resid); |
| } |
| #endif |
| } |
| |
| /******************************* Target Mode **********************************/ |
| #ifdef AHC_TARGET_MODE |
| /* |
| * Add a target mode event to this lun's queue |
| */ |
| static void |
| ahc_queue_lstate_event(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate, |
| u_int initiator_id, u_int event_type, u_int event_arg) |
| { |
| struct ahc_tmode_event *event; |
| int pending; |
| |
| xpt_freeze_devq(lstate->path, /*count*/1); |
| if (lstate->event_w_idx >= lstate->event_r_idx) |
| pending = lstate->event_w_idx - lstate->event_r_idx; |
| else |
| pending = AHC_TMODE_EVENT_BUFFER_SIZE + 1 |
| - (lstate->event_r_idx - lstate->event_w_idx); |
| |
| if (event_type == EVENT_TYPE_BUS_RESET |
| || event_type == MSG_BUS_DEV_RESET) { |
| /* |
| * Any earlier events are irrelevant, so reset our buffer. |
| * This has the effect of allowing us to deal with reset |
| * floods (an external device holding down the reset line) |
| * without losing the event that is really interesting. |
| */ |
| lstate->event_r_idx = 0; |
| lstate->event_w_idx = 0; |
| xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE); |
| } |
| |
| if (pending == AHC_TMODE_EVENT_BUFFER_SIZE) { |
| xpt_print_path(lstate->path); |
| printk("immediate event %x:%x lost\n", |
| lstate->event_buffer[lstate->event_r_idx].event_type, |
| lstate->event_buffer[lstate->event_r_idx].event_arg); |
| lstate->event_r_idx++; |
| if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_r_idx = 0; |
| xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE); |
| } |
| |
| event = &lstate->event_buffer[lstate->event_w_idx]; |
| event->initiator_id = initiator_id; |
| event->event_type = event_type; |
| event->event_arg = event_arg; |
| lstate->event_w_idx++; |
| if (lstate->event_w_idx == AHC_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_w_idx = 0; |
| } |
| |
| /* |
| * Send any target mode events queued up waiting |
| * for immediate notify resources. |
| */ |
| void |
| ahc_send_lstate_events(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate) |
| { |
| struct ccb_hdr *ccbh; |
| struct ccb_immed_notify *inot; |
| |
| while (lstate->event_r_idx != lstate->event_w_idx |
| && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) { |
| struct ahc_tmode_event *event; |
| |
| event = &lstate->event_buffer[lstate->event_r_idx]; |
| SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle); |
| inot = (struct ccb_immed_notify *)ccbh; |
| switch (event->event_type) { |
| case EVENT_TYPE_BUS_RESET: |
| ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN; |
| break; |
| default: |
| ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN; |
| inot->message_args[0] = event->event_type; |
| inot->message_args[1] = event->event_arg; |
| break; |
| } |
| inot->initiator_id = event->initiator_id; |
| inot->sense_len = 0; |
| xpt_done((union ccb *)inot); |
| lstate->event_r_idx++; |
| if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE) |
| lstate->event_r_idx = 0; |
| } |
| } |
| #endif |
| |
| /******************** Sequencer Program Patching/Download *********************/ |
| |
| #ifdef AHC_DUMP_SEQ |
| void |
| ahc_dumpseq(struct ahc_softc* ahc) |
| { |
| int i; |
| |
| ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); |
| ahc_outb(ahc, SEQADDR0, 0); |
| ahc_outb(ahc, SEQADDR1, 0); |
| for (i = 0; i < ahc->instruction_ram_size; i++) { |
| uint8_t ins_bytes[4]; |
| |
| ahc_insb(ahc, SEQRAM, ins_bytes, 4); |
| printk("0x%08x\n", ins_bytes[0] << 24 |
| | ins_bytes[1] << 16 |
| | ins_bytes[2] << 8 |
| | ins_bytes[3]); |
| } |
| } |
| #endif |
| |
| static int |
| ahc_loadseq(struct ahc_softc *ahc) |
| { |
| struct cs cs_table[NUM_CRITICAL_SECTIONS]; |
| u_int begin_set[NUM_CRITICAL_SECTIONS]; |
| u_int end_set[NUM_CRITICAL_SECTIONS]; |
| const struct patch *cur_patch; |
| u_int cs_count; |
| u_int cur_cs; |
| u_int i; |
| u_int skip_addr; |
| u_int sg_prefetch_cnt; |
| int downloaded; |
| uint8_t download_consts[7]; |
| |
| /* |
| * Start out with 0 critical sections |
| * that apply to this firmware load. |
| */ |
| cs_count = 0; |
| cur_cs = 0; |
| memset(begin_set, 0, sizeof(begin_set)); |
| memset(end_set, 0, sizeof(end_set)); |
| |
| /* Setup downloadable constant table */ |
| download_consts[QOUTFIFO_OFFSET] = 0; |
| if (ahc->targetcmds != NULL) |
| download_consts[QOUTFIFO_OFFSET] += 32; |
| download_consts[QINFIFO_OFFSET] = download_consts[QOUTFIFO_OFFSET] + 1; |
| download_consts[CACHESIZE_MASK] = ahc->pci_cachesize - 1; |
| download_consts[INVERTED_CACHESIZE_MASK] = ~(ahc->pci_cachesize - 1); |
| sg_prefetch_cnt = ahc->pci_cachesize; |
| if (sg_prefetch_cnt < (2 * sizeof(struct ahc_dma_seg))) |
| sg_prefetch_cnt = 2 * sizeof(struct ahc_dma_seg); |
| download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt; |
| download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_cnt - 1); |
| download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_cnt - 1); |
| |
| cur_patch = patches; |
| downloaded = 0; |
| skip_addr = 0; |
| ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); |
| ahc_outb(ahc, SEQADDR0, 0); |
| ahc_outb(ahc, SEQADDR1, 0); |
| |
| for (i = 0; i < sizeof(seqprog)/4; i++) { |
| if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) { |
| /* |
| * Don't download this instruction as it |
| * is in a patch that was removed. |
| */ |
| continue; |
| } |
| |
| if (downloaded == ahc->instruction_ram_size) { |
| /* |
| * We're about to exceed the instruction |
| * storage capacity for this chip. Fail |
| * the load. |
| */ |
| printk("\n%s: Program too large for instruction memory " |
| "size of %d!\n", ahc_name(ahc), |
| ahc->instruction_ram_size); |
| return (ENOMEM); |
| } |
| |
| /* |
| * Move through the CS table until we find a CS |
| * that might apply to this instruction. |
| */ |
| for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) { |
| if (critical_sections[cur_cs].end <= i) { |
| if (begin_set[cs_count] == TRUE |
| && end_set[cs_count] == FALSE) { |
| cs_table[cs_count].end = downloaded; |
| end_set[cs_count] = TRUE; |
| cs_count++; |
| } |
| continue; |
| } |
| if (critical_sections[cur_cs].begin <= i |
| && begin_set[cs_count] == FALSE) { |
| cs_table[cs_count].begin = downloaded; |
| begin_set[cs_count] = TRUE; |
| } |
| break; |
| } |
| ahc_download_instr(ahc, i, download_consts); |
| downloaded++; |
| } |
| |
| ahc->num_critical_sections = cs_count; |
| if (cs_count != 0) { |
| |
| cs_count *= sizeof(struct cs); |
| ahc->critical_sections = kmalloc(cs_count, GFP_ATOMIC); |
| if (ahc->critical_sections == NULL) |
| panic("ahc_loadseq: Could not malloc"); |
| memcpy(ahc->critical_sections, cs_table, cs_count); |
| } |
| ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE); |
| |
| if (bootverbose) { |
| printk(" %d instructions downloaded\n", downloaded); |
| printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n", |
| ahc_name(ahc), ahc->features, ahc->bugs, ahc->flags); |
| } |
| return (0); |
| } |
| |
| static int |
| ahc_check_patch(struct ahc_softc *ahc, const struct patch **start_patch, |
| u_int start_instr, u_int *skip_addr) |
| { |
| const struct patch *cur_patch; |
| const struct patch *last_patch; |
| u_int num_patches; |
| |
| num_patches = ARRAY_SIZE(patches); |
| last_patch = &patches[num_patches]; |
| cur_patch = *start_patch; |
| |
| while (cur_patch < last_patch && start_instr == cur_patch->begin) { |
| |
| if (cur_patch->patch_func(ahc) == 0) { |
| |
| /* Start rejecting code */ |
| *skip_addr = start_instr + cur_patch->skip_instr; |
| cur_patch += cur_patch->skip_patch; |
| } else { |
| /* Accepted this patch. Advance to the next |
| * one and wait for our intruction pointer to |
| * hit this point. |
| */ |
| cur_patch++; |
| } |
| } |
| |
| *start_patch = cur_patch; |
| if (start_instr < *skip_addr) |
| /* Still skipping */ |
| return (0); |
| |
| return (1); |
| } |
| |
| static void |
| ahc_download_instr(struct ahc_softc *ahc, u_int instrptr, uint8_t *dconsts) |
| { |
| union ins_formats instr; |
| struct ins_format1 *fmt1_ins; |
| struct ins_format3 *fmt3_ins; |
| u_int opcode; |
| |
| /* |
| * The firmware is always compiled into a little endian format. |
| */ |
| instr.integer = ahc_le32toh(*(uint32_t*)&seqprog[instrptr * 4]); |
| |
| fmt1_ins = &instr.format1; |
| fmt3_ins = NULL; |
| |
| /* Pull the opcode */ |
| opcode = instr.format1.opcode; |
| switch (opcode) { |
| case AIC_OP_JMP: |
| case AIC_OP_JC: |
| case AIC_OP_JNC: |
| case AIC_OP_CALL: |
| case AIC_OP_JNE: |
| case AIC_OP_JNZ: |
| case AIC_OP_JE: |
| case AIC_OP_JZ: |
| { |
| const struct patch *cur_patch; |
| int address_offset; |
| u_int address; |
| u_int skip_addr; |
| u_int i; |
| |
| fmt3_ins = &instr.format3; |
| address_offset = 0; |
| address = fmt3_ins->address; |
| cur_patch = patches; |
| skip_addr = 0; |
| |
| for (i = 0; i < address;) { |
| |
| ahc_check_patch(ahc, &cur_patch, i, &skip_addr); |
| |
| if (skip_addr > i) { |
| int end_addr; |
| |
| end_addr = min(address, skip_addr); |
| address_offset += end_addr - i; |
| i = skip_addr; |
| } else { |
| i++; |
| } |
| } |
| address -= address_offset; |
| fmt3_ins->address = address; |
| } |
| /* fall through */ |
| case AIC_OP_OR: |
| case AIC_OP_AND: |
| case AIC_OP_XOR: |
| case AIC_OP_ADD: |
| case AIC_OP_ADC: |
| case AIC_OP_BMOV: |
| if (fmt1_ins->parity != 0) { |
| fmt1_ins->immediate = dconsts[fmt1_ins->immediate]; |
| } |
| fmt1_ins->parity = 0; |
| if ((ahc->features & AHC_CMD_CHAN) == 0 |
| && opcode == AIC_OP_BMOV) { |
| /* |
| * Block move was added at the same time |
| * as the command channel. Verify that |
| * this is only a move of a single element |
| * and convert the BMOV to a MOV |
| * (AND with an immediate of FF). |
| */ |
| if (fmt1_ins->immediate != 1) |
| panic("%s: BMOV not supported\n", |
| ahc_name(ahc)); |
| fmt1_ins->opcode = AIC_OP_AND; |
| fmt1_ins->immediate = 0xff; |
| } |
| /* fall through */ |
| case AIC_OP_ROL: |
| if ((ahc->features & AHC_ULTRA2) != 0) { |
| int i, count; |
| |
| /* Calculate odd parity for the instruction */ |
| for (i = 0, count = 0; i < 31; i++) { |
| uint32_t mask; |
| |
| mask = 0x01 << i; |
| if ((instr.integer & mask) != 0) |
| count++; |
| } |
| if ((count & 0x01) == 0) |
| instr.format1.parity = 1; |
| } else { |
| /* Compress the instruction for older sequencers */ |
| if (fmt3_ins != NULL) { |
| instr.integer = |
| fmt3_ins->immediate |
| | (fmt3_ins->source << 8) |
| | (fmt3_ins->address << 16) |
| | (fmt3_ins->opcode << 25); |
| } else { |
| instr.integer = |
| fmt1_ins->immediate |
| | (fmt1_ins->source << 8) |
| | (fmt1_ins->destination << 16) |
| | (fmt1_ins->ret << 24) |
| | (fmt1_ins->opcode << 25); |
| } |
| } |
| /* The sequencer is a little endian cpu */ |
| instr.integer = ahc_htole32(instr.integer); |
| ahc_outsb(ahc, SEQRAM, instr.bytes, 4); |
| break; |
| default: |
| panic("Unknown opcode encountered in seq program"); |
| break; |
| } |
| } |
| |
| int |
| ahc_print_register(const ahc_reg_parse_entry_t *table, u_int num_entries, |
| const char *name, u_int address, u_int value, |
| u_int *cur_column, u_int wrap_point) |
| { |
| int printed; |
| u_int printed_mask; |
| |
| if (cur_column != NULL && *cur_column >= wrap_point) { |
| printk("\n"); |
| *cur_column = 0; |
| } |
| printed = printk("%s[0x%x]", name, value); |
| if (table == NULL) { |
| printed += printk(" "); |
| *cur_column += printed; |
| return (printed); |
| } |
| printed_mask = 0; |
| while (printed_mask != 0xFF) { |
| int entry; |
| |
| for (entry = 0; entry < num_entries; entry++) { |
| if (((value & table[entry].mask) |
| != table[entry].value) |
| || ((printed_mask & table[entry].mask) |
| == table[entry].mask)) |
| continue; |
| |
| printed += printk("%s%s", |
| printed_mask == 0 ? ":(" : "|", |
| table[entry].name); |
| printed_mask |= table[entry].mask; |
| |
| break; |
| } |
| if (entry >= num_entries) |
| break; |
| } |
| if (printed_mask != 0) |
| printed += printk(") "); |
| else |
| printed += printk(" "); |
| if (cur_column != NULL) |
| *cur_column += printed; |
| return (printed); |
| } |
| |
| void |
| ahc_dump_card_state(struct ahc_softc *ahc) |
| { |
| struct scb *scb; |
| struct scb_tailq *untagged_q; |
| u_int cur_col; |
| int paused; |
| int target; |
| int maxtarget; |
| int i; |
| uint8_t last_phase; |
| uint8_t qinpos; |
| uint8_t qintail; |
| uint8_t qoutpos; |
| uint8_t scb_index; |
| uint8_t saved_scbptr; |
| |
| if (ahc_is_paused(ahc)) { |
| paused = 1; |
| } else { |
| paused = 0; |
| ahc_pause(ahc); |
| } |
| |
| saved_scbptr = ahc_inb(ahc, SCBPTR); |
| last_phase = ahc_inb(ahc, LASTPHASE); |
| printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n" |
| "%s: Dumping Card State %s, at SEQADDR 0x%x\n", |
| ahc_name(ahc), ahc_lookup_phase_entry(last_phase)->phasemsg, |
| ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8)); |
| if (paused) |
| printk("Card was paused\n"); |
| printk("ACCUM = 0x%x, SINDEX = 0x%x, DINDEX = 0x%x, ARG_2 = 0x%x\n", |
| ahc_inb(ahc, ACCUM), ahc_inb(ahc, SINDEX), ahc_inb(ahc, DINDEX), |
| ahc_inb(ahc, ARG_2)); |
| printk("HCNT = 0x%x SCBPTR = 0x%x\n", ahc_inb(ahc, HCNT), |
| ahc_inb(ahc, SCBPTR)); |
| cur_col = 0; |
| if ((ahc->features & AHC_DT) != 0) |
| ahc_scsiphase_print(ahc_inb(ahc, SCSIPHASE), &cur_col, 50); |
| ahc_scsisigi_print(ahc_inb(ahc, SCSISIGI), &cur_col, 50); |
| ahc_error_print(ahc_inb(ahc, ERROR), &cur_col, 50); |
| ahc_scsibusl_print(ahc_inb(ahc, SCSIBUSL), &cur_col, 50); |
| ahc_lastphase_print(ahc_inb(ahc, LASTPHASE), &cur_col, 50); |
| ahc_scsiseq_print(ahc_inb(ahc, SCSISEQ), &cur_col, 50); |
| ahc_sblkctl_print(ahc_inb(ahc, SBLKCTL), &cur_col, 50); |
| ahc_scsirate_print(ahc_inb(ahc, SCSIRATE), &cur_col, 50); |
| ahc_seqctl_print(ahc_inb(ahc, SEQCTL), &cur_col, 50); |
| ahc_seq_flags_print(ahc_inb(ahc, SEQ_FLAGS), &cur_col, 50); |
| ahc_sstat0_print(ahc_inb(ahc, SSTAT0), &cur_col, 50); |
| ahc_sstat1_print(ahc_inb(ahc, SSTAT1), &cur_col, 50); |
| ahc_sstat2_print(ahc_inb(ahc, SSTAT2), &cur_col, 50); |
| ahc_sstat3_print(ahc_inb(ahc, SSTAT3), &cur_col, 50); |
| ahc_simode0_print(ahc_inb(ahc, SIMODE0), &cur_col, 50); |
| ahc_simode1_print(ahc_inb(ahc, SIMODE1), &cur_col, 50); |
| ahc_sxfrctl0_print(ahc_inb(ahc, SXFRCTL0), &cur_col, 50); |
| ahc_dfcntrl_print(ahc_inb(ahc, DFCNTRL), &cur_col, 50); |
| ahc_dfstatus_print(ahc_inb(ahc, DFSTATUS), &cur_col, 50); |
| if (cur_col != 0) |
| printk("\n"); |
| printk("STACK:"); |
| for (i = 0; i < STACK_SIZE; i++) |
| printk(" 0x%x", ahc_inb(ahc, STACK)|(ahc_inb(ahc, STACK) << 8)); |
| printk("\nSCB count = %d\n", ahc->scb_data->numscbs); |
| printk("Kernel NEXTQSCB = %d\n", ahc->next_queued_scb->hscb->tag); |
| printk("Card NEXTQSCB = %d\n", ahc_inb(ahc, NEXT_QUEUED_SCB)); |
| /* QINFIFO */ |
| printk("QINFIFO entries: "); |
| if ((ahc->features & AHC_QUEUE_REGS) != 0) { |
| qinpos = ahc_inb(ahc, SNSCB_QOFF); |
| ahc_outb(ahc, SNSCB_QOFF, qinpos); |
| } else |
| qinpos = ahc_inb(ahc, QINPOS); |
| qintail = ahc->qinfifonext; |
| while (qinpos != qintail) { |
| printk("%d ", ahc->qinfifo[qinpos]); |
| qinpos++; |
| } |
| printk("\n"); |
| |
| printk("Waiting Queue entries: "); |
| scb_index = ahc_inb(ahc, WAITING_SCBH); |
| i = 0; |
| while (scb_index != SCB_LIST_NULL && i++ < 256) { |
| ahc_outb(ahc, SCBPTR, scb_index); |
| printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG)); |
| scb_index = ahc_inb(ahc, SCB_NEXT); |
| } |
| printk("\n"); |
| |
| printk("Disconnected Queue entries: "); |
| scb_index = ahc_inb(ahc, DISCONNECTED_SCBH); |
| i = 0; |
| while (scb_index != SCB_LIST_NULL && i++ < 256) { |
| ahc_outb(ahc, SCBPTR, scb_index); |
| printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG)); |
| scb_index = ahc_inb(ahc, SCB_NEXT); |
| } |
| printk("\n"); |
| |
| ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD); |
| printk("QOUTFIFO entries: "); |
| qoutpos = ahc->qoutfifonext; |
| i = 0; |
| while (ahc->qoutfifo[qoutpos] != SCB_LIST_NULL && i++ < 256) { |
| printk("%d ", ahc->qoutfifo[qoutpos]); |
| qoutpos++; |
| } |
| printk("\n"); |
| |
| printk("Sequencer Free SCB List: "); |
| scb_index = ahc_inb(ahc, FREE_SCBH); |
| i = 0; |
| while (scb_index != SCB_LIST_NULL && i++ < 256) { |
| ahc_outb(ahc, SCBPTR, scb_index); |
| printk("%d ", scb_index); |
| scb_index = ahc_inb(ahc, SCB_NEXT); |
| } |
| printk("\n"); |
| |
| printk("Sequencer SCB Info: "); |
| for (i = 0; i < ahc->scb_data->maxhscbs; i++) { |
| ahc_outb(ahc, SCBPTR, i); |
| cur_col = printk("\n%3d ", i); |
| |
| ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL), &cur_col, 60); |
| ahc_scb_scsiid_print(ahc_inb(ahc, SCB_SCSIID), &cur_col, 60); |
| ahc_scb_lun_print(ahc_inb(ahc, SCB_LUN), &cur_col, 60); |
| ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60); |
| } |
| printk("\n"); |
| |
| printk("Pending list: "); |
| i = 0; |
| LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) { |
| if (i++ > 256) |
| break; |
| cur_col = printk("\n%3d ", scb->hscb->tag); |
| ahc_scb_control_print(scb->hscb->control, &cur_col, 60); |
| ahc_scb_scsiid_print(scb->hscb->scsiid, &cur_col, 60); |
| ahc_scb_lun_print(scb->hscb->lun, &cur_col, 60); |
| if ((ahc->flags & AHC_PAGESCBS) == 0) { |
| ahc_outb(ahc, SCBPTR, scb->hscb->tag); |
| printk("("); |
| ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL), |
| &cur_col, 60); |
| ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60); |
| printk(")"); |
| } |
| } |
| printk("\n"); |
| |
| printk("Kernel Free SCB list: "); |
| i = 0; |
| SLIST_FOREACH(scb, &ahc->scb_data->free_scbs, links.sle) { |
| if (i++ > 256) |
| break; |
| printk("%d ", scb->hscb->tag); |
| } |
| printk("\n"); |
| |
| maxtarget = (ahc->features & (AHC_WIDE|AHC_TWIN)) ? 15 : 7; |
| for (target = 0; target <= maxtarget; target++) { |
| untagged_q = &ahc->untagged_queues[target]; |
| if (TAILQ_FIRST(untagged_q) == NULL) |
| continue; |
| printk("Untagged Q(%d): ", target); |
| i = 0; |
| TAILQ_FOREACH(scb, untagged_q, links.tqe) { |
| if (i++ > 256) |
| break; |
| printk("%d ", scb->hscb->tag); |
| } |
| printk("\n"); |
| } |
| |
| printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n"); |
| ahc_outb(ahc, SCBPTR, saved_scbptr); |
| if (paused == 0) |
| ahc_unpause(ahc); |
| } |
| |
| /************************* Target Mode ****************************************/ |
| #ifdef AHC_TARGET_MODE |
| cam_status |
| ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb, |
| struct ahc_tmode_tstate **tstate, |
| struct ahc_tmode_lstate **lstate, |
| int notfound_failure) |
| { |
| |
| if ((ahc->features & AHC_TARGETMODE) == 0) |
| return (CAM_REQ_INVALID); |
| |
| /* |
| * Handle the 'black hole' device that sucks up |
| * requests to unattached luns on enabled targets. |
| */ |
| if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD |
| && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) { |
| *tstate = NULL; |
| *lstate = ahc->black_hole; |
| } else { |
| u_int max_id; |
| |
| max_id = (ahc->features & AHC_WIDE) ? 16 : 8; |
| if (ccb->ccb_h.target_id >= max_id) |
| return (CAM_TID_INVALID); |
| |
| if (ccb->ccb_h.target_lun >= AHC_NUM_LUNS) |
| return (CAM_LUN_INVALID); |
| |
| *tstate = ahc->enabled_targets[ccb->ccb_h.target_id]; |
| *lstate = NULL; |
| if (*tstate != NULL) |
| *lstate = |
| (*tstate)->enabled_luns[ccb->ccb_h.target_lun]; |
| } |
| |
| if (notfound_failure != 0 && *lstate == NULL) |
| return (CAM_PATH_INVALID); |
| |
| return (CAM_REQ_CMP); |
| } |
| |
| void |
| ahc_handle_en_lun(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb) |
| { |
| struct ahc_tmode_tstate *tstate; |
| struct ahc_tmode_lstate *lstate; |
| struct ccb_en_lun *cel; |
| cam_status status; |
| u_long s; |
| u_int target; |
| u_int lun; |
| u_int target_mask; |
| u_int our_id; |
| int error; |
| char channel; |
| |
| status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate, |
| /*notfound_failure*/FALSE); |
| |
| if (status != CAM_REQ_CMP) { |
| ccb->ccb_h.status = status; |
| return; |
| } |
| |
| if (cam_sim_bus(sim) == 0) |
| our_id = ahc->our_id; |
| else |
| our_id = ahc->our_id_b; |
| |
| if (ccb->ccb_h.target_id != our_id) { |
| /* |
| * our_id represents our initiator ID, or |
| * the ID of the first target to have an |
| * enabled lun in target mode. There are |
| * two cases that may preclude enabling a |
| * target id other than our_id. |
| * |
| * o our_id is for an active initiator role. |
| * Since the hardware does not support |
| * reselections to the initiator role at |
| * anything other than our_id, and our_id |
| * is used by the hardware to indicate the |
| * ID to use for both select-out and |
| * reselect-out operations, the only target |
| * ID we can support in this mode is our_id. |
| * |
| * o The MULTARGID feature is not available and |
| * a previous target mode ID has been enabled. |
| */ |
| if ((ahc->features & AHC_MULTIROLE) != 0) { |
| |
| if ((ahc->features & AHC_MULTI_TID) != 0 |
| && (ahc->flags & AHC_INITIATORROLE) != 0) { |
| /* |
| * Only allow additional targets if |
| * the initiator role is disabled. |
| * The hardware cannot handle a re-select-in |
| * on the initiator id during a re-select-out |
| * on a different target id. |
| */ |
| status = CAM_TID_INVALID; |
| } else if ((ahc->flags & AHC_INITIATORROLE) != 0 |
| || ahc->enabled_luns > 0) { |
| /* |
| * Only allow our target id to change |
| * if the initiator role is not configured |
| * and there are no enabled luns which |
| * are attached to the currently registered |
| * scsi id. |
| */ |
| status = CAM_TID_INVALID; |
| } |
| } else if ((ahc->features & AHC_MULTI_TID) == 0 |
| && ahc->enabled_luns > 0) { |
| |
| status = CAM_TID_INVALID; |
| } |
| } |
| |
| if (status != CAM_REQ_CMP) { |
| ccb->ccb_h.status = status; |
| return; |
| } |
| |
| /* |
| * We now have an id that is valid. |
| * If we aren't in target mode, switch modes. |
| */ |
| if ((ahc->flags & AHC_TARGETROLE) == 0 |
| && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) { |
| u_long s; |
| ahc_flag saved_flags; |
| |
| printk("Configuring Target Mode\n"); |
| ahc_lock(ahc, &s); |
| if (LIST_FIRST(&ahc->pending_scbs) != NULL) { |
| ccb->ccb_h.status = CAM_BUSY; |
| ahc_unlock(ahc, &s); |
| return; |
| } |
| saved_flags = ahc->flags; |
| ahc->flags |= AHC_TARGETROLE; |
| if ((ahc->features & AHC_MULTIROLE) == 0) |
| ahc->flags &= ~AHC_INITIATORROLE; |
| ahc_pause(ahc); |
| error = ahc_loadseq(ahc); |
| if (error != 0) { |
| /* |
| * Restore original configuration and notify |
| * the caller that we cannot support target mode. |
| * Since the adapter started out in this |
| * configuration, the firmware load will succeed, |
| * so there is no point in checking ahc_loadseq's |
| * return value. |
| */ |
| ahc->flags = saved_flags; |
| (void)ahc_loadseq(ahc); |
| ahc_restart(ahc); |
| ahc_unlock(ahc, &s); |
| ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; |
| return; |
| } |
| ahc_restart(ahc); |
| ahc_unlock(ahc, &s); |
| } |
| cel = &ccb->cel; |
| target = ccb->ccb_h.target_id; |
| lun = ccb->ccb_h.target_lun; |
| channel = SIM_CHANNEL(ahc, sim); |
| target_mask = 0x01 << target; |
| if (channel == 'B') |
| target_mask <<= 8; |
| |
| if (cel->enable != 0) { |
| u_int scsiseq; |
| |
| /* Are we already enabled?? */ |
| if (lstate != NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Lun already enabled\n"); |
| ccb->ccb_h.status = CAM_LUN_ALRDY_ENA; |
| return; |
| } |
| |
| if (cel->grp6_len != 0 |
| || cel->grp7_len != 0) { |
| /* |
| * Don't (yet?) support vendor |
| * specific commands. |
| */ |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| printk("Non-zero Group Codes\n"); |
| return; |
| } |
| |
| /* |
| * Seems to be okay. |
| * Setup our data structures. |
| */ |
| if (target != CAM_TARGET_WILDCARD && tstate == NULL) { |
| tstate = ahc_alloc_tstate(ahc, target, channel); |
| if (tstate == NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate tstate\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| } |
| lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC); |
| if (lstate == NULL) { |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate lstate\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| status = xpt_create_path(&lstate->path, /*periph*/NULL, |
| xpt_path_path_id(ccb->ccb_h.path), |
| xpt_path_target_id(ccb->ccb_h.path), |
| xpt_path_lun_id(ccb->ccb_h.path)); |
| if (status != CAM_REQ_CMP) { |
| kfree(lstate); |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Couldn't allocate path\n"); |
| ccb->ccb_h.status = CAM_RESRC_UNAVAIL; |
| return; |
| } |
| SLIST_INIT(&lstate->accept_tios); |
| SLIST_INIT(&lstate->immed_notifies); |
| ahc_lock(ahc, &s); |
| ahc_pause(ahc); |
| if (target != CAM_TARGET_WILDCARD) { |
| tstate->enabled_luns[lun] = lstate; |
| ahc->enabled_luns++; |
| |
| if ((ahc->features & AHC_MULTI_TID) != 0) { |
| u_int targid_mask; |
| |
| targid_mask = ahc_inb(ahc, TARGID) |
| | (ahc_inb(ahc, TARGID + 1) << 8); |
| |
| targid_mask |= target_mask; |
| ahc_outb(ahc, TARGID, targid_mask); |
| ahc_outb(ahc, TARGID+1, (targid_mask >> 8)); |
| |
| ahc_update_scsiid(ahc, targid_mask); |
| } else { |
| u_int our_id; |
| char channel; |
| |
| channel = SIM_CHANNEL(ahc, sim); |
| our_id = SIM_SCSI_ID(ahc, sim); |
| |
| /* |
| * This can only happen if selections |
| * are not enabled |
| */ |
| if (target != our_id) { |
| u_int sblkctl; |
| char cur_channel; |
| int swap; |
| |
| sblkctl = ahc_inb(ahc, SBLKCTL); |
| cur_channel = (sblkctl & SELBUSB) |
| ? 'B' : 'A'; |
| if ((ahc->features & AHC_TWIN) == 0) |
| cur_channel = 'A'; |
| swap = cur_channel != channel; |
| if (channel == 'A') |
| ahc->our_id = target; |
| else |
| ahc->our_id_b = target; |
| |
| if (swap) |
| ahc_outb(ahc, SBLKCTL, |
| sblkctl ^ SELBUSB); |
| |
| ahc_outb(ahc, SCSIID, target); |
| |
| if (swap) |
| ahc_outb(ahc, SBLKCTL, sblkctl); |
| } |
| } |
| } else |
| ahc->black_hole = lstate; |
| /* Allow select-in operations */ |
| if (ahc->black_hole != NULL && ahc->enabled_luns > 0) { |
| scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE); |
| scsiseq |= ENSELI; |
| ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq); |
| scsiseq = ahc_inb(ahc, SCSISEQ); |
| scsiseq |= ENSELI; |
| ahc_outb(ahc, SCSISEQ, scsiseq); |
| } |
| ahc_unpause(ahc); |
| ahc_unlock(ahc, &s); |
| ccb->ccb_h.status = CAM_REQ_CMP; |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Lun now enabled for target mode\n"); |
| } else { |
| struct scb *scb; |
| int i, empty; |
| |
| if (lstate == NULL) { |
| ccb->ccb_h.status = CAM_LUN_INVALID; |
| return; |
| } |
| |
| ahc_lock(ahc, &s); |
| |
| ccb->ccb_h.status = CAM_REQ_CMP; |
| LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) { |
| struct ccb_hdr *ccbh; |
| |
| ccbh = &scb->io_ctx->ccb_h; |
| if (ccbh->func_code == XPT_CONT_TARGET_IO |
| && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){ |
| printk("CTIO pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| ahc_unlock(ahc, &s); |
| return; |
| } |
| } |
| |
| if (SLIST_FIRST(&lstate->accept_tios) != NULL) { |
| printk("ATIOs pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| } |
| |
| if (SLIST_FIRST(&lstate->immed_notifies) != NULL) { |
| printk("INOTs pending\n"); |
| ccb->ccb_h.status = CAM_REQ_INVALID; |
| } |
| |
| if (ccb->ccb_h.status != CAM_REQ_CMP) { |
| ahc_unlock(ahc, &s); |
| return; |
| } |
| |
| xpt_print_path(ccb->ccb_h.path); |
| printk("Target mode disabled\n"); |
| xpt_free_path(lstate->path); |
| kfree(lstate); |
| |
| ahc_pause(ahc); |
| /* Can we clean up the target too? */ |
| if (target != CAM_TARGET_WILDCARD) { |
| tstate->enabled_luns[lun] = NULL; |
| ahc->enabled_luns--; |
| for (empty = 1, i = 0; i < 8; i++) |
| if (tstate->enabled_luns[i] != NULL) { |
| empty = 0; |
| break; |
| } |
| |
| if (empty) { |
| ahc_free_tstate(ahc, target, channel, |
| /*force*/FALSE); |
| if (ahc->features & AHC_MULTI_TID) { |
| u_int targid_mask; |
| |
| targid_mask = ahc_inb(ahc, TARGID) |
| | (ahc_inb(ahc, TARGID + 1) |
| << 8); |
| |
| targid_mask &= ~target_mask; |
| ahc_outb(ahc, TARGID, targid_mask); |
| ahc_outb(ahc, TARGID+1, |
| (targid_mask >> 8)); |
| ahc_update_scsiid(ahc, targid_mask); |
| } |
| } |
| } else { |
| |
| ahc->black_hole = NULL; |
| |
| /* |
| * We can't allow selections without |
| * our black hole device. |
| */ |
| empty = TRUE; |
| } |
| if (ahc->enabled_luns == 0) { |
| /* Disallow select-in */ |
| u_int scsiseq; |
| |
| scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE); |
| scsiseq &= ~ENSELI; |
| ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq); |
| scsiseq = ahc_inb(ahc, SCSISEQ); |
| scsiseq &= ~ENSELI; |
| ahc_outb(ahc, SCSISEQ, scsiseq); |
| |
| if ((ahc->features & AHC_MULTIROLE) == 0) { |
| printk("Configuring Initiator Mode\n"); |
| ahc->flags &= ~AHC_TARGETROLE; |
| ahc->flags |= AHC_INITIATORROLE; |
| /* |
| * Returning to a configuration that |
| * fit previously will always succeed. |
| */ |
| (void)ahc_loadseq(ahc); |
| ahc_restart(ahc); |
| /* |
| * Unpaused. The extra unpause |
| * that follows is harmless. |
| */ |
| } |
| } |
| ahc_unpause(ahc); |
| ahc_unlock(ahc, &s); |
| } |
| } |
| |
| static void |
| ahc_update_scsiid(struct ahc_softc *ahc, u_int targid_mask) |
| { |
| u_int scsiid_mask; |
| u_int scsiid; |
| |
| if ((ahc->features & AHC_MULTI_TID) == 0) |
| panic("ahc_update_scsiid called on non-multitid unit\n"); |
| |
| /* |
| * Since we will rely on the TARGID mask |
| * for selection enables, ensure that OID |
| * in SCSIID is not set to some other ID |
| * that we don't want to allow selections on. |
| */ |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| scsiid = ahc_inb(ahc, SCSIID_ULTRA2); |
| else |
| scsiid = ahc_inb(ahc, SCSIID); |
| scsiid_mask = 0x1 << (scsiid & OID); |
| if ((targid_mask & scsiid_mask) == 0) { |
| u_int our_id; |
| |
| /* ffs counts from 1 */ |
| our_id = ffs(targid_mask); |
| if (our_id == 0) |
| our_id = ahc->our_id; |
| else |
| our_id--; |
| scsiid &= TID; |
| scsiid |= our_id; |
| } |
| if ((ahc->features & AHC_ULTRA2) != 0) |
| ahc_outb(ahc, SCSIID_ULTRA2, scsiid); |
| else |
| ahc_outb(ahc, SCSIID, scsiid); |
| } |
| |
| static void |
| ahc_run_tqinfifo(struct ahc_softc *ahc, int paused) |
| { |
| struct target_cmd *cmd; |
| |
| /* |
| * If the card supports auto-access pause, |
| * we can access the card directly regardless |
| * of whether it is paused or not. |
| */ |
| if ((ahc->features & AHC_AUTOPAUSE) != 0) |
| paused = TRUE; |
| |
| ahc_sync_tqinfifo(ahc, BUS_DMASYNC_POSTREAD); |
| while ((cmd = &ahc->targetcmds[ahc->tqinfifonext])->cmd_valid != 0) { |
| |
| /* |
| * Only advance through the queue if we |
| * have the resources to process the command. |
| */ |
| if (ahc_handle_target_cmd(ahc, cmd) != 0) |
| break; |
| |
| cmd->cmd_valid = 0; |
| ahc_dmamap_sync(ahc, ahc->shared_data_dmat, |
| ahc->shared_data_dmamap, |
| ahc_targetcmd_offset(ahc, ahc->tqinfifonext), |
| sizeof(struct target_cmd), |
| BUS_DMASYNC_PREREAD); |
| ahc->tqinfifonext++; |
| |
| /* |
| * Lazily update our position in the target mode incoming |
| * command queue as seen by the sequencer. |
| */ |
| if ((ahc->tqinfifonext & (HOST_TQINPOS - 1)) == 1) { |
| if ((ahc->features & AHC_HS_MAILBOX) != 0) { |
| u_int hs_mailbox; |
| |
| hs_mailbox = ahc_inb(ahc, HS_MAILBOX); |
| hs_mailbox &= ~HOST_TQINPOS; |
| hs_mailbox |= ahc->tqinfifonext & HOST_TQINPOS; |
| ahc_outb(ahc, HS_MAILBOX, hs_mailbox); |
| } else { |
| if (!paused) |
| ahc_pause(ahc); |
| ahc_outb(ahc, KERNEL_TQINPOS, |
| ahc->tqinfifonext & HOST_TQINPOS); |
| if (!paused) |
| ahc_unpause(ahc); |
| } |
| } |
| } |
| } |
| |
| static int |
| ahc_handle_target_cmd(struct ahc_softc *ahc, struct target_cmd *cmd) |
| { |
| struct ahc_tmode_tstate *tstate; |
| struct ahc_tmode_lstate *lstate; |
| struct ccb_accept_tio *atio; |
| uint8_t *byte; |
| int initiator; |
| int target; |
| int lun; |
| |
| initiator = SCSIID_TARGET(ahc, cmd->scsiid); |
| target = SCSIID_OUR_ID(cmd->scsiid); |
| lun = (cmd->identify & MSG_IDENTIFY_LUNMASK); |
| |
| byte = cmd->bytes; |
| tstate = ahc->enabled_targets[target]; |
| lstate = NULL; |
| if (tstate != NULL) |
| lstate = tstate->enabled_luns[lun]; |
| |
| /* |
| * Commands for disabled luns go to the black hole driver. |
| */ |
| if (lstate == NULL) |
| lstate = ahc->black_hole; |
| |
| atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios); |
| if (atio == NULL) { |
| ahc->flags |= AHC_TQINFIFO_BLOCKED; |
| /* |
| * Wait for more ATIOs from the peripheral driver for this lun. |
| */ |
| if (bootverbose) |
| printk("%s: ATIOs exhausted\n", ahc_name(ahc)); |
| return (1); |
| } else |
| ahc->flags &= ~AHC_TQINFIFO_BLOCKED; |
| #if 0 |
| printk("Incoming command from %d for %d:%d%s\n", |
| initiator, target, lun, |
| lstate == ahc->black_hole ? "(Black Holed)" : ""); |
| #endif |
| SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle); |
| |
| if (lstate == ahc->black_hole) { |
| /* Fill in the wildcards */ |
| atio->ccb_h.target_id = target; |
| atio->ccb_h.target_lun = lun; |
| } |
| |
| /* |
| * Package it up and send it off to |
| * whomever has this lun enabled. |
| */ |
| atio->sense_len = 0; |
| atio->init_id = initiator; |
| if (byte[0] != 0xFF) { |
| /* Tag was included */ |
| atio->tag_action = *byte++; |
| atio->tag_id = *byte++; |
| atio->ccb_h.flags = CAM_TAG_ACTION_VALID; |
| } else { |
| atio->ccb_h.flags = 0; |
| } |
| byte++; |
| |
| /* Okay. Now determine the cdb size based on the command code */ |
| switch (*byte >> CMD_GROUP_CODE_SHIFT) { |
| case 0: |
| atio->cdb_len = 6; |
| break; |
| case 1: |
| case 2: |
| atio->cdb_len = 10; |
| break; |
| case 4: |
| atio->cdb_len = 16; |
| break; |
| case 5: |
| atio->cdb_len = 12; |
| break; |
| case 3: |
| default: |
| /* Only copy the opcode. */ |
| atio->cdb_len = 1; |
| printk("Reserved or VU command code type encountered\n"); |
| break; |
| } |
| |
| memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len); |
| |
| atio->ccb_h.status |= CAM_CDB_RECVD; |
| |
| if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) { |
| /* |
| * We weren't allowed to disconnect. |
| * We're hanging on the bus until a |
| * continue target I/O comes in response |
| * to this accept tio. |
| */ |
| #if 0 |
| printk("Received Immediate Command %d:%d:%d - %p\n", |
| initiator, target, lun, ahc->pending_device); |
| #endif |
| ahc->pending_device = lstate; |
| ahc_freeze_ccb((union ccb *)atio); |
| atio->ccb_h.flags |= CAM_DIS_DISCONNECT; |
| } |
| xpt_done((union ccb*)atio); |
| return (0); |
| } |
| |
| #endif |