blob: f86578857e8aee4136287816933d23125947bc3c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2021 Intel Corporation. */
#include <generated/utsrelease.h>
#include <linux/crash_dump.h>
#include <linux/if_bridge.h>
#include <linux/if_macvlan.h>
#include <linux/module.h>
#include <net/pkt_cls.h>
#include <net/xdp_sock_drv.h>
/* Local includes */
#include "i40e.h"
#include "i40e_devids.h"
#include "i40e_diag.h"
#include "i40e_lan_hmc.h"
#include "i40e_virtchnl_pf.h"
#include "i40e_xsk.h"
/* All i40e tracepoints are defined by the include below, which
* must be included exactly once across the whole kernel with
* CREATE_TRACE_POINTS defined
*/
#define CREATE_TRACE_POINTS
#include "i40e_trace.h"
const char i40e_driver_name[] = "i40e";
static const char i40e_driver_string[] =
"Intel(R) Ethernet Connection XL710 Network Driver";
static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation.";
/* a bit of forward declarations */
static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
static int i40e_add_vsi(struct i40e_vsi *vsi);
static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired);
static int i40e_setup_misc_vector(struct i40e_pf *pf);
static void i40e_determine_queue_usage(struct i40e_pf *pf);
static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
static void i40e_prep_for_reset(struct i40e_pf *pf);
static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
bool lock_acquired);
static int i40e_reset(struct i40e_pf *pf);
static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf);
static int i40e_restore_interrupt_scheme(struct i40e_pf *pf);
static bool i40e_check_recovery_mode(struct i40e_pf *pf);
static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw);
static void i40e_fdir_sb_setup(struct i40e_pf *pf);
static int i40e_veb_get_bw_info(struct i40e_veb *veb);
static int i40e_get_capabilities(struct i40e_pf *pf,
enum i40e_admin_queue_opc list_type);
static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf);
/* i40e_pci_tbl - PCI Device ID Table
*
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id i40e_pci_tbl[] = {
{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
{PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
#define I40E_MAX_VF_COUNT 128
static int debug = -1;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
MODULE_LICENSE("GPL v2");
static struct workqueue_struct *i40e_wq;
static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f,
struct net_device *netdev, int delta)
{
struct netdev_hw_addr_list *ha_list;
struct netdev_hw_addr *ha;
if (!f || !netdev)
return;
if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr))
ha_list = &netdev->uc;
else
ha_list = &netdev->mc;
netdev_hw_addr_list_for_each(ha, ha_list) {
if (ether_addr_equal(ha->addr, f->macaddr)) {
ha->refcount += delta;
if (ha->refcount <= 0)
ha->refcount = 1;
break;
}
}
}
/**
* i40e_hw_to_dev - get device pointer from the hardware structure
* @hw: pointer to the device HW structure
**/
struct device *i40e_hw_to_dev(struct i40e_hw *hw)
{
struct i40e_pf *pf = i40e_hw_to_pf(hw);
return &pf->pdev->dev;
}
/**
* i40e_allocate_dma_mem - OS specific memory alloc for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to fill out
* @size: size of memory requested
* @alignment: what to align the allocation to
**/
int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem,
u64 size, u32 alignment)
{
struct i40e_pf *pf = i40e_hw_to_pf(hw);
mem->size = ALIGN(size, alignment);
mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa,
GFP_KERNEL);
if (!mem->va)
return -ENOMEM;
return 0;
}
/**
* i40e_free_dma_mem - OS specific memory free for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem)
{
struct i40e_pf *pf = i40e_hw_to_pf(hw);
dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
mem->va = NULL;
mem->pa = 0;
mem->size = 0;
return 0;
}
/**
* i40e_allocate_virt_mem - OS specific memory alloc for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to fill out
* @size: size of memory requested
**/
int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem,
u32 size)
{
mem->size = size;
mem->va = kzalloc(size, GFP_KERNEL);
if (!mem->va)
return -ENOMEM;
return 0;
}
/**
* i40e_free_virt_mem - OS specific memory free for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem)
{
/* it's ok to kfree a NULL pointer */
kfree(mem->va);
mem->va = NULL;
mem->size = 0;
return 0;
}
/**
* i40e_get_lump - find a lump of free generic resource
* @pf: board private structure
* @pile: the pile of resource to search
* @needed: the number of items needed
* @id: an owner id to stick on the items assigned
*
* Returns the base item index of the lump, or negative for error
**/
static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
u16 needed, u16 id)
{
int ret = -ENOMEM;
int i, j;
if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
dev_info(&pf->pdev->dev,
"param err: pile=%s needed=%d id=0x%04x\n",
pile ? "<valid>" : "<null>", needed, id);
return -EINVAL;
}
/* Allocate last queue in the pile for FDIR VSI queue
* so it doesn't fragment the qp_pile
*/
if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) {
if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) {
dev_err(&pf->pdev->dev,
"Cannot allocate queue %d for I40E_VSI_FDIR\n",
pile->num_entries - 1);
return -ENOMEM;
}
pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT;
return pile->num_entries - 1;
}
i = 0;
while (i < pile->num_entries) {
/* skip already allocated entries */
if (pile->list[i] & I40E_PILE_VALID_BIT) {
i++;
continue;
}
/* do we have enough in this lump? */
for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
if (pile->list[i+j] & I40E_PILE_VALID_BIT)
break;
}
if (j == needed) {
/* there was enough, so assign it to the requestor */
for (j = 0; j < needed; j++)
pile->list[i+j] = id | I40E_PILE_VALID_BIT;
ret = i;
break;
}
/* not enough, so skip over it and continue looking */
i += j;
}
return ret;
}
/**
* i40e_put_lump - return a lump of generic resource
* @pile: the pile of resource to search
* @index: the base item index
* @id: the owner id of the items assigned
*
* Returns the count of items in the lump
**/
static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
{
int valid_id = (id | I40E_PILE_VALID_BIT);
int count = 0;
u16 i;
if (!pile || index >= pile->num_entries)
return -EINVAL;
for (i = index;
i < pile->num_entries && pile->list[i] == valid_id;
i++) {
pile->list[i] = 0;
count++;
}
return count;
}
/**
* i40e_find_vsi_from_id - searches for the vsi with the given id
* @pf: the pf structure to search for the vsi
* @id: id of the vsi it is searching for
**/
struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
{
struct i40e_vsi *vsi;
int i;
i40e_pf_for_each_vsi(pf, i, vsi)
if (vsi->id == id)
return vsi;
return NULL;
}
/**
* i40e_service_event_schedule - Schedule the service task to wake up
* @pf: board private structure
*
* If not already scheduled, this puts the task into the work queue
**/
void i40e_service_event_schedule(struct i40e_pf *pf)
{
if ((!test_bit(__I40E_DOWN, pf->state) &&
!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) ||
test_bit(__I40E_RECOVERY_MODE, pf->state))
queue_work(i40e_wq, &pf->service_task);
}
/**
* i40e_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: queue number timing out
*
* If any port has noticed a Tx timeout, it is likely that the whole
* device is munged, not just the one netdev port, so go for the full
* reset.
**/
static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_ring *tx_ring = NULL;
unsigned int i;
u32 head, val;
pf->tx_timeout_count++;
/* with txqueue index, find the tx_ring struct */
for (i = 0; i < vsi->num_queue_pairs; i++) {
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
if (txqueue ==
vsi->tx_rings[i]->queue_index) {
tx_ring = vsi->tx_rings[i];
break;
}
}
}
if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
pf->tx_timeout_recovery_level = 1; /* reset after some time */
else if (time_before(jiffies,
(pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
return; /* don't do any new action before the next timeout */
/* don't kick off another recovery if one is already pending */
if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state))
return;
if (tx_ring) {
head = i40e_get_head(tx_ring);
/* Read interrupt register */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
val = rd32(&pf->hw,
I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
tx_ring->vsi->base_vector - 1));
else
val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
vsi->seid, txqueue, tx_ring->next_to_clean,
head, tx_ring->next_to_use,
readl(tx_ring->tail), val);
}
pf->tx_timeout_last_recovery = jiffies;
netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
pf->tx_timeout_recovery_level, txqueue);
switch (pf->tx_timeout_recovery_level) {
case 1:
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
break;
case 2:
set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
break;
case 3:
set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
break;
default:
netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n");
set_bit(__I40E_DOWN_REQUESTED, pf->state);
set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state);
break;
}
i40e_service_event_schedule(pf);
pf->tx_timeout_recovery_level++;
}
/**
* i40e_get_vsi_stats_struct - Get System Network Statistics
* @vsi: the VSI we care about
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the service task.
**/
struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
{
return &vsi->net_stats;
}
/**
* i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
* @ring: Tx ring to get statistics from
* @stats: statistics entry to be updated
**/
static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
struct rtnl_link_stats64 *stats)
{
u64 bytes, packets;
unsigned int start;
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp, start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
}
/**
* i40e_get_netdev_stats_struct - Get statistics for netdev interface
* @netdev: network interface device structure
* @stats: data structure to store statistics
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the service task.
**/
static void i40e_get_netdev_stats_struct(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
struct i40e_ring *ring;
int i;
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return;
if (!vsi->tx_rings)
return;
rcu_read_lock();
for (i = 0; i < vsi->num_queue_pairs; i++) {
u64 bytes, packets;
unsigned int start;
ring = READ_ONCE(vsi->tx_rings[i]);
if (!ring)
continue;
i40e_get_netdev_stats_struct_tx(ring, stats);
if (i40e_enabled_xdp_vsi(vsi)) {
ring = READ_ONCE(vsi->xdp_rings[i]);
if (!ring)
continue;
i40e_get_netdev_stats_struct_tx(ring, stats);
}
ring = READ_ONCE(vsi->rx_rings[i]);
if (!ring)
continue;
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
rcu_read_unlock();
/* following stats updated by i40e_watchdog_subtask() */
stats->multicast = vsi_stats->multicast;
stats->tx_errors = vsi_stats->tx_errors;
stats->tx_dropped = vsi_stats->tx_dropped;
stats->rx_errors = vsi_stats->rx_errors;
stats->rx_dropped = vsi_stats->rx_dropped;
stats->rx_missed_errors = vsi_stats->rx_missed_errors;
stats->rx_crc_errors = vsi_stats->rx_crc_errors;
stats->rx_length_errors = vsi_stats->rx_length_errors;
}
/**
* i40e_vsi_reset_stats - Resets all stats of the given vsi
* @vsi: the VSI to have its stats reset
**/
void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
{
struct rtnl_link_stats64 *ns;
int i;
if (!vsi)
return;
ns = i40e_get_vsi_stats_struct(vsi);
memset(ns, 0, sizeof(*ns));
memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
if (vsi->rx_rings && vsi->rx_rings[0]) {
for (i = 0; i < vsi->num_queue_pairs; i++) {
memset(&vsi->rx_rings[i]->stats, 0,
sizeof(vsi->rx_rings[i]->stats));
memset(&vsi->rx_rings[i]->rx_stats, 0,
sizeof(vsi->rx_rings[i]->rx_stats));
memset(&vsi->tx_rings[i]->stats, 0,
sizeof(vsi->tx_rings[i]->stats));
memset(&vsi->tx_rings[i]->tx_stats, 0,
sizeof(vsi->tx_rings[i]->tx_stats));
}
}
vsi->stat_offsets_loaded = false;
}
/**
* i40e_pf_reset_stats - Reset all of the stats for the given PF
* @pf: the PF to be reset
**/
void i40e_pf_reset_stats(struct i40e_pf *pf)
{
struct i40e_veb *veb;
int i;
memset(&pf->stats, 0, sizeof(pf->stats));
memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
pf->stat_offsets_loaded = false;
i40e_pf_for_each_veb(pf, i, veb) {
memset(&veb->stats, 0, sizeof(veb->stats));
memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets));
memset(&veb->tc_stats, 0, sizeof(veb->tc_stats));
memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets));
veb->stat_offsets_loaded = false;
}
pf->hw_csum_rx_error = 0;
}
/**
* i40e_compute_pci_to_hw_id - compute index form PCI function.
* @vsi: ptr to the VSI to read from.
* @hw: ptr to the hardware info.
**/
static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw)
{
int pf_count = i40e_get_pf_count(hw);
if (vsi->type == I40E_VSI_SRIOV)
return (hw->port * BIT(7)) / pf_count + vsi->vf_id;
return hw->port + BIT(7);
}
/**
* i40e_stat_update64 - read and update a 64 bit stat from the chip.
* @hw: ptr to the hardware info.
* @hireg: the high 32 bit reg to read.
* @loreg: the low 32 bit reg to read.
* @offset_loaded: has the initial offset been loaded yet.
* @offset: ptr to current offset value.
* @stat: ptr to the stat.
*
* Since the device stats are not reset at PFReset, they will not
* be zeroed when the driver starts. We'll save the first values read
* and use them as offsets to be subtracted from the raw values in order
* to report stats that count from zero.
**/
static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg,
bool offset_loaded, u64 *offset, u64 *stat)
{
u64 new_data;
new_data = rd64(hw, loreg);
if (!offset_loaded || new_data < *offset)
*offset = new_data;
*stat = new_data - *offset;
}
/**
* i40e_stat_update48 - read and update a 48 bit stat from the chip
* @hw: ptr to the hardware info
* @hireg: the high 32 bit reg to read
* @loreg: the low 32 bit reg to read
* @offset_loaded: has the initial offset been loaded yet
* @offset: ptr to current offset value
* @stat: ptr to the stat
*
* Since the device stats are not reset at PFReset, they likely will not
* be zeroed when the driver starts. We'll save the first values read
* and use them as offsets to be subtracted from the raw values in order
* to report stats that count from zero. In the process, we also manage
* the potential roll-over.
**/
static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
bool offset_loaded, u64 *offset, u64 *stat)
{
u64 new_data;
if (hw->device_id == I40E_DEV_ID_QEMU) {
new_data = rd32(hw, loreg);
new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
} else {
new_data = rd64(hw, loreg);
}
if (!offset_loaded)
*offset = new_data;
if (likely(new_data >= *offset))
*stat = new_data - *offset;
else
*stat = (new_data + BIT_ULL(48)) - *offset;
*stat &= 0xFFFFFFFFFFFFULL;
}
/**
* i40e_stat_update32 - read and update a 32 bit stat from the chip
* @hw: ptr to the hardware info
* @reg: the hw reg to read
* @offset_loaded: has the initial offset been loaded yet
* @offset: ptr to current offset value
* @stat: ptr to the stat
**/
static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
bool offset_loaded, u64 *offset, u64 *stat)
{
u32 new_data;
new_data = rd32(hw, reg);
if (!offset_loaded)
*offset = new_data;
if (likely(new_data >= *offset))
*stat = (u32)(new_data - *offset);
else
*stat = (u32)((new_data + BIT_ULL(32)) - *offset);
}
/**
* i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat
* @hw: ptr to the hardware info
* @reg: the hw reg to read and clear
* @stat: ptr to the stat
**/
static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat)
{
u32 new_data = rd32(hw, reg);
wr32(hw, reg, 1); /* must write a nonzero value to clear register */
*stat += new_data;
}
/**
* i40e_stats_update_rx_discards - update rx_discards.
* @vsi: ptr to the VSI to be updated.
* @hw: ptr to the hardware info.
* @stat_idx: VSI's stat_counter_idx.
* @offset_loaded: ptr to the VSI's stat_offsets_loaded.
* @stat_offset: ptr to stat_offset to store first read of specific register.
* @stat: ptr to VSI's stat to be updated.
**/
static void
i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw,
int stat_idx, bool offset_loaded,
struct i40e_eth_stats *stat_offset,
struct i40e_eth_stats *stat)
{
i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded,
&stat_offset->rx_discards, &stat->rx_discards);
i40e_stat_update64(hw,
I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)),
I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)),
offset_loaded, &stat_offset->rx_discards_other,
&stat->rx_discards_other);
}
/**
* i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
* @vsi: the VSI to be updated
**/
void i40e_update_eth_stats(struct i40e_vsi *vsi)
{
int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_eth_stats *oes;
struct i40e_eth_stats *es; /* device's eth stats */
es = &vsi->eth_stats;
oes = &vsi->eth_stats_offsets;
/* Gather up the stats that the hw collects */
i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
vsi->stat_offsets_loaded,
&oes->tx_errors, &es->tx_errors);
i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
vsi->stat_offsets_loaded,
&oes->rx_unknown_protocol, &es->rx_unknown_protocol);
i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
I40E_GLV_GORCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->rx_bytes, &es->rx_bytes);
i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
I40E_GLV_UPRCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->rx_unicast, &es->rx_unicast);
i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
I40E_GLV_MPRCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->rx_multicast, &es->rx_multicast);
i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
I40E_GLV_BPRCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->rx_broadcast, &es->rx_broadcast);
i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
I40E_GLV_GOTCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->tx_bytes, &es->tx_bytes);
i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
I40E_GLV_UPTCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->tx_unicast, &es->tx_unicast);
i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
I40E_GLV_MPTCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->tx_multicast, &es->tx_multicast);
i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
I40E_GLV_BPTCL(stat_idx),
vsi->stat_offsets_loaded,
&oes->tx_broadcast, &es->tx_broadcast);
i40e_stats_update_rx_discards(vsi, hw, stat_idx,
vsi->stat_offsets_loaded, oes, es);
vsi->stat_offsets_loaded = true;
}
/**
* i40e_update_veb_stats - Update Switch component statistics
* @veb: the VEB being updated
**/
void i40e_update_veb_stats(struct i40e_veb *veb)
{
struct i40e_pf *pf = veb->pf;
struct i40e_hw *hw = &pf->hw;
struct i40e_eth_stats *oes;
struct i40e_eth_stats *es; /* device's eth stats */
struct i40e_veb_tc_stats *veb_oes;
struct i40e_veb_tc_stats *veb_es;
int i, idx = 0;
idx = veb->stats_idx;
es = &veb->stats;
oes = &veb->stats_offsets;
veb_es = &veb->tc_stats;
veb_oes = &veb->tc_stats_offsets;
/* Gather up the stats that the hw collects */
i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
veb->stat_offsets_loaded,
&oes->tx_discards, &es->tx_discards);
if (hw->revision_id > 0)
i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
veb->stat_offsets_loaded,
&oes->rx_unknown_protocol,
&es->rx_unknown_protocol);
i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
veb->stat_offsets_loaded,
&oes->rx_bytes, &es->rx_bytes);
i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
veb->stat_offsets_loaded,
&oes->rx_unicast, &es->rx_unicast);
i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
veb->stat_offsets_loaded,
&oes->rx_multicast, &es->rx_multicast);
i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
veb->stat_offsets_loaded,
&oes->rx_broadcast, &es->rx_broadcast);
i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
veb->stat_offsets_loaded,
&oes->tx_bytes, &es->tx_bytes);
i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
veb->stat_offsets_loaded,
&oes->tx_unicast, &es->tx_unicast);
i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
veb->stat_offsets_loaded,
&oes->tx_multicast, &es->tx_multicast);
i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
veb->stat_offsets_loaded,
&oes->tx_broadcast, &es->tx_broadcast);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
I40E_GLVEBTC_RPCL(i, idx),
veb->stat_offsets_loaded,
&veb_oes->tc_rx_packets[i],
&veb_es->tc_rx_packets[i]);
i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
I40E_GLVEBTC_RBCL(i, idx),
veb->stat_offsets_loaded,
&veb_oes->tc_rx_bytes[i],
&veb_es->tc_rx_bytes[i]);
i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
I40E_GLVEBTC_TPCL(i, idx),
veb->stat_offsets_loaded,
&veb_oes->tc_tx_packets[i],
&veb_es->tc_tx_packets[i]);
i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
I40E_GLVEBTC_TBCL(i, idx),
veb->stat_offsets_loaded,
&veb_oes->tc_tx_bytes[i],
&veb_es->tc_tx_bytes[i]);
}
veb->stat_offsets_loaded = true;
}
/**
* i40e_update_vsi_stats - Update the vsi statistics counters.
* @vsi: the VSI to be updated
*
* There are a few instances where we store the same stat in a
* couple of different structs. This is partly because we have
* the netdev stats that need to be filled out, which is slightly
* different from the "eth_stats" defined by the chip and used in
* VF communications. We sort it out here.
**/
static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
{
u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy;
struct i40e_pf *pf = vsi->back;
struct rtnl_link_stats64 *ons;
struct rtnl_link_stats64 *ns; /* netdev stats */
struct i40e_eth_stats *oes;
struct i40e_eth_stats *es; /* device's eth stats */
u64 tx_restart, tx_busy;
struct i40e_ring *p;
u64 bytes, packets;
unsigned int start;
u64 tx_linearize;
u64 tx_force_wb;
u64 tx_stopped;
u64 rx_p, rx_b;
u64 tx_p, tx_b;
u16 q;
if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
test_bit(__I40E_CONFIG_BUSY, pf->state))
return;
ns = i40e_get_vsi_stats_struct(vsi);
ons = &vsi->net_stats_offsets;
es = &vsi->eth_stats;
oes = &vsi->eth_stats_offsets;
/* Gather up the netdev and vsi stats that the driver collects
* on the fly during packet processing
*/
rx_b = rx_p = 0;
tx_b = tx_p = 0;
tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
tx_stopped = 0;
rx_page = 0;
rx_buf = 0;
rx_reuse = 0;
rx_alloc = 0;
rx_waive = 0;
rx_busy = 0;
rcu_read_lock();
for (q = 0; q < vsi->num_queue_pairs; q++) {
/* locate Tx ring */
p = READ_ONCE(vsi->tx_rings[q]);
if (!p)
continue;
do {
start = u64_stats_fetch_begin(&p->syncp);
packets = p->stats.packets;
bytes = p->stats.bytes;
} while (u64_stats_fetch_retry(&p->syncp, start));
tx_b += bytes;
tx_p += packets;
tx_restart += p->tx_stats.restart_queue;
tx_busy += p->tx_stats.tx_busy;
tx_linearize += p->tx_stats.tx_linearize;
tx_force_wb += p->tx_stats.tx_force_wb;
tx_stopped += p->tx_stats.tx_stopped;
/* locate Rx ring */
p = READ_ONCE(vsi->rx_rings[q]);
if (!p)
continue;
do {
start = u64_stats_fetch_begin(&p->syncp);
packets = p->stats.packets;
bytes = p->stats.bytes;
} while (u64_stats_fetch_retry(&p->syncp, start));
rx_b += bytes;
rx_p += packets;
rx_buf += p->rx_stats.alloc_buff_failed;
rx_page += p->rx_stats.alloc_page_failed;
rx_reuse += p->rx_stats.page_reuse_count;
rx_alloc += p->rx_stats.page_alloc_count;
rx_waive += p->rx_stats.page_waive_count;
rx_busy += p->rx_stats.page_busy_count;
if (i40e_enabled_xdp_vsi(vsi)) {
/* locate XDP ring */
p = READ_ONCE(vsi->xdp_rings[q]);
if (!p)
continue;
do {
start = u64_stats_fetch_begin(&p->syncp);
packets = p->stats.packets;
bytes = p->stats.bytes;
} while (u64_stats_fetch_retry(&p->syncp, start));
tx_b += bytes;
tx_p += packets;
tx_restart += p->tx_stats.restart_queue;
tx_busy += p->tx_stats.tx_busy;
tx_linearize += p->tx_stats.tx_linearize;
tx_force_wb += p->tx_stats.tx_force_wb;
}
}
rcu_read_unlock();
vsi->tx_restart = tx_restart;
vsi->tx_busy = tx_busy;
vsi->tx_linearize = tx_linearize;
vsi->tx_force_wb = tx_force_wb;
vsi->tx_stopped = tx_stopped;
vsi->rx_page_failed = rx_page;
vsi->rx_buf_failed = rx_buf;
vsi->rx_page_reuse = rx_reuse;
vsi->rx_page_alloc = rx_alloc;
vsi->rx_page_waive = rx_waive;
vsi->rx_page_busy = rx_busy;
ns->rx_packets = rx_p;
ns->rx_bytes = rx_b;
ns->tx_packets = tx_p;
ns->tx_bytes = tx_b;
/* update netdev stats from eth stats */
i40e_update_eth_stats(vsi);
ons->tx_errors = oes->tx_errors;
ns->tx_errors = es->tx_errors;
ons->multicast = oes->rx_multicast;
ns->multicast = es->rx_multicast;
ons->rx_dropped = oes->rx_discards_other;
ns->rx_dropped = es->rx_discards_other;
ons->rx_missed_errors = oes->rx_discards;
ns->rx_missed_errors = es->rx_discards;
ons->tx_dropped = oes->tx_discards;
ns->tx_dropped = es->tx_discards;
/* pull in a couple PF stats if this is the main vsi */
if (vsi == pf->vsi[pf->lan_vsi]) {
ns->rx_crc_errors = pf->stats.crc_errors;
ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
ns->rx_length_errors = pf->stats.rx_length_errors;
}
}
/**
* i40e_update_pf_stats - Update the PF statistics counters.
* @pf: the PF to be updated
**/
static void i40e_update_pf_stats(struct i40e_pf *pf)
{
struct i40e_hw_port_stats *osd = &pf->stats_offsets;
struct i40e_hw_port_stats *nsd = &pf->stats;
struct i40e_hw *hw = &pf->hw;
u32 val;
int i;
i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
I40E_GLPRT_GORCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.rx_bytes, &nsd->eth.rx_bytes);
i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
I40E_GLPRT_GOTCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.tx_bytes, &nsd->eth.tx_bytes);
i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
pf->stat_offsets_loaded,
&osd->eth.rx_discards,
&nsd->eth.rx_discards);
i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
I40E_GLPRT_UPRCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.rx_unicast,
&nsd->eth.rx_unicast);
i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
I40E_GLPRT_MPRCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.rx_multicast,
&nsd->eth.rx_multicast);
i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
I40E_GLPRT_BPRCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.rx_broadcast,
&nsd->eth.rx_broadcast);
i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
I40E_GLPRT_UPTCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.tx_unicast,
&nsd->eth.tx_unicast);
i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
I40E_GLPRT_MPTCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.tx_multicast,
&nsd->eth.tx_multicast);
i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
I40E_GLPRT_BPTCL(hw->port),
pf->stat_offsets_loaded,
&osd->eth.tx_broadcast,
&nsd->eth.tx_broadcast);
i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
pf->stat_offsets_loaded,
&osd->tx_dropped_link_down,
&nsd->tx_dropped_link_down);
i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
pf->stat_offsets_loaded,
&osd->crc_errors, &nsd->crc_errors);
i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
pf->stat_offsets_loaded,
&osd->illegal_bytes, &nsd->illegal_bytes);
i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
pf->stat_offsets_loaded,
&osd->mac_local_faults,
&nsd->mac_local_faults);
i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
pf->stat_offsets_loaded,
&osd->mac_remote_faults,
&nsd->mac_remote_faults);
i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
pf->stat_offsets_loaded,
&osd->rx_length_errors,
&nsd->rx_length_errors);
i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
pf->stat_offsets_loaded,
&osd->link_xon_rx, &nsd->link_xon_rx);
i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
pf->stat_offsets_loaded,
&osd->link_xon_tx, &nsd->link_xon_tx);
i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
pf->stat_offsets_loaded,
&osd->link_xoff_rx, &nsd->link_xoff_rx);
i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
pf->stat_offsets_loaded,
&osd->link_xoff_tx, &nsd->link_xoff_tx);
for (i = 0; i < 8; i++) {
i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
pf->stat_offsets_loaded,
&osd->priority_xoff_rx[i],
&nsd->priority_xoff_rx[i]);
i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
pf->stat_offsets_loaded,
&osd->priority_xon_rx[i],
&nsd->priority_xon_rx[i]);
i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
pf->stat_offsets_loaded,
&osd->priority_xon_tx[i],
&nsd->priority_xon_tx[i]);
i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
pf->stat_offsets_loaded,
&osd->priority_xoff_tx[i],
&nsd->priority_xoff_tx[i]);
i40e_stat_update32(hw,
I40E_GLPRT_RXON2OFFCNT(hw->port, i),
pf->stat_offsets_loaded,
&osd->priority_xon_2_xoff[i],
&nsd->priority_xon_2_xoff[i]);
}
i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
I40E_GLPRT_PRC64L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_64, &nsd->rx_size_64);
i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
I40E_GLPRT_PRC127L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_127, &nsd->rx_size_127);
i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
I40E_GLPRT_PRC255L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_255, &nsd->rx_size_255);
i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
I40E_GLPRT_PRC511L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_511, &nsd->rx_size_511);
i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
I40E_GLPRT_PRC1023L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_1023, &nsd->rx_size_1023);
i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
I40E_GLPRT_PRC1522L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_1522, &nsd->rx_size_1522);
i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
I40E_GLPRT_PRC9522L(hw->port),
pf->stat_offsets_loaded,
&osd->rx_size_big, &nsd->rx_size_big);
i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
I40E_GLPRT_PTC64L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_64, &nsd->tx_size_64);
i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
I40E_GLPRT_PTC127L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_127, &nsd->tx_size_127);
i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
I40E_GLPRT_PTC255L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_255, &nsd->tx_size_255);
i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
I40E_GLPRT_PTC511L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_511, &nsd->tx_size_511);
i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
I40E_GLPRT_PTC1023L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_1023, &nsd->tx_size_1023);
i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
I40E_GLPRT_PTC1522L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_1522, &nsd->tx_size_1522);
i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
I40E_GLPRT_PTC9522L(hw->port),
pf->stat_offsets_loaded,
&osd->tx_size_big, &nsd->tx_size_big);
i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
pf->stat_offsets_loaded,
&osd->rx_undersize, &nsd->rx_undersize);
i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
pf->stat_offsets_loaded,
&osd->rx_fragments, &nsd->rx_fragments);
i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
pf->stat_offsets_loaded,
&osd->rx_oversize, &nsd->rx_oversize);
i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
pf->stat_offsets_loaded,
&osd->rx_jabber, &nsd->rx_jabber);
/* FDIR stats */
i40e_stat_update_and_clear32(hw,
I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)),
&nsd->fd_atr_match);
i40e_stat_update_and_clear32(hw,
I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)),
&nsd->fd_sb_match);
i40e_stat_update_and_clear32(hw,
I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)),
&nsd->fd_atr_tunnel_match);
val = rd32(hw, I40E_PRTPM_EEE_STAT);
nsd->tx_lpi_status =
FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val);
nsd->rx_lpi_status =
FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val);
i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
pf->stat_offsets_loaded,
&osd->tx_lpi_count, &nsd->tx_lpi_count);
i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
pf->stat_offsets_loaded,
&osd->rx_lpi_count, &nsd->rx_lpi_count);
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
!test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
nsd->fd_sb_status = true;
else
nsd->fd_sb_status = false;
if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
!test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
nsd->fd_atr_status = true;
else
nsd->fd_atr_status = false;
pf->stat_offsets_loaded = true;
}
/**
* i40e_update_stats - Update the various statistics counters.
* @vsi: the VSI to be updated
*
* Update the various stats for this VSI and its related entities.
**/
void i40e_update_stats(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
if (vsi == pf->vsi[pf->lan_vsi])
i40e_update_pf_stats(pf);
i40e_update_vsi_stats(vsi);
}
/**
* i40e_count_filters - counts VSI mac filters
* @vsi: the VSI to be searched
*
* Returns count of mac filters
**/
int i40e_count_filters(struct i40e_vsi *vsi)
{
struct i40e_mac_filter *f;
struct hlist_node *h;
int bkt;
int cnt = 0;
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
++cnt;
return cnt;
}
/**
* i40e_find_filter - Search VSI filter list for specific mac/vlan filter
* @vsi: the VSI to be searched
* @macaddr: the MAC address
* @vlan: the vlan
*
* Returns ptr to the filter object or NULL
**/
static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
const u8 *macaddr, s16 vlan)
{
struct i40e_mac_filter *f;
u64 key;
if (!vsi || !macaddr)
return NULL;
key = i40e_addr_to_hkey(macaddr);
hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
if ((ether_addr_equal(macaddr, f->macaddr)) &&
(vlan == f->vlan))
return f;
}
return NULL;
}
/**
* i40e_find_mac - Find a mac addr in the macvlan filters list
* @vsi: the VSI to be searched
* @macaddr: the MAC address we are searching for
*
* Returns the first filter with the provided MAC address or NULL if
* MAC address was not found
**/
struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
{
struct i40e_mac_filter *f;
u64 key;
if (!vsi || !macaddr)
return NULL;
key = i40e_addr_to_hkey(macaddr);
hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
if ((ether_addr_equal(macaddr, f->macaddr)))
return f;
}
return NULL;
}
/**
* i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
* @vsi: the VSI to be searched
*
* Returns true if VSI is in vlan mode or false otherwise
**/
bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
{
/* If we have a PVID, always operate in VLAN mode */
if (vsi->info.pvid)
return true;
/* We need to operate in VLAN mode whenever we have any filters with
* a VLAN other than I40E_VLAN_ALL. We could check the table each
* time, incurring search cost repeatedly. However, we can notice two
* things:
*
* 1) the only place where we can gain a VLAN filter is in
* i40e_add_filter.
*
* 2) the only place where filters are actually removed is in
* i40e_sync_filters_subtask.
*
* Thus, we can simply use a boolean value, has_vlan_filters which we
* will set to true when we add a VLAN filter in i40e_add_filter. Then
* we have to perform the full search after deleting filters in
* i40e_sync_filters_subtask, but we already have to search
* filters here and can perform the check at the same time. This
* results in avoiding embedding a loop for VLAN mode inside another
* loop over all the filters, and should maintain correctness as noted
* above.
*/
return vsi->has_vlan_filter;
}
/**
* i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
* @vsi: the VSI to configure
* @tmp_add_list: list of filters ready to be added
* @tmp_del_list: list of filters ready to be deleted
* @vlan_filters: the number of active VLAN filters
*
* Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
* behave as expected. If we have any active VLAN filters remaining or about
* to be added then we need to update non-VLAN filters to be marked as VLAN=0
* so that they only match against untagged traffic. If we no longer have any
* active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
* so that they match against both tagged and untagged traffic. In this way,
* we ensure that we correctly receive the desired traffic. This ensures that
* when we have an active VLAN we will receive only untagged traffic and
* traffic matching active VLANs. If we have no active VLANs then we will
* operate in non-VLAN mode and receive all traffic, tagged or untagged.
*
* Finally, in a similar fashion, this function also corrects filters when
* there is an active PVID assigned to this VSI.
*
* In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
*
* This function is only expected to be called from within
* i40e_sync_vsi_filters.
*
* NOTE: This function expects to be called while under the
* mac_filter_hash_lock
*/
static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
struct hlist_head *tmp_add_list,
struct hlist_head *tmp_del_list,
int vlan_filters)
{
s16 pvid = le16_to_cpu(vsi->info.pvid);
struct i40e_mac_filter *f, *add_head;
struct i40e_new_mac_filter *new;
struct hlist_node *h;
int bkt, new_vlan;
/* To determine if a particular filter needs to be replaced we
* have the three following conditions:
*
* a) if we have a PVID assigned, then all filters which are
* not marked as VLAN=PVID must be replaced with filters that
* are.
* b) otherwise, if we have any active VLANS, all filters
* which are marked as VLAN=-1 must be replaced with
* filters marked as VLAN=0
* c) finally, if we do not have any active VLANS, all filters
* which are marked as VLAN=0 must be replaced with filters
* marked as VLAN=-1
*/
/* Update the filters about to be added in place */
hlist_for_each_entry(new, tmp_add_list, hlist) {
if (pvid && new->f->vlan != pvid)
new->f->vlan = pvid;
else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
new->f->vlan = 0;
else if (!vlan_filters && new->f->vlan == 0)
new->f->vlan = I40E_VLAN_ANY;
}
/* Update the remaining active filters */
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
/* Combine the checks for whether a filter needs to be changed
* and then determine the new VLAN inside the if block, in
* order to avoid duplicating code for adding the new filter
* then deleting the old filter.
*/
if ((pvid && f->vlan != pvid) ||
(vlan_filters && f->vlan == I40E_VLAN_ANY) ||
(!vlan_filters && f->vlan == 0)) {
/* Determine the new vlan we will be adding */
if (pvid)
new_vlan = pvid;
else if (vlan_filters)
new_vlan = 0;
else
new_vlan = I40E_VLAN_ANY;
/* Create the new filter */
add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
if (!add_head)
return -ENOMEM;
/* Create a temporary i40e_new_mac_filter */
new = kzalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
return -ENOMEM;
new->f = add_head;
new->state = add_head->state;
/* Add the new filter to the tmp list */
hlist_add_head(&new->hlist, tmp_add_list);
/* Put the original filter into the delete list */
f->state = I40E_FILTER_REMOVE;
hash_del(&f->hlist);
hlist_add_head(&f->hlist, tmp_del_list);
}
}
vsi->has_vlan_filter = !!vlan_filters;
return 0;
}
/**
* i40e_get_vf_new_vlan - Get new vlan id on a vf
* @vsi: the vsi to configure
* @new_mac: new mac filter to be added
* @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL
* @vlan_filters: the number of active VLAN filters
* @trusted: flag if the VF is trusted
*
* Get new VLAN id based on current VLAN filters, trust, PVID
* and vf-vlan-prune-disable flag.
*
* Returns the value of the new vlan filter or
* the old value if no new filter is needed.
*/
static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi,
struct i40e_new_mac_filter *new_mac,
struct i40e_mac_filter *f,
int vlan_filters,
bool trusted)
{
s16 pvid = le16_to_cpu(vsi->info.pvid);
struct i40e_pf *pf = vsi->back;
bool is_any;
if (new_mac)
f = new_mac->f;
if (pvid && f->vlan != pvid)
return pvid;
is_any = (trusted ||
!test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags));
if ((vlan_filters && f->vlan == I40E_VLAN_ANY) ||
(!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) ||
(is_any && !vlan_filters && f->vlan == 0)) {
if (is_any)
return I40E_VLAN_ANY;
else
return 0;
}
return f->vlan;
}
/**
* i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary
* @vsi: the vsi to configure
* @tmp_add_list: list of filters ready to be added
* @tmp_del_list: list of filters ready to be deleted
* @vlan_filters: the number of active VLAN filters
* @trusted: flag if the VF is trusted
*
* Correct VF VLAN filters based on current VLAN filters, trust, PVID
* and vf-vlan-prune-disable flag.
*
* In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
*
* This function is only expected to be called from within
* i40e_sync_vsi_filters.
*
* NOTE: This function expects to be called while under the
* mac_filter_hash_lock
*/
static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi,
struct hlist_head *tmp_add_list,
struct hlist_head *tmp_del_list,
int vlan_filters,
bool trusted)
{
struct i40e_mac_filter *f, *add_head;
struct i40e_new_mac_filter *new_mac;
struct hlist_node *h;
int bkt, new_vlan;
hlist_for_each_entry(new_mac, tmp_add_list, hlist) {
new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL,
vlan_filters, trusted);
}
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters,
trusted);
if (new_vlan != f->vlan) {
add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
if (!add_head)
return -ENOMEM;
/* Create a temporary i40e_new_mac_filter */
new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC);
if (!new_mac)
return -ENOMEM;
new_mac->f = add_head;
new_mac->state = add_head->state;
/* Add the new filter to the tmp list */
hlist_add_head(&new_mac->hlist, tmp_add_list);
/* Put the original filter into the delete list */
f->state = I40E_FILTER_REMOVE;
hash_del(&f->hlist);
hlist_add_head(&f->hlist, tmp_del_list);
}
}
vsi->has_vlan_filter = !!vlan_filters;
return 0;
}
/**
* i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
* @vsi: the PF Main VSI - inappropriate for any other VSI
* @macaddr: the MAC address
*
* Remove whatever filter the firmware set up so the driver can manage
* its own filtering intelligently.
**/
static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
{
struct i40e_aqc_remove_macvlan_element_data element;
struct i40e_pf *pf = vsi->back;
/* Only appropriate for the PF main VSI */
if (vsi->type != I40E_VSI_MAIN)
return;
memset(&element, 0, sizeof(element));
ether_addr_copy(element.mac_addr, macaddr);
element.vlan_tag = 0;
/* Ignore error returns, some firmware does it this way... */
element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
memset(&element, 0, sizeof(element));
ether_addr_copy(element.mac_addr, macaddr);
element.vlan_tag = 0;
/* ...and some firmware does it this way. */
element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
}
/**
* i40e_add_filter - Add a mac/vlan filter to the VSI
* @vsi: the VSI to be searched
* @macaddr: the MAC address
* @vlan: the vlan
*
* Returns ptr to the filter object or NULL when no memory available.
*
* NOTE: This function is expected to be called with mac_filter_hash_lock
* being held.
**/
struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
const u8 *macaddr, s16 vlan)
{
struct i40e_mac_filter *f;
u64 key;
if (!vsi || !macaddr)
return NULL;
f = i40e_find_filter(vsi, macaddr, vlan);
if (!f) {
f = kzalloc(sizeof(*f), GFP_ATOMIC);
if (!f)
return NULL;
/* Update the boolean indicating if we need to function in
* VLAN mode.
*/
if (vlan >= 0)
vsi->has_vlan_filter = true;
ether_addr_copy(f->macaddr, macaddr);
f->vlan = vlan;
f->state = I40E_FILTER_NEW;
INIT_HLIST_NODE(&f->hlist);
key = i40e_addr_to_hkey(macaddr);
hash_add(vsi->mac_filter_hash, &f->hlist, key);
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
}
/* If we're asked to add a filter that has been marked for removal, it
* is safe to simply restore it to active state. __i40e_del_filter
* will have simply deleted any filters which were previously marked
* NEW or FAILED, so if it is currently marked REMOVE it must have
* previously been ACTIVE. Since we haven't yet run the sync filters
* task, just restore this filter to the ACTIVE state so that the
* sync task leaves it in place
*/
if (f->state == I40E_FILTER_REMOVE)
f->state = I40E_FILTER_ACTIVE;
return f;
}
/**
* __i40e_del_filter - Remove a specific filter from the VSI
* @vsi: VSI to remove from
* @f: the filter to remove from the list
*
* This function should be called instead of i40e_del_filter only if you know
* the exact filter you will remove already, such as via i40e_find_filter or
* i40e_find_mac.
*
* NOTE: This function is expected to be called with mac_filter_hash_lock
* being held.
* ANOTHER NOTE: This function MUST be called from within the context of
* the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
* instead of list_for_each_entry().
**/
void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
{
if (!f)
return;
/* If the filter was never added to firmware then we can just delete it
* directly and we don't want to set the status to remove or else an
* admin queue command will unnecessarily fire.
*/
if ((f->state == I40E_FILTER_FAILED) ||
(f->state == I40E_FILTER_NEW)) {
hash_del(&f->hlist);
kfree(f);
} else {
f->state = I40E_FILTER_REMOVE;
}
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
}
/**
* i40e_del_filter - Remove a MAC/VLAN filter from the VSI
* @vsi: the VSI to be searched
* @macaddr: the MAC address
* @vlan: the VLAN
*
* NOTE: This function is expected to be called with mac_filter_hash_lock
* being held.
* ANOTHER NOTE: This function MUST be called from within the context of
* the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
* instead of list_for_each_entry().
**/
void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan)
{
struct i40e_mac_filter *f;
if (!vsi || !macaddr)
return;
f = i40e_find_filter(vsi, macaddr, vlan);
__i40e_del_filter(vsi, f);
}
/**
* i40e_add_mac_filter - Add a MAC filter for all active VLANs
* @vsi: the VSI to be searched
* @macaddr: the mac address to be filtered
*
* If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
* go through all the macvlan filters and add a macvlan filter for each
* unique vlan that already exists. If a PVID has been assigned, instead only
* add the macaddr to that VLAN.
*
* Returns last filter added on success, else NULL
**/
struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
const u8 *macaddr)
{
struct i40e_mac_filter *f, *add = NULL;
struct hlist_node *h;
int bkt;
if (vsi->info.pvid)
return i40e_add_filter(vsi, macaddr,
le16_to_cpu(vsi->info.pvid));
if (!i40e_is_vsi_in_vlan(vsi))
return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
if (f->state == I40E_FILTER_REMOVE)
continue;
add = i40e_add_filter(vsi, macaddr, f->vlan);
if (!add)
return NULL;
}
return add;
}
/**
* i40e_del_mac_filter - Remove a MAC filter from all VLANs
* @vsi: the VSI to be searched
* @macaddr: the mac address to be removed
*
* Removes a given MAC address from a VSI regardless of what VLAN it has been
* associated with.
*
* Returns 0 for success, or error
**/
int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
{
struct i40e_mac_filter *f;
struct hlist_node *h;
bool found = false;
int bkt;
lockdep_assert_held(&vsi->mac_filter_hash_lock);
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
if (ether_addr_equal(macaddr, f->macaddr)) {
__i40e_del_filter(vsi, f);
found = true;
}
}
if (found)
return 0;
else
return -ENOENT;
}
/**
* i40e_set_mac - NDO callback to set mac address
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int i40e_set_mac(struct net_device *netdev, void *p)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (test_bit(__I40E_DOWN, pf->state) ||
test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
return -EADDRNOTAVAIL;
if (ether_addr_equal(hw->mac.addr, addr->sa_data))
netdev_info(netdev, "returning to hw mac address %pM\n",
hw->mac.addr);
else
netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
/* Copy the address first, so that we avoid a possible race with
* .set_rx_mode().
* - Remove old address from MAC filter
* - Copy new address
* - Add new address to MAC filter
*/
spin_lock_bh(&vsi->mac_filter_hash_lock);
i40e_del_mac_filter(vsi, netdev->dev_addr);
eth_hw_addr_set(netdev, addr->sa_data);
i40e_add_mac_filter(vsi, netdev->dev_addr);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
if (vsi->type == I40E_VSI_MAIN) {
int ret;
ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL,
addr->sa_data, NULL);
if (ret)
netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
}
/* schedule our worker thread which will take care of
* applying the new filter changes
*/
i40e_service_event_schedule(pf);
return 0;
}
/**
* i40e_config_rss_aq - Prepare for RSS using AQ commands
* @vsi: vsi structure
* @seed: RSS hash seed
* @lut: pointer to lookup table of lut_size
* @lut_size: size of the lookup table
**/
static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int ret = 0;
if (seed) {
struct i40e_aqc_get_set_rss_key_data *seed_dw =
(struct i40e_aqc_get_set_rss_key_data *)seed;
ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot set RSS key, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
}
if (lut) {
bool pf_lut = vsi->type == I40E_VSI_MAIN;
ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot set RSS lut, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
}
return ret;
}
/**
* i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
* @vsi: VSI structure
**/
static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
u8 seed[I40E_HKEY_ARRAY_SIZE];
u8 *lut;
int ret;
if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
return 0;
if (!vsi->rss_size)
vsi->rss_size = min_t(int, pf->alloc_rss_size,
vsi->num_queue_pairs);
if (!vsi->rss_size)
return -EINVAL;
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
/* Use the user configured hash keys and lookup table if there is one,
* otherwise use default
*/
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
if (vsi->rss_hkey_user)
memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
else
netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
kfree(lut);
return ret;
}
/**
* i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config
* @vsi: the VSI being configured,
* @ctxt: VSI context structure
* @enabled_tc: number of traffic classes to enable
*
* Prepares VSI tc_config to have queue configurations based on MQPRIO options.
**/
static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi,
struct i40e_vsi_context *ctxt,
u8 enabled_tc)
{
u16 qcount = 0, max_qcount, qmap, sections = 0;
int i, override_q, pow, num_qps, ret;
u8 netdev_tc = 0, offset = 0;
if (vsi->type != I40E_VSI_MAIN)
return -EINVAL;
sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc;
vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
num_qps = vsi->mqprio_qopt.qopt.count[0];
/* find the next higher power-of-2 of num queue pairs */
pow = ilog2(num_qps);
if (!is_power_of_2(num_qps))
pow++;
qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
/* Setup queue offset/count for all TCs for given VSI */
max_qcount = vsi->mqprio_qopt.qopt.count[0];
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
/* See if the given TC is enabled for the given VSI */
if (vsi->tc_config.enabled_tc & BIT(i)) {
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount = vsi->mqprio_qopt.qopt.count[i];
if (qcount > max_qcount)
max_qcount = qcount;
vsi->tc_config.tc_info[i].qoffset = offset;
vsi->tc_config.tc_info[i].qcount = qcount;
vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
} else {
/* TC is not enabled so set the offset to
* default queue and allocate one queue
* for the given TC.
*/
vsi->tc_config.tc_info[i].qoffset = 0;
vsi->tc_config.tc_info[i].qcount = 1;
vsi->tc_config.tc_info[i].netdev_tc = 0;
}
}
/* Set actual Tx/Rx queue pairs */
vsi->num_queue_pairs = offset + qcount;
/* Setup queue TC[0].qmap for given VSI context */
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
ctxt->info.valid_sections |= cpu_to_le16(sections);
/* Reconfigure RSS for main VSI with max queue count */
vsi->rss_size = max_qcount;
ret = i40e_vsi_config_rss(vsi);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Failed to reconfig rss for num_queues (%u)\n",
max_qcount);
return ret;
}
vsi->reconfig_rss = true;
dev_dbg(&vsi->back->pdev->dev,
"Reconfigured rss with num_queues (%u)\n", max_qcount);
/* Find queue count available for channel VSIs and starting offset
* for channel VSIs
*/
override_q = vsi->mqprio_qopt.qopt.count[0];
if (override_q && override_q < vsi->num_queue_pairs) {
vsi->cnt_q_avail = vsi->num_queue_pairs - override_q;
vsi->next_base_queue = override_q;
}
return 0;
}
/**
* i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
* @vsi: the VSI being setup
* @ctxt: VSI context structure
* @enabled_tc: Enabled TCs bitmap
* @is_add: True if called before Add VSI
*
* Setup VSI queue mapping for enabled traffic classes.
**/
static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
struct i40e_vsi_context *ctxt,
u8 enabled_tc,
bool is_add)
{
struct i40e_pf *pf = vsi->back;
u16 num_tc_qps = 0;
u16 sections = 0;
u8 netdev_tc = 0;
u16 numtc = 1;
u16 qcount;
u8 offset;
u16 qmap;
int i;
sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
offset = 0;
/* zero out queue mapping, it will get updated on the end of the function */
memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping));
if (vsi->type == I40E_VSI_MAIN) {
/* This code helps add more queue to the VSI if we have
* more cores than RSS can support, the higher cores will
* be served by ATR or other filters. Furthermore, the
* non-zero req_queue_pairs says that user requested a new
* queue count via ethtool's set_channels, so use this
* value for queues distribution across traffic classes
* We need at least one queue pair for the interface
* to be usable as we see in else statement.
*/
if (vsi->req_queue_pairs > 0)
vsi->num_queue_pairs = vsi->req_queue_pairs;
else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
vsi->num_queue_pairs = pf->num_lan_msix;
else
vsi->num_queue_pairs = 1;
}
/* Number of queues per enabled TC */
if (vsi->type == I40E_VSI_MAIN ||
(vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0))
num_tc_qps = vsi->num_queue_pairs;
else
num_tc_qps = vsi->alloc_queue_pairs;
if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
/* Find numtc from enabled TC bitmap */
for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tc & BIT(i)) /* TC is enabled */
numtc++;
}
if (!numtc) {
dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
numtc = 1;
}
num_tc_qps = num_tc_qps / numtc;
num_tc_qps = min_t(int, num_tc_qps,
i40e_pf_get_max_q_per_tc(pf));
}
vsi->tc_config.numtc = numtc;
vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
/* Do not allow use more TC queue pairs than MSI-X vectors exist */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix);
/* Setup queue offset/count for all TCs for given VSI */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
/* See if the given TC is enabled for the given VSI */
if (vsi->tc_config.enabled_tc & BIT(i)) {
/* TC is enabled */
int pow, num_qps;
switch (vsi->type) {
case I40E_VSI_MAIN:
if ((!test_bit(I40E_FLAG_FD_SB_ENA,
pf->flags) &&
!test_bit(I40E_FLAG_FD_ATR_ENA,
pf->flags)) ||
vsi->tc_config.enabled_tc != 1) {
qcount = min_t(int, pf->alloc_rss_size,
num_tc_qps);
break;
}
fallthrough;
case I40E_VSI_FDIR:
case I40E_VSI_SRIOV:
case I40E_VSI_VMDQ2:
default:
qcount = num_tc_qps;
WARN_ON(i != 0);
break;
}
vsi->tc_config.tc_info[i].qoffset = offset;
vsi->tc_config.tc_info[i].qcount = qcount;
/* find the next higher power-of-2 of num queue pairs */
num_qps = qcount;
pow = 0;
while (num_qps && (BIT_ULL(pow) < qcount)) {
pow++;
num_qps >>= 1;
}
vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
qmap =
(offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
offset += qcount;
} else {
/* TC is not enabled so set the offset to
* default queue and allocate one queue
* for the given TC.
*/
vsi->tc_config.tc_info[i].qoffset = 0;
vsi->tc_config.tc_info[i].qcount = 1;
vsi->tc_config.tc_info[i].netdev_tc = 0;
qmap = 0;
}
ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
}
/* Do not change previously set num_queue_pairs for PFs and VFs*/
if ((vsi->type == I40E_VSI_MAIN && numtc != 1) ||
(vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) ||
(vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV))
vsi->num_queue_pairs = offset;
/* Scheduler section valid can only be set for ADD VSI */
if (is_add) {
sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
ctxt->info.up_enable_bits = enabled_tc;
}
if (vsi->type == I40E_VSI_SRIOV) {
ctxt->info.mapping_flags |=
cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
for (i = 0; i < vsi->num_queue_pairs; i++)
ctxt->info.queue_mapping[i] =
cpu_to_le16(vsi->base_queue + i);
} else {
ctxt->info.mapping_flags |=
cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
}
ctxt->info.valid_sections |= cpu_to_le16(sections);
}
/**
* i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be added. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
if (i40e_add_mac_filter(vsi, addr))
return 0;
else
return -ENOMEM;
}
/**
* i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
/* Under some circumstances, we might receive a request to delete
* our own device address from our uc list. Because we store the
* device address in the VSI's MAC/VLAN filter list, we need to ignore
* such requests and not delete our device address from this list.
*/
if (ether_addr_equal(addr, netdev->dev_addr))
return 0;
i40e_del_mac_filter(vsi, addr);
return 0;
}
/**
* i40e_set_rx_mode - NDO callback to set the netdev filters
* @netdev: network interface device structure
**/
static void i40e_set_rx_mode(struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
spin_lock_bh(&vsi->mac_filter_hash_lock);
__dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
__dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
/* check for other flag changes */
if (vsi->current_netdev_flags != vsi->netdev->flags) {
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
}
}
/**
* i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
* @vsi: Pointer to VSI struct
* @from: Pointer to list which contains MAC filter entries - changes to
* those entries needs to be undone.
*
* MAC filter entries from this list were slated for deletion.
**/
static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
struct hlist_head *from)
{
struct i40e_mac_filter *f;
struct hlist_node *h;
hlist_for_each_entry_safe(f, h, from, hlist) {
u64 key = i40e_addr_to_hkey(f->macaddr);
/* Move the element back into MAC filter list*/
hlist_del(&f->hlist);
hash_add(vsi->mac_filter_hash, &f->hlist, key);
}
}
/**
* i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
* @vsi: Pointer to vsi struct
* @from: Pointer to list which contains MAC filter entries - changes to
* those entries needs to be undone.
*
* MAC filter entries from this list were slated for addition.
**/
static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
struct hlist_head *from)
{
struct i40e_new_mac_filter *new;
struct hlist_node *h;
hlist_for_each_entry_safe(new, h, from, hlist) {
/* We can simply free the wrapper structure */
hlist_del(&new->hlist);
netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
kfree(new);
}
}
/**
* i40e_next_filter - Get the next non-broadcast filter from a list
* @next: pointer to filter in list
*
* Returns the next non-broadcast filter in the list. Required so that we
* ignore broadcast filters within the list, since these are not handled via
* the normal firmware update path.
*/
static
struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
{
hlist_for_each_entry_continue(next, hlist) {
if (!is_broadcast_ether_addr(next->f->macaddr))
return next;
}
return NULL;
}
/**
* i40e_update_filter_state - Update filter state based on return data
* from firmware
* @count: Number of filters added
* @add_list: return data from fw
* @add_head: pointer to first filter in current batch
*
* MAC filter entries from list were slated to be added to device. Returns
* number of successful filters. Note that 0 does NOT mean success!
**/
static int
i40e_update_filter_state(int count,
struct i40e_aqc_add_macvlan_element_data *add_list,
struct i40e_new_mac_filter *add_head)
{
int retval = 0;
int i;
for (i = 0; i < count; i++) {
/* Always check status of each filter. We don't need to check
* the firmware return status because we pre-set the filter
* status to I40E_AQC_MM_ERR_NO_RES when sending the filter
* request to the adminq. Thus, if it no longer matches then
* we know the filter is active.
*/
if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
add_head->state = I40E_FILTER_FAILED;
} else {
add_head->state = I40E_FILTER_ACTIVE;
retval++;
}
add_head = i40e_next_filter(add_head);
if (!add_head)
break;
}
return retval;
}
/**
* i40e_aqc_del_filters - Request firmware to delete a set of filters
* @vsi: ptr to the VSI
* @vsi_name: name to display in messages
* @list: the list of filters to send to firmware
* @num_del: the number of filters to delete
* @retval: Set to -EIO on failure to delete
*
* Send a request to firmware via AdminQ to delete a set of filters. Uses
* *retval instead of a return value so that success does not force ret_val to
* be set to 0. This ensures that a sequence of calls to this function
* preserve the previous value of *retval on successful delete.
*/
static
void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
struct i40e_aqc_remove_macvlan_element_data *list,
int num_del, int *retval)
{
struct i40e_hw *hw = &vsi->back->hw;
enum i40e_admin_queue_err aq_status;
int aq_ret;
aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL,
&aq_status);
/* Explicitly ignore and do not report when firmware returns ENOENT */
if (aq_ret && !(aq_status == I40E_AQ_RC_ENOENT)) {
*retval = -EIO;
dev_info(&vsi->back->pdev->dev,
"ignoring delete macvlan error on %s, err %pe, aq_err %s\n",
vsi_name, ERR_PTR(aq_ret),
i40e_aq_str(hw, aq_status));
}
}
/**
* i40e_aqc_add_filters - Request firmware to add a set of filters
* @vsi: ptr to the VSI
* @vsi_name: name to display in messages
* @list: the list of filters to send to firmware
* @add_head: Position in the add hlist
* @num_add: the number of filters to add
*
* Send a request to firmware via AdminQ to add a chunk of filters. Will set
* __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of
* space for more filters.
*/
static
void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
struct i40e_aqc_add_macvlan_element_data *list,
struct i40e_new_mac_filter *add_head,
int num_add)
{
struct i40e_hw *hw = &vsi->back->hw;
enum i40e_admin_queue_err aq_status;
int fcnt;
i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status);
fcnt = i40e_update_filter_state(num_add, list, add_head);
if (fcnt != num_add) {
if (vsi->type == I40E_VSI_MAIN) {
set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
dev_warn(&vsi->back->pdev->dev,
"Error %s adding RX filters on %s, promiscuous mode forced on\n",
i40e_aq_str(hw, aq_status), vsi_name);
} else if (vsi->type == I40E_VSI_SRIOV ||
vsi->type == I40E_VSI_VMDQ1 ||
vsi->type == I40E_VSI_VMDQ2) {
dev_warn(&vsi->back->pdev->dev,
"Error %s adding RX filters on %s, please set promiscuous on manually for %s\n",
i40e_aq_str(hw, aq_status), vsi_name,
vsi_name);
} else {
dev_warn(&vsi->back->pdev->dev,
"Error %s adding RX filters on %s, incorrect VSI type: %i.\n",
i40e_aq_str(hw, aq_status), vsi_name,
vsi->type);
}
}
}
/**
* i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
* @vsi: pointer to the VSI
* @vsi_name: the VSI name
* @f: filter data
*
* This function sets or clears the promiscuous broadcast flags for VLAN
* filters in order to properly receive broadcast frames. Assumes that only
* broadcast filters are passed.
*
* Returns status indicating success or failure;
**/
static int
i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
struct i40e_mac_filter *f)
{
bool enable = f->state == I40E_FILTER_NEW;
struct i40e_hw *hw = &vsi->back->hw;
int aq_ret;
if (f->vlan == I40E_VLAN_ANY) {
aq_ret = i40e_aq_set_vsi_broadcast(hw,
vsi->seid,
enable,
NULL);
} else {
aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
vsi->seid,
enable,
f->vlan,
NULL);
}
if (aq_ret) {
set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
dev_warn(&vsi->back->pdev->dev,
"Error %s, forcing overflow promiscuous on %s\n",
i40e_aq_str(hw, hw->aq.asq_last_status),
vsi_name);
}
return aq_ret;
}
/**
* i40e_set_promiscuous - set promiscuous mode
* @pf: board private structure
* @promisc: promisc on or off
*
* There are different ways of setting promiscuous mode on a PF depending on
* what state/environment we're in. This identifies and sets it appropriately.
* Returns 0 on success.
**/
static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
struct i40e_hw *hw = &pf->hw;
int aq_ret;
if (vsi->type == I40E_VSI_MAIN &&
pf->lan_veb != I40E_NO_VEB &&
!test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
/* set defport ON for Main VSI instead of true promisc
* this way we will get all unicast/multicast and VLAN
* promisc behavior but will not get VF or VMDq traffic
* replicated on the Main VSI.
*/
if (promisc)
aq_ret = i40e_aq_set_default_vsi(hw,
vsi->seid,
NULL);
else
aq_ret = i40e_aq_clear_default_vsi(hw,
vsi->seid,
NULL);
if (aq_ret) {
dev_info(&pf->pdev->dev,
"Set default VSI failed, err %pe, aq_err %s\n",
ERR_PTR(aq_ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
}
} else {
aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
hw,
vsi->seid,
promisc, NULL,
true);
if (aq_ret) {
dev_info(&pf->pdev->dev,
"set unicast promisc failed, err %pe, aq_err %s\n",
ERR_PTR(aq_ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
}
aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
hw,
vsi->seid,
promisc, NULL);
if (aq_ret) {
dev_info(&pf->pdev->dev,
"set multicast promisc failed, err %pe, aq_err %s\n",
ERR_PTR(aq_ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
}
}
if (!aq_ret)
pf->cur_promisc = promisc;
return aq_ret;
}
/**
* i40e_sync_vsi_filters - Update the VSI filter list to the HW
* @vsi: ptr to the VSI
*
* Push any outstanding VSI filter changes through the AdminQ.
*
* Returns 0 or error value
**/
int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
{
struct hlist_head tmp_add_list, tmp_del_list;
struct i40e_mac_filter *f;
struct i40e_new_mac_filter *new, *add_head = NULL;
struct i40e_hw *hw = &vsi->back->hw;
bool old_overflow, new_overflow;
unsigned int failed_filters = 0;
unsigned int vlan_filters = 0;
char vsi_name[16] = "PF";
int filter_list_len = 0;
u32 changed_flags = 0;
struct hlist_node *h;
struct i40e_pf *pf;
int num_add = 0;
int num_del = 0;
int aq_ret = 0;
int retval = 0;
u16 cmd_flags;
int list_size;
int bkt;
/* empty array typed pointers, kcalloc later */
struct i40e_aqc_add_macvlan_element_data *add_list;
struct i40e_aqc_remove_macvlan_element_data *del_list;
while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
usleep_range(1000, 2000);
pf = vsi->back;
old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
if (vsi->netdev) {
changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
vsi->current_netdev_flags = vsi->netdev->flags;
}
INIT_HLIST_HEAD(&tmp_add_list);
INIT_HLIST_HEAD(&tmp_del_list);
if (vsi->type == I40E_VSI_SRIOV)
snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
else if (vsi->type != I40E_VSI_MAIN)
snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
spin_lock_bh(&vsi->mac_filter_hash_lock);
/* Create a list of filters to delete. */
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
if (f->state == I40E_FILTER_REMOVE) {
/* Move the element into temporary del_list */
hash_del(&f->hlist);
hlist_add_head(&f->hlist, &tmp_del_list);
/* Avoid counting removed filters */
continue;
}
if (f->state == I40E_FILTER_NEW) {
/* Create a temporary i40e_new_mac_filter */
new = kzalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
goto err_no_memory_locked;
/* Store pointer to the real filter */
new->f = f;
new->state = f->state;
/* Add it to the hash list */
hlist_add_head(&new->hlist, &tmp_add_list);
}
/* Count the number of active (current and new) VLAN
* filters we have now. Does not count filters which
* are marked for deletion.
*/
if (f->vlan > 0)
vlan_filters++;
}
if (vsi->type != I40E_VSI_SRIOV)
retval = i40e_correct_mac_vlan_filters
(vsi, &tmp_add_list, &tmp_del_list,
vlan_filters);
else if (pf->vf)
retval = i40e_correct_vf_mac_vlan_filters
(vsi, &tmp_add_list, &tmp_del_list,
vlan_filters, pf->vf[vsi->vf_id].trusted);
hlist_for_each_entry(new, &tmp_add_list, hlist)
netdev_hw_addr_refcnt(new->f, vsi->netdev, 1);
if (retval)
goto err_no_memory_locked;
spin_unlock_bh(&vsi->mac_filter_hash_lock);
}
/* Now process 'del_list' outside the lock */
if (!hlist_empty(&tmp_del_list)) {
filter_list_len = hw->aq.asq_buf_size /
sizeof(struct i40e_aqc_remove_macvlan_element_data);
list_size = filter_list_len *
sizeof(struct i40e_aqc_remove_macvlan_element_data);
del_list = kzalloc(list_size, GFP_ATOMIC);
if (!del_list)
goto err_no_memory;
hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
cmd_flags = 0;
/* handle broadcast filters by updating the broadcast
* promiscuous flag and release filter list.
*/
if (is_broadcast_ether_addr(f->macaddr)) {
i40e_aqc_broadcast_filter(vsi, vsi_name, f);
hlist_del(&f->hlist);
kfree(f);
continue;
}
/* add to delete list */
ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
if (f->vlan == I40E_VLAN_ANY) {
del_list[num_del].vlan_tag = 0;
cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
} else {
del_list[num_del].vlan_tag =
cpu_to_le16((u16)(f->vlan));
}
cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
del_list[num_del].flags = cmd_flags;
num_del++;
/* flush a full buffer */
if (num_del == filter_list_len) {
i40e_aqc_del_filters(vsi, vsi_name, del_list,
num_del, &retval);
memset(del_list, 0, list_size);
num_del = 0;
}
/* Release memory for MAC filter entries which were
* synced up with HW.
*/
hlist_del(&f->hlist);
kfree(f);
}
if (num_del) {
i40e_aqc_del_filters(vsi, vsi_name, del_list,
num_del, &retval);
}
kfree(del_list);
del_list = NULL;
}
if (!hlist_empty(&tmp_add_list)) {
/* Do all the adds now. */
filter_list_len = hw->aq.asq_buf_size /
sizeof(struct i40e_aqc_add_macvlan_element_data);
list_size = filter_list_len *
sizeof(struct i40e_aqc_add_macvlan_element_data);
add_list = kzalloc(list_size, GFP_ATOMIC);
if (!add_list)
goto err_no_memory;
num_add = 0;
hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
/* handle broadcast filters by updating the broadcast
* promiscuous flag instead of adding a MAC filter.
*/
if (is_broadcast_ether_addr(new->f->macaddr)) {
if (i40e_aqc_broadcast_filter(vsi, vsi_name,
new->f))
new->state = I40E_FILTER_FAILED;
else
new->state = I40E_FILTER_ACTIVE;
continue;
}
/* add to add array */
if (num_add == 0)
add_head = new;
cmd_flags = 0;
ether_addr_copy(add_list[num_add].mac_addr,
new->f->macaddr);
if (new->f->vlan == I40E_VLAN_ANY) {
add_list[num_add].vlan_tag = 0;
cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
} else {
add_list[num_add].vlan_tag =
cpu_to_le16((u16)(new->f->vlan));
}
add_list[num_add].queue_number = 0;
/* set invalid match method for later detection */
add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
add_list[num_add].flags = cpu_to_le16(cmd_flags);
num_add++;
/* flush a full buffer */
if (num_add == filter_list_len) {
i40e_aqc_add_filters(vsi, vsi_name, add_list,
add_head, num_add);
memset(add_list, 0, list_size);
num_add = 0;
}
}
if (num_add) {
i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
num_add);
}
/* Now move all of the filters from the temp add list back to
* the VSI's list.
*/
spin_lock_bh(&vsi->mac_filter_hash_lock);
hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
/* Only update the state if we're still NEW */
if (new->f->state == I40E_FILTER_NEW)
new->f->state = new->state;
hlist_del(&new->hlist);
netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
kfree(new);
}
spin_unlock_bh(&vsi->mac_filter_hash_lock);
kfree(add_list);
add_list = NULL;
}
/* Determine the number of active and failed filters. */
spin_lock_bh(&vsi->mac_filter_hash_lock);
vsi->active_filters = 0;
hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
if (f->state == I40E_FILTER_ACTIVE)
vsi->active_filters++;
else if (f->state == I40E_FILTER_FAILED)
failed_filters++;
}
spin_unlock_bh(&vsi->mac_filter_hash_lock);
/* Check if we are able to exit overflow promiscuous mode. We can
* safely exit if we didn't just enter, we no longer have any failed
* filters, and we have reduced filters below the threshold value.
*/
if (old_overflow && !failed_filters &&
vsi->active_filters < vsi->promisc_threshold) {
dev_info(&pf->pdev->dev,
"filter logjam cleared on %s, leaving overflow promiscuous mode\n",
vsi_name);
clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
vsi->promisc_threshold = 0;
}
/* if the VF is not trusted do not do promisc */
if (vsi->type == I40E_VSI_SRIOV && pf->vf &&
!pf->vf[vsi->vf_id].trusted) {
clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
goto out;
}
new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
/* If we are entering overflow promiscuous, we need to calculate a new
* threshold for when we are safe to exit
*/
if (!old_overflow && new_overflow)
vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
/* check for changes in promiscuous modes */
if (changed_flags & IFF_ALLMULTI) {
bool cur_multipromisc;
cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
vsi->seid,
cur_multipromisc,
NULL);
if (aq_ret) {
retval = i40e_aq_rc_to_posix(aq_ret,
hw->aq.asq_last_status);
dev_info(&pf->pdev->dev,
"set multi promisc failed on %s, err %pe aq_err %s\n",
vsi_name,
ERR_PTR(aq_ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
} else {
dev_info(&pf->pdev->dev, "%s allmulti mode.\n",
cur_multipromisc ? "entering" : "leaving");
}
}
if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) {
bool cur_promisc;
cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
new_overflow);
aq_ret = i40e_set_promiscuous(pf, cur_promisc);
if (aq_ret) {
retval = i40e_aq_rc_to_posix(aq_ret,
hw->aq.asq_last_status);
dev_info(&pf->pdev->dev,
"Setting promiscuous %s failed on %s, err %pe aq_err %s\n",
cur_promisc ? "on" : "off",
vsi_name,
ERR_PTR(aq_ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
}
}
out:
/* if something went wrong then set the changed flag so we try again */
if (retval)
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
return retval;
err_no_memory:
/* Restore elements on the temporary add and delete lists */
spin_lock_bh(&vsi->mac_filter_hash_lock);
err_no_memory_locked:
i40e_undo_del_filter_entries(vsi, &tmp_del_list);
i40e_undo_add_filter_entries(vsi, &tmp_add_list);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
return -ENOMEM;
}
/**
* i40e_sync_filters_subtask - Sync the VSI filter list with HW
* @pf: board private structure
**/
static void i40e_sync_filters_subtask(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int v;
if (!pf)
return;
if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state))
return;
if (test_bit(__I40E_VF_DISABLE, pf->state)) {
set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
return;
}
i40e_pf_for_each_vsi(pf, v, vsi) {
if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) &&
!test_bit(__I40E_VSI_RELEASING, vsi->state)) {
int ret = i40e_sync_vsi_filters(vsi);
if (ret) {
/* come back and try again later */
set_bit(__I40E_MACVLAN_SYNC_PENDING,
pf->state);
break;
}
}
}
}
/**
* i40e_calculate_vsi_rx_buf_len - Calculates buffer length
*
* @vsi: VSI to calculate rx_buf_len from
*/
static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi)
{
if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags))
return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048);
return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048;
}
/**
* i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI
* @vsi: the vsi
* @xdp_prog: XDP program
**/
static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi,
struct bpf_prog *xdp_prog)
{
u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
u16 chain_len;
if (xdp_prog && !xdp_prog->aux->xdp_has_frags)
chain_len = 1;
else
chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER);
}
/**
* i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
int frame_size;
frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) {
netdev_err(netdev, "Error changing mtu to %d, Max is %d\n",
new_mtu, frame_size - I40E_PACKET_HDR_PAD);
return -EINVAL;
}
netdev_dbg(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
i40e_vsi_reinit_locked(vsi);
set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
return 0;
}
/**
* i40e_ioctl - Access the hwtstamp interface
* @netdev: network interface device structure
* @ifr: interface request data
* @cmd: ioctl command
**/
int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_pf *pf = np->vsi->back;
switch (cmd) {
case SIOCGHWTSTAMP:
return i40e_ptp_get_ts_config(pf, ifr);
case SIOCSHWTSTAMP:
return i40e_ptp_set_ts_config(pf, ifr);
default:
return -EOPNOTSUPP;
}
}
/**
* i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
* @vsi: the vsi being adjusted
**/
void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
{
struct i40e_vsi_context ctxt;
int ret;
/* Don't modify stripping options if a port VLAN is active */
if (vsi->info.pvid)
return;
if ((vsi->info.valid_sections &
cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
return; /* already enabled */
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
ctxt.seid = vsi->seid;
ctxt.info = vsi->info;
ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"update vlan stripping failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&vsi->back->hw,
vsi->back->hw.aq.asq_last_status));
}
}
/**
* i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
* @vsi: the vsi being adjusted
**/
void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
{
struct i40e_vsi_context ctxt;
int ret;
/* Don't modify stripping options if a port VLAN is active */
if (vsi->info.pvid)
return;
if ((vsi->info.valid_sections &
cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
I40E_AQ_VSI_PVLAN_EMOD_MASK))
return; /* already disabled */
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
ctxt.seid = vsi->seid;
ctxt.info = vsi->info;
ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"update vlan stripping failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&vsi->back->hw,
vsi->back->hw.aq.asq_last_status));
}
}
/**
* i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
* @vsi: the vsi being configured
* @vid: vlan id to be added (0 = untagged only , -1 = any)
*
* This is a helper function for adding a new MAC/VLAN filter with the
* specified VLAN for each existing MAC address already in the hash table.
* This function does *not* perform any accounting to update filters based on
* VLAN mode.
*
* NOTE: this function expects to be called while under the
* mac_filter_hash_lock
**/
int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
{
struct i40e_mac_filter *f, *add_f;
struct hlist_node *h;
int bkt;
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
/* If we're asked to add a filter that has been marked for
* removal, it is safe to simply restore it to active state.
* __i40e_del_filter will have simply deleted any filters which
* were previously marked NEW or FAILED, so if it is currently
* marked REMOVE it must have previously been ACTIVE. Since we
* haven't yet run the sync filters task, just restore this
* filter to the ACTIVE state so that the sync task leaves it
* in place.
*/
if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) {
f->state = I40E_FILTER_ACTIVE;
continue;
} else if (f->state == I40E_FILTER_REMOVE) {
continue;
}
add_f = i40e_add_filter(vsi, f->macaddr, vid);
if (!add_f) {
dev_info(&vsi->back->pdev->dev,
"Could not add vlan filter %d for %pM\n",
vid, f->macaddr);
return -ENOMEM;
}
}
return 0;
}
/**
* i40e_vsi_add_vlan - Add VSI membership for given VLAN
* @vsi: the VSI being configured
* @vid: VLAN id to be added
**/
int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
{
int err;
if (vsi->info.pvid)
return -EINVAL;
/* The network stack will attempt to add VID=0, with the intention to
* receive priority tagged packets with a VLAN of 0. Our HW receives
* these packets by default when configured to receive untagged
* packets, so we don't need to add a filter for this case.
* Additionally, HW interprets adding a VID=0 filter as meaning to
* receive *only* tagged traffic and stops receiving untagged traffic.
* Thus, we do not want to actually add a filter for VID=0
*/
if (!vid)
return 0;
/* Locked once because all functions invoked below iterates list*/
spin_lock_bh(&vsi->mac_filter_hash_lock);
err = i40e_add_vlan_all_mac(vsi, vid);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
if (err)
return err;
/* schedule our worker thread which will take care of
* applying the new filter changes
*/
i40e_service_event_schedule(vsi->back);
return 0;
}
/**
* i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
* @vsi: the vsi being configured
* @vid: vlan id to be removed (0 = untagged only , -1 = any)
*
* This function should be used to remove all VLAN filters which match the
* given VID. It does not schedule the service event and does not take the
* mac_filter_hash_lock so it may be combined with other operations under
* a single invocation of the mac_filter_hash_lock.
*
* NOTE: this function expects to be called while under the
* mac_filter_hash_lock
*/
void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
{
struct i40e_mac_filter *f;
struct hlist_node *h;
int bkt;
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
if (f->vlan == vid)
__i40e_del_filter(vsi, f);
}
}
/**
* i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
* @vsi: the VSI being configured
* @vid: VLAN id to be removed
**/
void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
{
if (!vid || vsi->info.pvid)
return;
spin_lock_bh(&vsi->mac_filter_hash_lock);
i40e_rm_vlan_all_mac(vsi, vid);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
/* schedule our worker thread which will take care of
* applying the new filter changes
*/
i40e_service_event_schedule(vsi->back);
}
/**
* i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol value
* @vid: vlan id to be added
*
* net_device_ops implementation for adding vlan ids
**/
static int i40e_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
int ret = 0;
if (vid >= VLAN_N_VID)
return -EINVAL;
ret = i40e_vsi_add_vlan(vsi, vid);
if (!ret)
set_bit(vid, vsi->active_vlans);
return ret;
}
/**
* i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path
* @netdev: network interface to be adjusted
* @proto: unused protocol value
* @vid: vlan id to be added
**/
static void i40e_vlan_rx_add_vid_up(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
if (vid >= VLAN_N_VID)
return;
set_bit(vid, vsi->active_vlans);
}
/**
* i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
* @netdev: network interface to be adjusted
* @proto: unused protocol value
* @vid: vlan id to be removed
*
* net_device_ops implementation for removing vlan ids
**/
static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
/* return code is ignored as there is nothing a user
* can do about failure to remove and a log message was
* already printed from the other function
*/
i40e_vsi_kill_vlan(vsi, vid);
clear_bit(vid, vsi->active_vlans);
return 0;
}
/**
* i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
* @vsi: the vsi being brought back up
**/
static void i40e_restore_vlan(struct i40e_vsi *vsi)
{
u16 vid;
if (!vsi->netdev)
return;
if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
i40e_vlan_stripping_enable(vsi);
else
i40e_vlan_stripping_disable(vsi);
for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q),
vid);
}
/**
* i40e_vsi_add_pvid - Add pvid for the VSI
* @vsi: the vsi being adjusted
* @vid: the vlan id to set as a PVID
**/
int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
{
struct i40e_vsi_context ctxt;
int ret;
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.pvid = cpu_to_le16(vid);
vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
I40E_AQ_VSI_PVLAN_INSERT_PVID |
I40E_AQ_VSI_PVLAN_EMOD_STR;
ctxt.seid = vsi->seid;
ctxt.info = vsi->info;
ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"add pvid failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&vsi->back->hw,
vsi->back->hw.aq.asq_last_status));
return -ENOENT;
}
return 0;
}
/**
* i40e_vsi_remove_pvid - Remove the pvid from the VSI
* @vsi: the vsi being adjusted
*
* Just use the vlan_rx_register() service to put it back to normal
**/
void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
{
vsi->info.pvid = 0;
i40e_vlan_stripping_disable(vsi);
}
/**
* i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
* @vsi: ptr to the VSI
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
{
int i, err = 0;
for (i = 0; i < vsi->num_queue_pairs && !err; i++)
err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
if (!i40e_enabled_xdp_vsi(vsi))
return err;
for (i = 0; i < vsi->num_queue_pairs && !err; i++)
err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
return err;
}
/**
* i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
* @vsi: ptr to the VSI
*
* Free VSI's transmit software resources
**/
static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
{
int i;
if (vsi->tx_rings) {
for (i = 0; i < vsi->num_queue_pairs; i++)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
i40e_free_tx_resources(vsi->tx_rings[i]);
}
if (vsi->xdp_rings) {
for (i = 0; i < vsi->num_queue_pairs; i++)
if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
i40e_free_tx_resources(vsi->xdp_rings[i]);
}
}
/**
* i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
* @vsi: ptr to the VSI
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
{
int i, err = 0;
for (i = 0; i < vsi->num_queue_pairs && !err; i++)
err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
return err;
}
/**
* i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
* @vsi: ptr to the VSI
*
* Free all receive software resources
**/
static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
{
int i;
if (!vsi->rx_rings)
return;
for (i = 0; i < vsi->num_queue_pairs; i++)
if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
i40e_free_rx_resources(vsi->rx_rings[i]);
}
/**
* i40e_config_xps_tx_ring - Configure XPS for a Tx ring
* @ring: The Tx ring to configure
*
* This enables/disables XPS for a given Tx descriptor ring
* based on the TCs enabled for the VSI that ring belongs to.
**/
static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
{
int cpu;
if (!ring->q_vector || !ring->netdev || ring->ch)
return;
/* We only initialize XPS once, so as not to overwrite user settings */
if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state))
return;
cpu = cpumask_local_spread(ring->q_vector->v_idx, -1);
netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu),
ring->queue_index);
}
/**
* i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled
* @ring: The Tx or Rx ring
*
* Returns the AF_XDP buffer pool or NULL.
**/
static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring)
{
bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi);
int qid = ring->queue_index;
if (ring_is_xdp(ring))
qid -= ring->vsi->alloc_queue_pairs;
if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps))
return NULL;
return xsk_get_pool_from_qid(ring->vsi->netdev, qid);
}
/**
* i40e_configure_tx_ring - Configure a transmit ring context and rest
* @ring: The Tx ring to configure
*
* Configure the Tx descriptor ring in the HMC context.
**/
static int i40e_configure_tx_ring(struct i40e_ring *ring)
{
struct i40e_vsi *vsi = ring->vsi;
u16 pf_q = vsi->base_queue + ring->queue_index;
struct i40e_hw *hw = &vsi->back->hw;
struct i40e_hmc_obj_txq tx_ctx;
u32 qtx_ctl = 0;
int err = 0;
if (ring_is_xdp(ring))
ring->xsk_pool = i40e_xsk_pool(ring);
/* some ATR related tx ring init */
if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) {
ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
ring->atr_count = 0;
} else {
ring->atr_sample_rate = 0;
}
/* configure XPS */
i40e_config_xps_tx_ring(ring);
/* clear the context structure first */
memset(&tx_ctx, 0, sizeof(tx_ctx));
tx_ctx.new_context = 1;
tx_ctx.base = (ring->dma / 128);
tx_ctx.qlen = ring->count;
if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) ||
test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags))
tx_ctx.fd_ena = 1;
if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags))
tx_ctx.timesync_ena = 1;
/* FDIR VSI tx ring can still use RS bit and writebacks */
if (vsi->type != I40E_VSI_FDIR)
tx_ctx.head_wb_ena = 1;
tx_ctx.head_wb_addr = ring->dma +
(ring->count * sizeof(struct i40e_tx_desc));
/* As part of VSI creation/update, FW allocates certain
* Tx arbitration queue sets for each TC enabled for
* the VSI. The FW returns the handles to these queue
* sets as part of the response buffer to Add VSI,
* Update VSI, etc. AQ commands. It is expected that
* these queue set handles be associated with the Tx
* queues by the driver as part of the TX queue context
* initialization. This has to be done regardless of
* DCB as by default everything is mapped to TC0.
*/
if (ring->ch)
tx_ctx.rdylist =
le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]);
else
tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
tx_ctx.rdylist_act = 0;
/* clear the context in the HMC */
err = i40e_clear_lan_tx_queue_context(hw, pf_q);
if (err) {
dev_info(&vsi->back->pdev->dev,
"Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
ring->queue_index, pf_q, err);
return -ENOMEM;
}
/* set the context in the HMC */
err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
if (err) {
dev_info(&vsi->back->pdev->dev,
"Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
ring->queue_index, pf_q, err);
return -ENOMEM;
}
/* Now associate this queue with this PCI function */
if (ring->ch) {
if (ring->ch->type == I40E_VSI_VMDQ2)
qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
else
return -EINVAL;
qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
ring->ch->vsi_number);
} else {
if (vsi->type == I40E_VSI_VMDQ2) {
qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
vsi->id);
} else {
qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
}
}
qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id);
wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
i40e_flush(hw);
/* cache tail off for easier writes later */
ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
return 0;
}
/**
* i40e_rx_offset - Return expected offset into page to access data
* @rx_ring: Ring we are requesting offset of
*
* Returns the offset value for ring into the data buffer.
*/
static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}
/**
* i40e_configure_rx_ring - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in the HMC context.
**/
static int i40e_configure_rx_ring(struct i40e_ring *ring)
{
struct i40e_vsi *vsi = ring->vsi;
u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
u16 pf_q = vsi->base_queue + ring->queue_index;
struct i40e_hw *hw = &vsi->back->hw;
struct i40e_hmc_obj_rxq rx_ctx;
int err = 0;
bool ok;
bitmap_zero(ring->state, __I40E_RING_STATE_NBITS);
/* clear the context structure first */
memset(&rx_ctx, 0, sizeof(rx_ctx));
ring->rx_buf_len = vsi->rx_buf_len;
/* XDP RX-queue info only needed for RX rings exposed to XDP */
if (ring->vsi->type != I40E_VSI_MAIN)
goto skip;
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->queue_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
}
ring->xsk_pool = i40e_xsk_pool(ring);
if (ring->xsk_pool) {
xdp_rxq_info_unreg(&ring->xdp_rxq);
ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool);
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->queue_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL);
if (err)
return err;
dev_info(&vsi->back->pdev->dev,
"Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
ring->queue_index);
} else {
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL);
if (err)
return err;
}
skip:
xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq);
rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
rx_ctx.base = (ring->dma / 128);
rx_ctx.qlen = ring->count;
/* use 16 byte descriptors */
rx_ctx.dsize = 0;
/* descriptor type is always zero
* rx_ctx.dtype = 0;
*/
rx_ctx.hsplit_0 = 0;
rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
if (hw->revision_id == 0)
rx_ctx.lrxqthresh = 0;
else
rx_ctx.lrxqthresh = 1;
rx_ctx.crcstrip = 1;
rx_ctx.l2tsel = 1;
/* this controls whether VLAN is stripped from inner headers */
rx_ctx.showiv = 0;
/* set the prefena field to 1 because the manual says to */
rx_ctx.prefena = 1;
/* clear the context in the HMC */
err = i40e_clear_lan_rx_queue_context(hw, pf_q);
if (err) {
dev_info(&vsi->back->pdev->dev,
"Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
ring->queue_index, pf_q, err);
return -ENOMEM;
}
/* set the context in the HMC */
err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
if (err) {
dev_info(&vsi->back->pdev->dev,
"Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
ring->queue_index, pf_q, err);
return -ENOMEM;
}
/* configure Rx buffer alignment */
if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) {
if (I40E_2K_TOO_SMALL_WITH_PADDING) {
dev_info(&vsi->back->pdev->dev,
"2k Rx buffer is too small to fit standard MTU and skb_shared_info\n");
return -EOPNOTSUPP;
}
clear_ring_build_skb_enabled(ring);
} else {
set_ring_build_skb_enabled(ring);
}
ring->rx_offset = i40e_rx_offset(ring);
/* cache tail for quicker writes, and clear the reg before use */
ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
writel(0, ring->tail);
if (ring->xsk_pool) {
xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring));
} else {
ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
}
if (!ok) {
/* Log this in case the user has forgotten to give the kernel
* any buffers, even later in the application.
*/
dev_info(&vsi->back->pdev->dev,
"Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n",
ring->xsk_pool ? "AF_XDP ZC enabled " : "",
ring->queue_index, pf_q);
}
return 0;
}
/**
* i40e_vsi_configure_tx - Configure the VSI for Tx
* @vsi: VSI structure describing this set of rings and resources
*
* Configure the Tx VSI for operation.
**/
static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
{
int err = 0;
u16 i;
for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
err = i40e_configure_tx_ring(vsi->tx_rings[i]);
if (err || !i40e_enabled_xdp_vsi(vsi))
return err;
for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
return err;
}
/**
* i40e_vsi_configure_rx - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Configure the Rx VSI for operation.
**/
static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
{
int err = 0;
u16 i;
vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
#if (PAGE_SIZE < 8192)
if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING &&
vsi->netdev->mtu <= ETH_DATA_LEN) {
vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
vsi->max_frame = vsi->rx_buf_len;
}
#endif
/* set up individual rings */
for (i = 0; i < vsi->num_queue_pairs && !err; i++)
err = i40e_configure_rx_ring(vsi->rx_rings[i]);
return err;
}
/**
* i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
* @vsi: ptr to the VSI
**/
static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
{
struct i40e_ring *tx_ring, *rx_ring;
u16 qoffset, qcount;
int i, n;
if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
/* Reset the TC information */
for (i = 0; i < vsi->num_queue_pairs; i++) {
rx_ring = vsi->rx_rings[i];
tx_ring = vsi->tx_rings[i];
rx_ring->dcb_tc = 0;
tx_ring->dcb_tc = 0;
}
return;
}
for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
continue;
qoffset = vsi->tc_config.tc_info[n].qoffset;
qcount = vsi->tc_config.tc_info[n].qcount;
for (i = qoffset; i < (qoffset + qcount); i++) {
rx_ring = vsi->rx_rings[i];
tx_ring = vsi->tx_rings[i];
rx_ring->dcb_tc = n;
tx_ring->dcb_tc = n;
}
}
}
/**
* i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
* @vsi: ptr to the VSI
**/
static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
{
if (vsi->netdev)
i40e_set_rx_mode(vsi->netdev);
}
/**
* i40e_reset_fdir_filter_cnt - Reset flow director filter counters
* @pf: Pointer to the targeted PF
*
* Set all flow director counters to 0.
*/
static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf)
{
pf->fd_tcp4_filter_cnt = 0;
pf->fd_udp4_filter_cnt = 0;
pf->fd_sctp4_filter_cnt = 0;
pf->fd_ip4_filter_cnt = 0;
pf->fd_tcp6_filter_cnt = 0;
pf->fd_udp6_filter_cnt = 0;
pf->fd_sctp6_filter_cnt = 0;
pf->fd_ip6_filter_cnt = 0;
}
/**
* i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
* @vsi: Pointer to the targeted VSI
*
* This function replays the hlist on the hw where all the SB Flow Director
* filters were saved.
**/
static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
{
struct i40e_fdir_filter *filter;
struct i40e_pf *pf = vsi->back;
struct hlist_node *node;
if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
return;
/* Reset FDir counters as we're replaying all existing filters */
i40e_reset_fdir_filter_cnt(pf);
hlist_for_each_entry_safe(filter, node,
&pf->fdir_filter_list, fdir_node) {
i40e_add_del_fdir(vsi, filter, true);
}
}
/**
* i40e_vsi_configure - Set up the VSI for action
* @vsi: the VSI being configured
**/
static int i40e_vsi_configure(struct i40e_vsi *vsi)
{
int err;
i40e_set_vsi_rx_mode(vsi);
i40e_restore_vlan(vsi);
i40e_vsi_config_dcb_rings(vsi);
err = i40e_vsi_configure_tx(vsi);
if (!err)
err = i40e_vsi_configure_rx(vsi);
return err;
}
/**
* i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
**/
static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
{
bool has_xdp = i40e_enabled_xdp_vsi(vsi);
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u16 vector;
int i, q;
u32 qp;
/* The interrupt indexing is offset by 1 in the PFINT_ITRn
* and PFINT_LNKLSTn registers, e.g.:
* PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
*/
qp = vsi->base_queue;
vector = vsi->base_vector;
for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
struct i40e_q_vector *q_vector = vsi->q_vectors[i];
q_vector->rx.next_update = jiffies + 1;
q_vector->rx.target_itr =
ITR_TO_REG(vsi->rx_rings[i]->itr_setting);
wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
q_vector->rx.target_itr >> 1);
q_vector->rx.current_itr = q_vector->rx.target_itr;
q_vector->tx.next_update = jiffies + 1;
q_vector->tx.target_itr =
ITR_TO_REG(vsi->tx_rings[i]->itr_setting);
wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
q_vector->tx.target_itr >> 1);
q_vector->tx.current_itr = q_vector->tx.target_itr;
wr32(hw, I40E_PFINT_RATEN(vector - 1),
i40e_intrl_usec_to_reg(vsi->int_rate_limit));
/* begin of linked list for RX queue assigned to this vector */
wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
for (q = 0; q < q_vector->num_ringpairs; q++) {
u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
u32 val;
val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
(I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
(vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
(nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
(I40E_QUEUE_TYPE_TX <<
I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
wr32(hw, I40E_QINT_RQCTL(qp), val);
if (has_xdp) {
/* TX queue with next queue set to TX */
val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
(I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
(vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
(qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
(I40E_QUEUE_TYPE_TX <<
I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
wr32(hw, I40E_QINT_TQCTL(nextqp), val);
}
/* TX queue with next RX or end of linked list */
val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
(I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
(vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
(I40E_QUEUE_TYPE_RX <<
I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
/* Terminate the linked list */
if (q == (q_vector->num_ringpairs - 1))
val |= (I40E_QUEUE_END_OF_LIST <<
I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
wr32(hw, I40E_QINT_TQCTL(qp), val);
qp++;
}
}
i40e_flush(hw);
}
/**
* i40e_enable_misc_int_causes - enable the non-queue interrupts
* @pf: pointer to private device data structure
**/
static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
u32 val;
/* clear things first */
wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
rd32(hw, I40E_PFINT_ICR0); /* read to clear */
val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
I40E_PFINT_ICR0_ENA_GRST_MASK |
I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
I40E_PFINT_ICR0_ENA_GPIO_MASK |
I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
I40E_PFINT_ICR0_ENA_VFLR_MASK |
I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
wr32(hw, I40E_PFINT_ICR0_ENA, val);
/* SW_ITR_IDX = 0, but don't change INTENA */
wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
/* OTHER_ITR_IDX = 0 */
wr32(hw, I40E_PFINT_STAT_CTL0, 0);
}
/**
* i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
* @vsi: the VSI being configured
**/
static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
{
u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
struct i40e_q_vector *q_vector = vsi->q_vectors[0];
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
/* set the ITR configuration */
q_vector->rx.next_update = jiffies + 1;
q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting);
wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1);
q_vector->rx.current_itr = q_vector->rx.target_itr;
q_vector->tx.next_update = jiffies + 1;
q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting);
wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1);
q_vector->tx.current_itr = q_vector->tx.target_itr;
i40e_enable_misc_int_causes(pf);
/* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
wr32(hw, I40E_PFINT_LNKLST0, 0);
/* Associate the queue pair to the vector and enable the queue
* interrupt RX queue in linked list with next queue set to TX
*/
wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX));
if (i40e_enabled_xdp_vsi(vsi)) {
/* TX queue in linked list with next queue set to TX */
wr32(hw, I40E_QINT_TQCTL(nextqp),
I40E_QINT_TQCTL_VAL(nextqp, 0, TX));
}
/* last TX queue so the next RX queue doesn't matter */
wr32(hw, I40E_QINT_TQCTL(0),
I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX));
i40e_flush(hw);
}
/**
* i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
* @pf: board private structure
**/
void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
wr32(hw, I40E_PFINT_DYN_CTL0,
I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
i40e_flush(hw);
}
/**
* i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
* @pf: board private structure
**/
void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
u32 val;
val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
(I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
wr32(hw, I40E_PFINT_DYN_CTL0, val);
i40e_flush(hw);
}
/**
* i40e_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
**/
static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
{
struct i40e_q_vector *q_vector = data;
if (!q_vector->tx.ring && !q_vector->rx.ring)
return IRQ_HANDLED;
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* i40e_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
**/
static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct i40e_q_vector *q_vector =
container_of(notify, struct i40e_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* i40e_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
**/
static void i40e_irq_affinity_release(struct kref *ref) {}
/**
* i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
* @vsi: the VSI being configured
* @basename: name for the vector
*
* Allocates MSI-X vectors and requests interrupts from the kernel.
**/
static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
{
int q_vectors = vsi->num_q_vectors;
struct i40e_pf *pf = vsi->back;
int base = vsi->base_vector;
int rx_int_idx = 0;
int tx_int_idx = 0;
int vector, err;
int irq_num;
int cpu;
for (vector = 0; vector < q_vectors; vector++) {
struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
irq_num = pf->msix_entries[base + vector].vector;
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "TxRx", rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "rx", rx_int_idx++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-%s-%d", basename, "tx", tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
err = request_irq(irq_num,
vsi->irq_handler,
0,
q_vector->name,
q_vector);
if (err) {
dev_info(&pf->pdev->dev,
"MSIX request_irq failed, error: %d\n", err);
goto free_queue_irqs;
}
/* register for affinity change notifications */
q_vector->irq_num = irq_num;
q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
q_vector->affinity_notify.release = i40e_irq_affinity_release;
irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
/* Spread affinity hints out across online CPUs.
*
* get_cpu_mask returns a static constant mask with
* a permanent lifetime so it's ok to pass to
* irq_update_affinity_hint without making a copy.
*/
cpu = cpumask_local_spread(q_vector->v_idx, -1);
irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
}
vsi->irqs_ready = true;
return 0;
free_queue_irqs:
while (vector) {
vector--;
irq_num = pf->msix_entries[base + vector].vector;
irq_set_affinity_notifier(irq_num, NULL);
irq_update_affinity_hint(irq_num, NULL);
free_irq(irq_num, &vsi->q_vectors[vector]);
}
return err;
}
/**
* i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
**/
static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int base = vsi->base_vector;
int i;
/* disable interrupt causation from each queue */
for (i = 0; i < vsi->num_queue_pairs; i++) {
u32 val;
val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
if (!i40e_enabled_xdp_vsi(vsi))
continue;
wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
}
/* disable each interrupt */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
for (i = vsi->base_vector;
i < (vsi->num_q_vectors + vsi->base_vector); i++)
wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
i40e_flush(hw);
for (i = 0; i < vsi->num_q_vectors; i++)
synchronize_irq(pf->msix_entries[i + base].vector);
} else {
/* Legacy and MSI mode - this stops all interrupt handling */
wr32(hw, I40E_PFINT_ICR0_ENA, 0);
wr32(hw, I40E_PFINT_DYN_CTL0, 0);
i40e_flush(hw);
synchronize_irq(pf->pdev->irq);
}
}
/**
* i40e_vsi_enable_irq - Enable IRQ for the given VSI
* @vsi: the VSI being configured
**/
static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int i;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
for (i = 0; i < vsi->num_q_vectors; i++)
i40e_irq_dynamic_enable(vsi, i);
} else {
i40e_irq_dynamic_enable_icr0(pf);
}
i40e_flush(&pf->hw);
return 0;
}
/**
* i40e_free_misc_vector - Free the vector that handles non-queue events
* @pf: board private structure
**/
static void i40e_free_misc_vector(struct i40e_pf *pf)
{
/* Disable ICR 0 */
wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
i40e_flush(&pf->hw);
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
free_irq(pf->msix_entries[0].vector, pf);
clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
}
}
/**
* i40e_intr - MSI/Legacy and non-queue interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
*
* This is the handler used for all MSI/Legacy interrupts, and deals
* with both queue and non-queue interrupts. This is also used in
* MSIX mode to handle the non-queue interrupts.
**/
static irqreturn_t i40e_intr(int irq, void *data)
{
struct i40e_pf *pf = (struct i40e_pf *)data;
struct i40e_hw *hw = &pf->hw;
irqreturn_t ret = IRQ_NONE;
u32 icr0, icr0_remaining;
u32 val, ena_mask;
icr0 = rd32(hw, I40E_PFINT_ICR0);
ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
/* if sharing a legacy IRQ, we might get called w/o an intr pending */
if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
goto enable_intr;
/* if interrupt but no bits showing, must be SWINT */
if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
(icr0 & I40E_PFINT_ICR0_SWINT_MASK))
pf->sw_int_count++;
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
(icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
}
/* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
struct i40e_q_vector *q_vector = vsi->q_vectors[0];
/* We do not have a way to disarm Queue causes while leaving
* interrupt enabled for all other causes, ideally
* interrupt should be disabled while we are in NAPI but
* this is not a performance path and napi_schedule()
* can deal with rescheduling.
*/
if (!test_bit(__I40E_DOWN, pf->state))
napi_schedule_irqoff(&q_vector->napi);
}
if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
}
if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
}
if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
/* disable any further VFLR event notifications */
if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) {
u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
reg &= ~I40E_PFINT_ICR0_VFLR_MASK;
wr32(hw, I40E_PFINT_ICR0_ENA, reg);
} else {
ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
}
}
if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
val = rd32(hw, I40E_GLGEN_RSTAT);
val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val);
if (val == I40E_RESET_CORER) {
pf->corer_count++;
} else if (val == I40E_RESET_GLOBR) {
pf->globr_count++;
} else if (val == I40E_RESET_EMPR) {
pf->empr_count++;
set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
}
}
if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
dev_info(&pf->pdev->dev, "HMC error interrupt\n");
dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
rd32(hw, I40E_PFHMC_ERRORINFO),
rd32(hw, I40E_PFHMC_ERRORDATA));
}
if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK)
schedule_work(&pf->ptp_extts0_work);
if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK)
i40e_ptp_tx_hwtstamp(pf);
icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
}
/* If a critical error is pending we have no choice but to reset the
* device.
* Report and mask out any remaining unexpected interrupts.
*/
icr0_remaining = icr0 & ena_mask;
if (icr0_remaining) {
dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
icr0_remaining);
if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
(icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
(icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
dev_info(&pf->pdev->dev, "device will be reset\n");
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
}
ena_mask &= ~icr0_remaining;
}
ret = IRQ_HANDLED;
enable_intr:
/* re-enable interrupt causes */
wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
if (!test_bit(__I40E_DOWN, pf->state) ||
test_bit(__I40E_RECOVERY_MODE, pf->state)) {
i40e_service_event_schedule(pf);
i40e_irq_dynamic_enable_icr0(pf);
}
return ret;
}
/**
* i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
* @tx_ring: tx ring to clean
* @budget: how many cleans we're allowed
*
* Returns true if there's any budget left (e.g. the clean is finished)
**/
static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
{
struct i40e_vsi *vsi = tx_ring->vsi;
u16 i = tx_ring->next_to_clean;
struct i40e_tx_buffer *tx_buf;
struct i40e_tx_desc *tx_desc;
tx_buf = &tx_ring->tx_bi[i];
tx_desc = I40E_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if the descriptor isn't done, no work yet to do */
if (!(eop_desc->cmd_type_offset_bsz &
cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
tx_desc->buffer_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move past filter desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_bi;
tx_desc = I40E_TX_DESC(tx_ring, 0);
}
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
kfree(tx_buf->raw_buf);
tx_buf->raw_buf = NULL;
tx_buf->tx_flags = 0;
tx_buf->next_to_watch = NULL;
dma_unmap_len_set(tx_buf, len, 0);
tx_desc->buffer_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move us past the eop_desc for start of next FD desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_bi;
tx_desc = I40E_TX_DESC(tx_ring, 0);
}
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags))
i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
return budget > 0;
}
/**
* i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
* @irq: interrupt number
* @data: pointer to a q_vector
**/
static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
{
struct i40e_q_vector *q_vector = data;
struct i40e_vsi *vsi;
if (!q_vector->tx.ring)
return IRQ_HANDLED;
vsi = q_vector->tx.ring->vsi;
i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
return IRQ_HANDLED;
}
/**
* i40e_map_vector_to_qp - Assigns the queue pair to the vector
* @vsi: the VSI being configured
* @v_idx: vector index
* @qp_idx: queue pair index
**/
static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
{
struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
q_vector->tx.ring = tx_ring;
q_vector->tx.count++;
/* Place XDP Tx ring in the same q_vector ring list as regular Tx */
if (i40e_enabled_xdp_vsi(vsi)) {
struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
xdp_ring->q_vector = q_vector;
xdp_ring->next = q_vector->tx.ring;
q_vector->tx.ring = xdp_ring;
q_vector->tx.count++;
}
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
q_vector->rx.ring = rx_ring;
q_vector->rx.count++;
}
/**
* i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors
* we were allotted through the MSI-X enabling code. Ideally, we'd have
* one vector per queue pair, but on a constrained vector budget, we
* group the queue pairs as "efficiently" as possible.
**/
static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
{
int qp_remaining = vsi->num_queue_pairs;
int q_vectors = vsi->num_q_vectors;
int num_ringpairs;
int v_start = 0;
int qp_idx = 0;
/* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
* group them so there are multiple queues per vector.
* It is also important to go through all the vectors available to be
* sure that if we don't use all the vectors, that the remaining vectors
* are cleared. This is especially important when decreasing the
* number of queues in use.
*/
for (; v_start < q_vectors; v_start++) {
struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
q_vector->num_ringpairs = num_ringpairs;
q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1;
q_vector->rx.count = 0;
q_vector->tx.count = 0;
q_vector->rx.ring = NULL;
q_vector->tx.ring = NULL;
while (num_ringpairs--) {
i40e_map_vector_to_qp(vsi, v_start, qp_idx);
qp_idx++;
qp_remaining--;
}
}
}
/**
* i40e_vsi_request_irq - Request IRQ from the OS
* @vsi: the VSI being configured
* @basename: name for the vector
**/
static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
{
struct i40e_pf *pf = vsi->back;
int err;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
err = i40e_vsi_request_irq_msix(vsi, basename);
else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags))
err = request_irq(pf->pdev->irq, i40e_intr, 0,
pf->int_name, pf);
else
err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
pf->int_name, pf);
if (err)
dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
return err;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* i40e_netpoll - A Polling 'interrupt' handler
* @netdev: network interface device structure
*
* This is used by netconsole to send skbs without having to re-enable
* interrupts. It's not called while the normal interrupt routine is executing.
**/
static void i40e_netpoll(struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
int i;
/* if interface is down do nothing */
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
for (i = 0; i < vsi->num_q_vectors; i++)
i40e_msix_clean_rings(0, vsi->q_vectors[i]);
} else {
i40e_intr(pf->pdev->irq, netdev);
}
}
#endif
#define I40E_QTX_ENA_WAIT_COUNT 50
/**
* i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @enable: enable or disable state of the queue
*
* This routine will wait for the given Tx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
**/
static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
{
int i;
u32 tx_reg;
for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
break;
usleep_range(10, 20);
}
if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
return -ETIMEDOUT;
return 0;
}
/**
* i40e_control_tx_q - Start or stop a particular Tx queue
* @pf: the PF structure
* @pf_q: the PF queue to configure
* @enable: start or stop the queue
*
* This function enables or disables a single queue. Note that any delay
* required after the operation is expected to be handled by the caller of
* this function.
**/
static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
{
struct i40e_hw *hw = &pf->hw;
u32 tx_reg;
int i;
/* warn the TX unit of coming changes */
i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
if (!enable)
usleep_range(10, 20);
for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
break;
usleep_range(1000, 2000);
}
/* Skip if the queue is already in the requested state */
if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
return;
/* turn on/off the queue */
if (enable) {
wr32(hw, I40E_QTX_HEAD(pf_q), 0);
tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
} else {
tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
}
wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
}
/**
* i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
* @seid: VSI SEID
* @pf: the PF structure
* @pf_q: the PF queue to configure
* @is_xdp: true if the queue is used for XDP
* @enable: start or stop the queue
**/
int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
bool is_xdp, bool enable)
{
int ret;
i40e_control_tx_q(pf, pf_q, enable);
/* wait for the change to finish */
ret = i40e_pf_txq_wait(pf, pf_q, enable);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d %sTx ring %d %sable timeout\n",
seid, (is_xdp ? "XDP " : ""), pf_q,
(enable ? "en" : "dis"));
}
return ret;
}
/**
* i40e_vsi_enable_tx - Start a VSI's rings
* @vsi: the VSI being configured
**/
static int i40e_vsi_enable_tx(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int i, pf_q, ret = 0;
pf_q = vsi->base_queue;
for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
ret = i40e_control_wait_tx_q(vsi->seid, pf,
pf_q,
false /*is xdp*/, true);
if (ret)
break;
if (!i40e_enabled_xdp_vsi(vsi))
continue;
ret = i40e_control_wait_tx_q(vsi->seid, pf,
pf_q + vsi->alloc_queue_pairs,
true /*is xdp*/, true);
if (ret)
break;
}
return ret;
}
/**
* i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @enable: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
**/
static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
{
int i;
u32 rx_reg;
for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
break;
usleep_range(10, 20);
}
if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
return -ETIMEDOUT;
return 0;
}
/**
* i40e_control_rx_q - Start or stop a particular Rx queue
* @pf: the PF structure
* @pf_q: the PF queue to configure
* @enable: start or stop the queue
*
* This function enables or disables a single queue. Note that
* any delay required after the operation is expected to be
* handled by the caller of this function.
**/
static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
{
struct i40e_hw *hw = &pf->hw;
u32 rx_reg;
int i;
for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
break;
usleep_range(1000, 2000);
}
/* Skip if the queue is already in the requested state */
if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
return;
/* turn on/off the queue */
if (enable)
rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
else
rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
}
/**
* i40e_control_wait_rx_q
* @pf: the PF structure
* @pf_q: queue being configured
* @enable: start or stop the rings
*
* This function enables or disables a single queue along with waiting
* for the change to finish. The caller of this function should handle
* the delays needed in the case of disabling queues.
**/
int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
{
int ret = 0;
i40e_control_rx_q(pf, pf_q, enable);
/* wait for the change to finish */
ret = i40e_pf_rxq_wait(pf, pf_q, enable);
if (ret)
return ret;
return ret;
}
/**
* i40e_vsi_enable_rx - Start a VSI's rings
* @vsi: the VSI being configured
**/
static int i40e_vsi_enable_rx(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int i, pf_q, ret = 0;
pf_q = vsi->base_queue;
for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
ret = i40e_control_wait_rx_q(pf, pf_q, true);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d Rx ring %d enable timeout\n",
vsi->seid, pf_q);
break;
}
}
return ret;
}
/**
* i40e_vsi_start_rings - Start a VSI's rings
* @vsi: the VSI being configured
**/
int i40e_vsi_start_rings(struct i40e_vsi *vsi)
{
int ret = 0;
/* do rx first for enable and last for disable */
ret = i40e_vsi_enable_rx(vsi);
if (ret)
return ret;
ret = i40e_vsi_enable_tx(vsi);
return ret;
}
#define I40E_DISABLE_TX_GAP_MSEC 50
/**
* i40e_vsi_stop_rings - Stop a VSI's rings
* @vsi: the VSI being configured
**/
void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
u32 pf_q, tx_q_end, rx_q_end;
/* When port TX is suspended, don't wait */
if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
return i40e_vsi_stop_rings_no_wait(vsi);
tx_q_end = vsi->base_queue +
vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false);
rx_q_end = vsi->base_queue + vsi->num_queue_pairs;
for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++)
i40e_control_rx_q(pf, pf_q, false);
msleep(I40E_DISABLE_TX_GAP_MSEC);
for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0);
i40e_vsi_wait_queues_disabled(vsi);
}
/**
* i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
* @vsi: the VSI being shutdown
*
* This function stops all the rings for a VSI but does not delay to verify
* that rings have been disabled. It is expected that the caller is shutting
* down multiple VSIs at once and will delay together for all the VSIs after
* initiating the shutdown. This is particularly useful for shutting down lots
* of VFs together. Otherwise, a large delay can be incurred while configuring
* each VSI in serial.
**/
void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int i, pf_q;
pf_q = vsi->base_queue;
for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
i40e_control_tx_q(pf, pf_q, false);
i40e_control_rx_q(pf, pf_q, false);
}
}
/**
* i40e_vsi_free_irq - Free the irq association with the OS
* @vsi: the VSI being configured
**/
static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int base = vsi->base_vector;
u32 val, qp;
int i;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
if (!vsi->q_vectors)
return;
if (!vsi->irqs_ready)
return;
vsi->irqs_ready = false;
for (i = 0; i < vsi->num_q_vectors; i++) {
int irq_num;
u16 vector;
vector = i + base;
irq_num = pf->msix_entries[vector].vector;
/* free only the irqs that were actually requested */
if (!vsi->q_vectors[i] ||
!vsi->q_vectors[i]->num_ringpairs)
continue;
/* clear the affinity notifier in the IRQ descriptor */
irq_set_affinity_notifier(irq_num, NULL);
/* remove our suggested affinity mask for this IRQ */
irq_update_affinity_hint(irq_num, NULL);
free_irq(irq_num, vsi->q_vectors[i]);
/* Tear down the interrupt queue link list
*
* We know that they come in pairs and always
* the Rx first, then the Tx. To clear the
* link list, stick the EOL value into the
* next_q field of the registers.
*/
val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK,
val);
val |= I40E_QUEUE_END_OF_LIST
<< I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
while (qp != I40E_QUEUE_END_OF_LIST) {
u32 next;
val = rd32(hw, I40E_QINT_RQCTL(qp));
val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
I40E_QINT_RQCTL_MSIX0_INDX_MASK |
I40E_QINT_RQCTL_CAUSE_ENA_MASK |
I40E_QINT_RQCTL_INTEVENT_MASK);
val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
wr32(hw, I40E_QINT_RQCTL(qp), val);
val = rd32(hw, I40E_QINT_TQCTL(qp));
next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK,
val);
val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
I40E_QINT_TQCTL_MSIX0_INDX_MASK |
I40E_QINT_TQCTL_CAUSE_ENA_MASK |
I40E_QINT_TQCTL_INTEVENT_MASK);
val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
wr32(hw, I40E_QINT_TQCTL(qp), val);
qp = next;
}
}
} else {
free_irq(pf->pdev->irq, pf);
val = rd32(hw, I40E_PFINT_LNKLST0);
qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val);
val |= I40E_QUEUE_END_OF_LIST
<< I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
wr32(hw, I40E_PFINT_LNKLST0, val);
val = rd32(hw, I40E_QINT_RQCTL(qp));
val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
I40E_QINT_RQCTL_MSIX0_INDX_MASK |
I40E_QINT_RQCTL_CAUSE_ENA_MASK |
I40E_QINT_RQCTL_INTEVENT_MASK);
val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
wr32(hw, I40E_QINT_RQCTL(qp), val);
val = rd32(hw, I40E_QINT_TQCTL(qp));
val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
I40E_QINT_TQCTL_MSIX0_INDX_MASK |
I40E_QINT_TQCTL_CAUSE_ENA_MASK |
I40E_QINT_TQCTL_INTEVENT_MASK);
val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
wr32(hw, I40E_QINT_TQCTL(qp), val);
}
}
/**
* i40e_free_q_vector - Free memory allocated for specific interrupt vector
* @vsi: the VSI being configured
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
{
struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
struct i40e_ring *ring;
if (!q_vector)
return;
/* disassociate q_vector from rings */
i40e_for_each_ring(ring, q_vector->tx)
ring->q_vector = NULL;
i40e_for_each_ring(ring, q_vector->rx)
ring->q_vector = NULL;
/* only VSI w/ an associated netdev is set up w/ NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
vsi->q_vectors[v_idx] = NULL;
kfree_rcu(q_vector, rcu);
}
/**
* i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI being un-configured
*
* This frees the memory allocated to the q_vectors and
* deletes references to the NAPI struct.
**/
static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
{
int v_idx;
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
i40e_free_q_vector(vsi, v_idx);
}
/**
* i40e_reset_interrupt_capability - Disable interrupt setup in OS
* @pf: board private structure
**/
static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
{
/* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
pci_disable_msix(pf->pdev);
kfree(pf->msix_entries);
pf->msix_entries = NULL;
kfree(pf->irq_pile);
pf->irq_pile = NULL;
} else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
pci_disable_msi(pf->pdev);
}
clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
}
/**
* i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
* @pf: board private structure
*
* We go through and clear interrupt specific resources and reset the structure
* to pre-load conditions
**/
static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int i;
if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state))
i40e_free_misc_vector(pf);
i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
I40E_IWARP_IRQ_PILE_ID);
i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
i40e_pf_for_each_vsi(pf, i, vsi)
i40e_vsi_free_q_vectors(vsi);
i40e_reset_interrupt_capability(pf);
}
/**
* i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
* @vsi: the VSI being configured
**/
static void i40e_napi_enable_all(struct i40e_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
if (q_vector->rx.ring || q_vector->tx.ring)
napi_enable(&q_vector->napi);
}
}
/**
* i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
* @vsi: the VSI being configured
**/
static void i40e_napi_disable_all(struct i40e_vsi *vsi)
{
int q_idx;
if (!vsi->netdev)
return;
for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
if (q_vector->rx.ring || q_vector->tx.ring)
napi_disable(&q_vector->napi);
}
}
/**
* i40e_vsi_close - Shut down a VSI
* @vsi: the vsi to be quelled
**/
static void i40e_vsi_close(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
i40e_down(vsi);
i40e_vsi_free_irq(vsi);
i40e_vsi_free_tx_resources(vsi);
i40e_vsi_free_rx_resources(vsi);
vsi->current_netdev_flags = 0;
set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
set_bit(__I40E_CLIENT_RESET, pf->state);
}
/**
* i40e_quiesce_vsi - Pause a given VSI
* @vsi: the VSI being paused
**/
static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
{
if (test_bit(__I40E_VSI_DOWN, vsi->state))
return;
set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
if (vsi->netdev && netif_running(vsi->netdev))
vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
else
i40e_vsi_close(vsi);
}
/**
* i40e_unquiesce_vsi - Resume a given VSI
* @vsi: the VSI being resumed
**/
static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
{
if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
return;
if (vsi->netdev && netif_running(vsi->netdev))
vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
else
i40e_vsi_open(vsi); /* this clears the DOWN bit */
}
/**
* i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
* @pf: the PF
**/
static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int v;
i40e_pf_for_each_vsi(pf, v, vsi)
i40e_quiesce_vsi(vsi);
}
/**
* i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
* @pf: the PF
**/
static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int v;
i40e_pf_for_each_vsi(pf, v, vsi)
i40e_unquiesce_vsi(vsi);
}
/**
* i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
* @vsi: the VSI being configured
*
* Wait until all queues on a given VSI have been disabled.
**/
int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int i, pf_q, ret;
pf_q = vsi->base_queue;
for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
/* Check and wait for the Tx queue */
ret = i40e_pf_txq_wait(pf, pf_q, false);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d Tx ring %d disable timeout\n",
vsi->seid, pf_q);
return ret;
}
if (!i40e_enabled_xdp_vsi(vsi))
goto wait_rx;
/* Check and wait for the XDP Tx queue */
ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
false);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d XDP Tx ring %d disable timeout\n",
vsi->seid, pf_q);
return ret;
}
wait_rx:
/* Check and wait for the Rx queue */
ret = i40e_pf_rxq_wait(pf, pf_q, false);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d Rx ring %d disable timeout\n",
vsi->seid, pf_q);
return ret;
}
}
return 0;
}
#ifdef CONFIG_I40E_DCB
/**
* i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
* @pf: the PF
*
* This function waits for the queues to be in disabled state for all the
* VSIs that are managed by this PF.
**/
static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int v, ret = 0;
i40e_pf_for_each_vsi(pf, v, vsi) {
ret = i40e_vsi_wait_queues_disabled(vsi);
if (ret)
break;
}
return ret;
}
#endif
/**
* i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
* @pf: pointer to PF
*
* Get TC map for ISCSI PF type that will include iSCSI TC
* and LAN TC.
**/
static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
{
struct i40e_dcb_app_priority_table app;
struct i40e_hw *hw = &pf->hw;
u8 enabled_tc = 1; /* TC0 is always enabled */
u8 tc, i;
/* Get the iSCSI APP TLV */
struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
for (i = 0; i < dcbcfg->numapps; i++) {
app = dcbcfg->app[i];
if (app.selector == I40E_APP_SEL_TCPIP &&
app.protocolid == I40E_APP_PROTOID_ISCSI) {
tc = dcbcfg->etscfg.prioritytable[app.priority];
enabled_tc |= BIT(tc);
break;
}
}
return enabled_tc;
}
/**
* i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
* @dcbcfg: the corresponding DCBx configuration structure
*
* Return the number of TCs from given DCBx configuration
**/
static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
{
int i, tc_unused = 0;
u8 num_tc = 0;
u8 ret = 0;
/* Scan the ETS Config Priority Table to find
* traffic class enabled for a given priority
* and create a bitmask of enabled TCs
*/
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
/* Now scan the bitmask to check for
* contiguous TCs starting with TC0
*/
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (num_tc & BIT(i)) {
if (!tc_unused) {
ret++;
} else {
pr_err("Non-contiguous TC - Disabling DCB\n");
return 1;
}
} else {
tc_unused = 1;
}
}
/* There is always at least TC0 */
if (!ret)
ret = 1;
return ret;
}
/**
* i40e_dcb_get_enabled_tc - Get enabled traffic classes
* @dcbcfg: the corresponding DCBx configuration structure
*
* Query the current DCB configuration and return the number of
* traffic classes enabled from the given DCBX config
**/
static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
{
u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
u8 enabled_tc = 1;
u8 i;
for (i = 0; i < num_tc; i++)
enabled_tc |= BIT(i);
return enabled_tc;
}
/**
* i40e_mqprio_get_enabled_tc - Get enabled traffic classes
* @pf: PF being queried
*
* Query the current MQPRIO configuration and return the number of
* traffic classes enabled.
**/
static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
u8 num_tc = vsi->mqprio_qopt.qopt.num_tc;
u8 enabled_tc = 1, i;
for (i = 1; i < num_tc; i++)
enabled_tc |= BIT(i);
return enabled_tc;
}
/**
* i40e_pf_get_num_tc - Get enabled traffic classes for PF
* @pf: PF being queried
*
* Return number of traffic classes enabled for the given PF
**/
static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
u8 i, enabled_tc = 1;
u8 num_tc = 0;
struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
if (i40e_is_tc_mqprio_enabled(pf))
return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc;
/* If neither MQPRIO nor DCB is enabled, then always use single TC */
if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
return 1;
/* SFP mode will be enabled for all TCs on port */
if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
return i40e_dcb_get_num_tc(dcbcfg);
/* MFP mode return count of enabled TCs for this PF */
if (pf->hw.func_caps.iscsi)
enabled_tc = i40e_get_iscsi_tc_map(pf);
else
return 1; /* Only TC0 */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tc & BIT(i))
num_tc++;
}
return num_tc;
}
/**
* i40e_pf_get_tc_map - Get bitmap for enabled traffic classes
* @pf: PF being queried
*
* Return a bitmap for enabled traffic classes for this PF.
**/
static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
{
if (i40e_is_tc_mqprio_enabled(pf))
return i40e_mqprio_get_enabled_tc(pf);
/* If neither MQPRIO nor DCB is enabled for this PF then just return
* default TC
*/
if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
return I40E_DEFAULT_TRAFFIC_CLASS;
/* SFP mode we want PF to be enabled for all TCs */
if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
/* MFP enabled and iSCSI PF type */
if (pf->hw.func_caps.iscsi)
return i40e_get_iscsi_tc_map(pf);
else
return I40E_DEFAULT_TRAFFIC_CLASS;
}
/**
* i40e_vsi_get_bw_info - Query VSI BW Information
* @vsi: the VSI being queried
*
* Returns 0 on success, negative value on failure
**/
static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
{
struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u32 tc_bw_max;
int ret;
int i;
/* Get the VSI level BW configuration */
ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get PF vsi bw config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return -EINVAL;
}
/* Get the VSI level BW configuration per TC */
ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get PF vsi ets bw config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return -EINVAL;
}
if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
dev_info(&pf->pdev->dev,
"Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
bw_config.tc_valid_bits,
bw_ets_config.tc_valid_bits);
/* Still continuing */
}
vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
vsi->bw_max_quanta = bw_config.max_bw;
tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
(le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
vsi->bw_ets_limit_credits[i] =
le16_to_cpu(bw_ets_config.credits[i]);
/* 3 bits out of 4 for each TC */
vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
}
return 0;
}
/**
* i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
* @vsi: the VSI being configured
* @enabled_tc: TC bitmap
* @bw_share: BW shared credits per TC
*
* Returns 0 on success, negative value on failure
**/
static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
u8 *bw_share)
{
struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
struct i40e_pf *pf = vsi->back;
int ret;
int i;
/* There is no need to reset BW when mqprio mode is on. */
if (i40e_is_tc_mqprio_enabled(pf))
return 0;
if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
ret = i40e_set_bw_limit(vsi, vsi->seid, 0);
if (ret)
dev_info(&pf->pdev->dev,
"Failed to reset tx rate for vsi->seid %u\n",
vsi->seid);
return ret;
}
memset(&bw_data, 0, sizeof(bw_data));
bw_data.tc_valid_bits = enabled_tc;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
bw_data.tc_bw_credits[i] = bw_share[i];
ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"AQ command Config VSI BW allocation per TC failed = %d\n",
pf->hw.aq.asq_last_status);
return -EINVAL;
}
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
vsi->info.qs_handle[i] = bw_data.qs_handles[i];
return 0;
}
/**
* i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
* @vsi: the VSI being configured
* @enabled_tc: TC map to be enabled
*
**/
static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
{
struct net_device *netdev = vsi->netdev;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u8 netdev_tc = 0;
int i;
struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
if (!netdev)
return;
if (!enabled_tc) {
netdev_reset_tc(netdev);
return;
}
/* Set up actual enabled TCs on the VSI */
if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
return;
/* set per TC queues for the VSI */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
/* Only set TC queues for enabled tcs
*
* e.g. For a VSI that has TC0 and TC3 enabled the
* enabled_tc bitmap would be 0x00001001; the driver
* will set the numtc for netdev as 2 that will be
* referenced by the netdev layer as TC 0 and 1.
*/
if (vsi->tc_config.enabled_tc & BIT(i))
netdev_set_tc_queue(netdev,
vsi->tc_config.tc_info[i].netdev_tc,
vsi->tc_config.tc_info[i].qcount,
vsi->tc_config.tc_info[i].qoffset);
}
if (i40e_is_tc_mqprio_enabled(pf))
return;
/* Assign UP2TC map for the VSI */
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
/* Get the actual TC# for the UP */
u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
/* Get the mapped netdev TC# for the UP */
netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
netdev_set_prio_tc_map(netdev, i, netdev_tc);
}
}
/**
* i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
* @vsi: the VSI being configured
* @ctxt: the ctxt buffer returned from AQ VSI update param command
**/
static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
struct i40e_vsi_context *ctxt)
{
/* copy just the sections touched not the entire info
* since not all sections are valid as returned by
* update vsi params
*/
vsi->info.mapping_flags = ctxt->info.mapping_flags;
memcpy(&vsi->info.queue_mapping,
&ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
sizeof(vsi->info.tc_mapping));
}
/**
* i40e_update_adq_vsi_queues - update queue mapping for ADq VSI
* @vsi: the VSI being reconfigured
* @vsi_offset: offset from main VF VSI
*/
int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset)
{
struct i40e_vsi_context ctxt = {};
struct i40e_pf *pf;
struct i40e_hw *hw;
int ret;
if (!vsi)
return -EINVAL;
pf = vsi->back;
hw = &pf->hw;
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
ctxt.flags = I40E_AQ_VSI_TYPE_VF;
ctxt.info = vsi->info;
i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc,
false);
if (vsi->reconfig_rss) {
vsi->rss_size = min_t(int, pf->alloc_rss_size,
vsi->num_queue_pairs);
ret = i40e_vsi_config_rss(vsi);
if (ret) {
dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n");
return ret;
}
vsi->reconfig_rss = false;
}
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
/* update the local VSI info with updated queue map */
i40e_vsi_update_queue_map(vsi, &ctxt);
vsi->info.valid_sections = 0;
return ret;
}
/**
* i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
* @vsi: VSI to be configured
* @enabled_tc: TC bitmap
*
* This configures a particular VSI for TCs that are mapped to the
* given TC bitmap. It uses default bandwidth share for TCs across
* VSIs to configure TC for a particular VSI.
*
* NOTE:
* It is expected that the VSI queues have been quisced before calling
* this function.
**/
static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
{
u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi_context ctxt;
int ret = 0;
int i;
/* Check if enabled_tc is same as existing or new TCs */
if (vsi->tc_config.enabled_tc == enabled_tc &&
vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
return ret;
/* Enable ETS TCs with equal BW Share for now across all VSIs */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tc & BIT(i))
bw_share[i] = 1;
}
ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
if (ret) {
struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
dev_info(&pf->pdev->dev,
"Failed configuring TC map %d for VSI %d\n",
enabled_tc, vsi->seid);
ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid,
&bw_config, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed querying vsi bw info, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
goto out;
}
if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) {
u8 valid_tc = bw_config.tc_valid_bits & enabled_tc;
if (!valid_tc)
valid_tc = bw_config.tc_valid_bits;
/* Always enable TC0, no matter what */
valid_tc |= 1;
dev_info(&pf->pdev->dev,
"Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n",
enabled_tc, bw_config.tc_valid_bits, valid_tc);
enabled_tc = valid_tc;
}
ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
if (ret) {
dev_err(&pf->pdev->dev,
"Unable to configure TC map %d for VSI %d\n",
enabled_tc, vsi->seid);
goto out;
}
}
/* Update Queue Pairs Mapping for currently enabled UPs */
ctxt.seid = vsi->seid;
ctxt.pf_num = vsi->back->hw.pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.info = vsi->info;
if (i40e_is_tc_mqprio_enabled(pf)) {
ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc);
if (ret)
goto out;
} else {
i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
}
/* On destroying the qdisc, reset vsi->rss_size, as number of enabled
* queues changed.
*/
if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) {
vsi->rss_size = min_t(int, vsi->back->alloc_rss_size,
vsi->num_queue_pairs);
ret = i40e_vsi_config_rss(vsi);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Failed to reconfig rss for num_queues\n");
return ret;
}
vsi->reconfig_rss = false;
}
if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
}
/* Update the VSI after updating the VSI queue-mapping
* information
*/
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Update vsi tc config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
goto out;
}
/* update the local VSI info with updated queue map */
i40e_vsi_update_queue_map(vsi, &ctxt);
vsi->info.valid_sections = 0;
/* Update current VSI BW information */
ret = i40e_vsi_get_bw_info(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed updating vsi bw info, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
goto out;
}
/* Update the netdev TC setup */
i40e_vsi_config_netdev_tc(vsi, enabled_tc);
out:
return ret;
}
/**
* i40e_get_link_speed - Returns link speed for the interface
* @vsi: VSI to be configured
*
**/
static int i40e_get_link_speed(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
switch (pf->hw.phy.link_info.link_speed) {
case I40E_LINK_SPEED_40GB:
return 40000;
case I40E_LINK_SPEED_25GB:
return 25000;
case I40E_LINK_SPEED_20GB:
return 20000;
case I40E_LINK_SPEED_10GB:
return 10000;
case I40E_LINK_SPEED_1GB:
return 1000;
default:
return -EINVAL;
}
}
/**
* i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits
* @vsi: Pointer to vsi structure
* @max_tx_rate: max TX rate in bytes to be converted into Mbits
*
* Helper function to convert units before send to set BW limit
**/
static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate)
{
if (max_tx_rate < I40E_BW_MBPS_DIVISOR) {
dev_warn(&vsi->back->pdev->dev,
"Setting max tx rate to minimum usable value of 50Mbps.\n");
max_tx_rate = I40E_BW_CREDIT_DIVISOR;
} else {
do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
}
return max_tx_rate;
}
/**
* i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
* @vsi: VSI to be configured
* @seid: seid of the channel/VSI
* @max_tx_rate: max TX rate to be configured as BW limit
*
* Helper function to set BW limit for a given VSI
**/
int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate)
{
struct i40e_pf *pf = vsi->back;
u64 credits = 0;
int speed = 0;
int ret = 0;
speed = i40e_get_link_speed(vsi);
if (max_tx_rate > speed) {
dev_err(&pf->pdev->dev,
"Invalid max tx rate %llu specified for VSI seid %d.",
max_tx_rate, seid);
return -EINVAL;
}
if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) {
dev_warn(&pf->pdev->dev,
"Setting max tx rate to minimum usable value of 50Mbps.\n");
max_tx_rate = I40E_BW_CREDIT_DIVISOR;
}
/* Tx rate credits are in values of 50Mbps, 0 is disabled */
credits = max_tx_rate;
do_div(credits, I40E_BW_CREDIT_DIVISOR);
ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits,
I40E_MAX_BW_INACTIVE_ACCUM, NULL);
if (ret)
dev_err(&pf->pdev->dev,
"Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n",
max_tx_rate, seid, ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return ret;
}
/**
* i40e_remove_queue_channels - Remove queue channels for the TCs
* @vsi: VSI to be configured
*
* Remove queue channels for the TCs
**/
static void i40e_remove_queue_channels(struct i40e_vsi *vsi)
{
enum i40e_admin_queue_err last_aq_status;
struct i40e_cloud_filter *cfilter;
struct i40e_channel *ch, *ch_tmp;
struct i40e_pf *pf = vsi->back;
struct hlist_node *node;
int ret, i;
/* Reset rss size that was stored when reconfiguring rss for
* channel VSIs with non-power-of-2 queue count.
*/
vsi->current_rss_size = 0;
/* perform cleanup for channels if they exist */
if (list_empty(&vsi->ch_list))
return;
list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
struct i40e_vsi *p_vsi;
list_del(&ch->list);
p_vsi = ch->parent_vsi;
if (!p_vsi || !ch->initialized) {
kfree(ch);
continue;
}
/* Reset queue contexts */
for (i = 0; i < ch->num_queue_pairs; i++) {
struct i40e_ring *tx_ring, *rx_ring;
u16 pf_q;
pf_q = ch->base_queue + i;
tx_ring = vsi->tx_rings[pf_q];
tx_ring->ch = NULL;
rx_ring = vsi->rx_rings[pf_q];
rx_ring->ch = NULL;
}
/* Reset BW configured for this VSI via mqprio */
ret = i40e_set_bw_limit(vsi, ch->seid, 0);
if (ret)
dev_info(&vsi->back->pdev->dev,
"Failed to reset tx rate for ch->seid %u\n",
ch->seid);
/* delete cloud filters associated with this channel */
hlist_for_each_entry_safe(cfilter, node,
&pf->cloud_filter_list, cloud_node) {
if (cfilter->seid != ch->seid)
continue;
hash_del(&cfilter->cloud_node);
if (cfilter->dst_port)
ret = i40e_add_del_cloud_filter_big_buf(vsi,
cfilter,
false);
else
ret = i40e_add_del_cloud_filter(vsi, cfilter,
false);
last_aq_status = pf->hw.aq.asq_last_status;
if (ret)
dev_info(&pf->pdev->dev,
"Failed to delete cloud filter, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, last_aq_status));
kfree(cfilter);
}
/* delete VSI from FW */
ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
NULL);
if (ret)
dev_err(&vsi->back->pdev->dev,
"unable to remove channel (%d) for parent VSI(%d)\n",
ch->seid, p_vsi->seid);
kfree(ch);
}
INIT_LIST_HEAD(&vsi->ch_list);
}
/**
* i40e_get_max_queues_for_channel
* @vsi: ptr to VSI to which channels are associated with
*
* Helper function which returns max value among the queue counts set on the
* channels/TCs created.
**/
static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi)
{
struct i40e_channel *ch, *ch_tmp;
int max = 0;
list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
if (!ch->initialized)
continue;
if (ch->num_queue_pairs > max)
max = ch->num_queue_pairs;
}
return max;
}
/**
* i40e_validate_num_queues - validate num_queues w.r.t channel
* @pf: ptr to PF device
* @num_queues: number of queues
* @vsi: the parent VSI
* @reconfig_rss: indicates should the RSS be reconfigured or not
*
* This function validates number of queues in the context of new channel
* which is being established and determines if RSS should be reconfigured
* or not for parent VSI.
**/
static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues,
struct i40e_vsi *vsi, bool *reconfig_rss)
{
int max_ch_queues;
if (!reconfig_rss)
return -EINVAL;
*reconfig_rss = false;
if (vsi->current_rss_size) {
if (num_queues > vsi->current_rss_size) {
dev_dbg(&pf->pdev->dev,
"Error: num_queues (%d) > vsi's current_size(%d)\n",
num_queues, vsi->current_rss_size);
return -EINVAL;
} else if ((num_queues < vsi->current_rss_size) &&
(!is_power_of_2(num_queues))) {
dev_dbg(&pf->pdev->dev,
"Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n",
num_queues, vsi->current_rss_size);
return -EINVAL;
}
}
if (!is_power_of_2(num_queues)) {
/* Find the max num_queues configured for channel if channel
* exist.
* if channel exist, then enforce 'num_queues' to be more than
* max ever queues configured for channel.
*/
max_ch_queues = i40e_get_max_queues_for_channel(vsi);
if (num_queues < max_ch_queues) {
dev_dbg(&pf->pdev->dev,
"Error: num_queues (%d) < max queues configured for channel(%d)\n",
num_queues, max_ch_queues);
return -EINVAL;
}
*reconfig_rss = true;
}
return 0;
}
/**
* i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size
* @vsi: the VSI being setup
* @rss_size: size of RSS, accordingly LUT gets reprogrammed
*
* This function reconfigures RSS by reprogramming LUTs using 'rss_size'
**/
static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size)
{
struct i40e_pf *pf = vsi->back;
u8 seed[I40E_HKEY_ARRAY_SIZE];
struct i40e_hw *hw = &pf->hw;
int local_rss_size;
u8 *lut;
int ret;
if (!vsi->rss_size)
return -EINVAL;
if (rss_size > vsi->rss_size)
return -EINVAL;
local_rss_size = min_t(int, vsi->rss_size, rss_size);
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
/* Ignoring user configured lut if there is one */
i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size);
/* Use user configured hash key if there is one, otherwise
* use default.
*/
if (vsi->rss_hkey_user)
memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
else
netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot set RSS lut, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
kfree(lut);
return ret;
}
kfree(lut);
/* Do the update w.r.t. storing rss_size */
if (!vsi->orig_rss_size)
vsi->orig_rss_size = vsi->rss_size;
vsi->current_rss_size = local_rss_size;
return ret;
}
/**
* i40e_channel_setup_queue_map - Setup a channel queue map
* @pf: ptr to PF device
* @ctxt: VSI context structure
* @ch: ptr to channel structure
*
* Setup queue map for a specific channel
**/
static void i40e_channel_setup_queue_map(struct i40e_pf *pf,
struct i40e_vsi_context *ctxt,
struct i40e_channel *ch)
{
u16 qcount, qmap, sections = 0;
u8 offset = 0;
int pow;
sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix);
ch->num_queue_pairs = qcount;
/* find the next higher power-of-2 of num queue pairs */
pow = ilog2(qcount);
if (!is_power_of_2(qcount))
pow++;
qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
/* Setup queue TC[0].qmap for given VSI context */
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */
ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue);
ctxt->info.valid_sections |= cpu_to_le16(sections);
}
/**
* i40e_add_channel - add a channel by adding VSI
* @pf: ptr to PF device
* @uplink_seid: underlying HW switching element (VEB) ID
* @ch: ptr to channel structure
*
* Add a channel (VSI) using add_vsi and queue_map
**/
static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid,
struct i40e_channel *ch)
{
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi_context ctxt;
u8 enabled_tc = 0x1; /* TC0 enabled */
int ret;
if (ch->type != I40E_VSI_VMDQ2) {
dev_info(&pf->pdev->dev,
"add new vsi failed, ch->type %d\n", ch->type);
return -EINVAL;
}
memset(&ctxt, 0, sizeof(ctxt));
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = uplink_seid;
ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
if (ch->type == I40E_VSI_VMDQ2)
ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
/* Set queue map for a given VSI context */
i40e_channel_setup_queue_map(pf, &ctxt, ch);
/* Now time to create VSI */
ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"add new vsi failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return -ENOENT;
}
/* Success, update channel, set enabled_tc only if the channel
* is not a macvlan
*/
ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc;
ch->seid = ctxt.seid;
ch->vsi_number = ctxt.vsi_number;
ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx);
/* copy just the sections touched not the entire info
* since not all sections are valid as returned by
* update vsi params
*/
ch->info.mapping_flags = ctxt.info.mapping_flags;
memcpy(&ch->info.queue_mapping,
&ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping));
memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping,
sizeof(ctxt.info.tc_mapping));
return 0;
}
static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch,
u8 *bw_share)
{
struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
int ret;
int i;
memset(&bw_data, 0, sizeof(bw_data));
bw_data.tc_valid_bits = ch->enabled_tc;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
bw_data.tc_bw_credits[i] = bw_share[i];
ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid,
&bw_data, NULL);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n",
vsi->back->hw.aq.asq_last_status, ch->seid);
return -EINVAL;
}
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
ch->info.qs_handle[i] = bw_data.qs_handles[i];
return 0;
}
/**
* i40e_channel_config_tx_ring - config TX ring associated with new channel
* @pf: ptr to PF device
* @vsi: the VSI being setup
* @ch: ptr to channel structure
*
* Configure TX rings associated with channel (VSI) since queues are being
* from parent VSI.
**/
static int i40e_channel_config_tx_ring(struct i40e_pf *pf,
struct i40e_vsi *vsi,
struct i40e_channel *ch)
{
u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
int ret;
int i;
/* Enable ETS TCs with equal BW Share for now across all VSIs */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (ch->enabled_tc & BIT(i))
bw_share[i] = 1;
}
/* configure BW for new VSI */
ret = i40e_channel_config_bw(vsi, ch, bw_share);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"Failed configuring TC map %d for channel (seid %u)\n",
ch->enabled_tc, ch->seid);
return ret;
}
for (i = 0; i < ch->num_queue_pairs; i++) {
struct i40e_ring *tx_ring, *rx_ring;
u16 pf_q;
pf_q = ch->base_queue + i;
/* Get to TX ring ptr of main VSI, for re-setup TX queue
* context
*/
tx_ring = vsi->tx_rings[pf_q];
tx_ring->ch = ch;
/* Get the RX ring ptr */
rx_ring = vsi->rx_rings[pf_q];
rx_ring->ch = ch;
}
return 0;
}
/**
* i40e_setup_hw_channel - setup new channel
* @pf: ptr to PF device
* @vsi: the VSI being setup
* @ch: ptr to channel structure
* @uplink_seid: underlying HW switching element (VEB) ID
* @type: type of channel to be created (VMDq2/VF)
*
* Setup new channel (VSI) based on specified type (VMDq2/VF)
* and configures TX rings accordingly
**/
static inline int i40e_setup_hw_channel(struct i40e_pf *pf,
struct i40e_vsi *vsi,
struct i40e_channel *ch,
u16 uplink_seid, u8 type)
{
int ret;
ch->initialized = false;
ch->base_queue = vsi->next_base_queue;
ch->type = type;
/* Proceed with creation of channel (VMDq2) VSI */
ret = i40e_add_channel(pf, uplink_seid, ch);
if (ret) {
dev_info(&pf->pdev->dev,
"failed to add_channel using uplink_seid %u\n",
uplink_seid);
return ret;
}
/* Mark the successful creation of channel */
ch->initialized = true;
/* Reconfigure TX queues using QTX_CTL register */
ret = i40e_channel_config_tx_ring(pf, vsi, ch);
if (ret) {
dev_info(&pf->pdev->dev,
"failed to configure TX rings for channel %u\n",
ch->seid);
return ret;
}
/* update 'next_base_queue' */
vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs;
dev_dbg(&pf->pdev->dev,
"Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n",
ch->seid, ch->vsi_number, ch->stat_counter_idx,
ch->num_queue_pairs,
vsi->next_base_queue);
return ret;
}
/**
* i40e_setup_channel - setup new channel using uplink element
* @pf: ptr to PF device
* @vsi: pointer to the VSI to set up the channel within
* @ch: ptr to channel structure
*
* Setup new channel (VSI) based on specified type (VMDq2/VF)
* and uplink switching element (uplink_seid)
**/
static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi,
struct i40e_channel *ch)
{
u8 vsi_type;
u16 seid;
int ret;
if (vsi->type == I40E_VSI_MAIN) {
vsi_type = I40E_VSI_VMDQ2;
} else {
dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n",
vsi->type);
return false;
}
/* underlying switching element */
seid = pf->vsi[pf->lan_vsi]->uplink_seid;
/* create channel (VSI), configure TX rings */
ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type);
if (ret) {
dev_err(&pf->pdev->dev, "failed to setup hw_channel\n");
return false;
}
return ch->initialized ? true : false;
}
/**
* i40e_validate_and_set_switch_mode - sets up switch mode correctly
* @vsi: ptr to VSI which has PF backing
*
* Sets up switch mode correctly if it needs to be changed and perform
* what are allowed modes.
**/
static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi)
{
u8 mode;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int ret;
ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities);
if (ret)
return -EINVAL;
if (hw->dev_caps.switch_mode) {
/* if switch mode is set, support mode2 (non-tunneled for
* cloud filter) for now
*/
u32 switch_mode = hw->dev_caps.switch_mode &
I40E_SWITCH_MODE_MASK;
if (switch_mode >= I40E_CLOUD_FILTER_MODE1) {
if (switch_mode == I40E_CLOUD_FILTER_MODE2)
return 0;
dev_err(&pf->pdev->dev,
"Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n",
hw->dev_caps.switch_mode);
return -EINVAL;
}
}
/* Set Bit 7 to be valid */
mode = I40E_AQ_SET_SWITCH_BIT7_VALID;
/* Set L4type for TCP support */
mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP;
/* Set cloud filter mode */
mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL;
/* Prep mode field for set_switch_config */
ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags,
pf->last_sw_conf_valid_flags,
mode, NULL);
if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH)
dev_err(&pf->pdev->dev,
"couldn't set switch config bits, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw,
hw->aq.asq_last_status));
return ret;
}
/**
* i40e_create_queue_channel - function to create channel
* @vsi: VSI to be configured
* @ch: ptr to channel (it contains channel specific params)
*
* This function creates channel (VSI) using num_queues specified by user,
* reconfigs RSS if needed.
**/
int i40e_create_queue_channel(struct i40e_vsi *vsi,
struct i40e_channel *ch)
{
struct i40e_pf *pf = vsi->back;
bool reconfig_rss;
int err;
if (!ch)
return -EINVAL;
if (!ch->num_queue_pairs) {
dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n",
ch->num_queue_pairs);
return -EINVAL;
}
/* validate user requested num_queues for channel */
err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi,
&reconfig_rss);
if (err) {
dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n",
ch->num_queue_pairs);
return -EINVAL;
}
/* By default we are in VEPA mode, if this is the first VF/VMDq
* VSI to be added switch to VEB mode.
*/
if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
if (vsi->type == I40E_VSI_MAIN) {
if (i40e_is_tc_mqprio_enabled(pf))
i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
else
i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG);
}
/* now onwards for main VSI, number of queues will be value
* of TC0's queue count
*/
}
/* By this time, vsi->cnt_q_avail shall be set to non-zero and
* it should be more than num_queues
*/
if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) {
dev_dbg(&pf->pdev->dev,
"Error: cnt_q_avail (%u) less than num_queues %d\n",
vsi->cnt_q_avail, ch->num_queue_pairs);
return -EINVAL;
}
/* reconfig_rss only if vsi type is MAIN_VSI */
if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) {
err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs);
if (err) {
dev_info(&pf->pdev->dev,
"Error: unable to reconfig rss for num_queues (%u)\n",
ch->num_queue_pairs);
return -EINVAL;
}
}
if (!i40e_setup_channel(pf, vsi, ch)) {
dev_info(&pf->pdev->dev, "Failed to setup channel\n");
return -EINVAL;
}
dev_info(&pf->pdev->dev,
"Setup channel (id:%u) utilizing num_queues %d\n",
ch->seid, ch->num_queue_pairs);
/* configure VSI for BW limit */
if (ch->max_tx_rate) {
u64 credits = ch->max_tx_rate;
if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate))
return -EINVAL;
do_div(credits, I40E_BW_CREDIT_DIVISOR);
dev_dbg(&pf->pdev->dev,
"Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
ch->max_tx_rate,
credits,
ch->seid);
}
/* in case of VF, this will be main SRIOV VSI */
ch->parent_vsi = vsi;
/* and update main_vsi's count for queue_available to use */
vsi->cnt_q_avail -= ch->num_queue_pairs;
return 0;
}
/**
* i40e_configure_queue_channels - Add queue channel for the given TCs
* @vsi: VSI to be configured
*
* Configures queue channel mapping to the given TCs
**/
static int i40e_configure_queue_channels(struct i40e_vsi *vsi)
{
struct i40e_channel *ch;
u64 max_rate = 0;
int ret = 0, i;
/* Create app vsi with the TCs. Main VSI with TC0 is already set up */
vsi->tc_seid_map[0] = vsi->seid;
for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->tc_config.enabled_tc & BIT(i)) {
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch) {
ret = -ENOMEM;
goto err_free;
}
INIT_LIST_HEAD(&ch->list);
ch->num_queue_pairs =
vsi->tc_config.tc_info[i].qcount;
ch->base_queue =
vsi->tc_config.tc_info[i].qoffset;
/* Bandwidth limit through tc interface is in bytes/s,
* change to Mbit/s
*/
max_rate = vsi->mqprio_qopt.max_rate[i];
do_div(max_rate, I40E_BW_MBPS_DIVISOR);
ch->max_tx_rate = max_rate;
list_add_tail(&ch->list, &vsi->ch_list);
ret = i40e_create_queue_channel(vsi, ch);
if (ret) {
dev_err(&vsi->back->pdev->dev,
"Failed creating queue channel with TC%d: queues %d\n",
i, ch->num_queue_pairs);
goto err_free;
}
vsi->tc_seid_map[i] = ch->seid;
}
}
/* reset to reconfigure TX queue contexts */
i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true);
return ret;
err_free:
i40e_remove_queue_channels(vsi);
return ret;
}
/**
* i40e_veb_config_tc - Configure TCs for given VEB
* @veb: given VEB
* @enabled_tc: TC bitmap
*
* Configures given TC bitmap for VEB (switching) element
**/
int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
{
struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
struct i40e_pf *pf = veb->pf;
int ret = 0;
int i;
/* No TCs or already enabled TCs just return */
if (!enabled_tc || veb->enabled_tc == enabled_tc)
return ret;
bw_data.tc_valid_bits = enabled_tc;
/* bw_data.absolute_credits is not set (relative) */
/* Enable ETS TCs with equal BW Share for now */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tc & BIT(i))
bw_data.tc_bw_share_credits[i] = 1;
}
ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
&bw_data, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"VEB bw config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
goto out;
}
/* Update the BW information */
ret = i40e_veb_get_bw_info(veb);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed getting veb bw config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
}
out:
return ret;
}
#ifdef CONFIG_I40E_DCB
/**
* i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
* @pf: PF struct
*
* Reconfigure VEB/VSIs on a given PF; it is assumed that
* the caller would've quiesce all the VSIs before calling
* this function
**/
static void i40e_dcb_reconfigure(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
struct i40e_veb *veb;
u8 tc_map = 0;
int ret;
int v;
/* Enable the TCs available on PF to all VEBs */
tc_map = i40e_pf_get_tc_map(pf);
if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS)
return;
i40e_pf_for_each_veb(pf, v, veb) {
ret = i40e_veb_config_tc(veb, tc_map);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed configuring TC for VEB seid=%d\n",
veb->seid);
/* Will try to configure as many components */
}
}
/* Update each VSI */
i40e_pf_for_each_vsi(pf, v, vsi) {
/* - Enable all TCs for the LAN VSI
* - For all others keep them at TC0 for now
*/
if (v == pf->lan_vsi)
tc_map = i40e_pf_get_tc_map(pf);
else
tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
ret = i40e_vsi_config_tc(vsi, tc_map);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed configuring TC for VSI seid=%d\n",
vsi->seid);
/* Will try to configure as many components */
} else {
/* Re-configure VSI vectors based on updated TC map */
i40e_vsi_map_rings_to_vectors(vsi);
if (vsi->netdev)
i40e_dcbnl_set_all(vsi);
}
}
}
/**
* i40e_resume_port_tx - Resume port Tx
* @pf: PF struct
*
* Resume a port's Tx and issue a PF reset in case of failure to
* resume.
**/
static int i40e_resume_port_tx(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int ret;
ret = i40e_aq_resume_port_tx(hw, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Resume Port Tx failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* Schedule PF reset to recover */
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
}
return ret;
}
/**
* i40e_suspend_port_tx - Suspend port Tx
* @pf: PF struct
*
* Suspend a port's Tx and issue a PF reset in case of failure.
**/
static int i40e_suspend_port_tx(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int ret;
ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Suspend Port Tx failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* Schedule PF reset to recover */
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
}
return ret;
}
/**
* i40e_hw_set_dcb_config - Program new DCBX settings into HW
* @pf: PF being configured
* @new_cfg: New DCBX configuration
*
* Program DCB settings into HW and reconfigure VEB/VSIs on
* given PF. Uses "Set LLDP MIB" AQC to program the hardware.
**/
static int i40e_hw_set_dcb_config(struct i40e_pf *pf,
struct i40e_dcbx_config *new_cfg)
{
struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config;
int ret;
/* Check if need reconfiguration */
if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) {
dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n");
return 0;
}
/* Config change disable all VSIs */
i40e_pf_quiesce_all_vsi(pf);
/* Copy the new config to the current config */
*old_cfg = *new_cfg;
old_cfg->etsrec = old_cfg->etscfg;
ret = i40e_set_dcb_config(&pf->hw);
if (ret) {
dev_info(&pf->pdev->dev,
"Set DCB Config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
goto out;
}
/* Changes in configuration update VEB/VSI */
i40e_dcb_reconfigure(pf);
out:
/* In case of reset do not try to resume anything */
if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) {
/* Re-start the VSIs if disabled */
ret = i40e_resume_port_tx(pf);
/* In case of error no point in resuming VSIs */
if (ret)
goto err;
i40e_pf_unquiesce_all_vsi(pf);
}
err:
return ret;
}
/**
* i40e_hw_dcb_config - Program new DCBX settings into HW
* @pf: PF being configured
* @new_cfg: New DCBX configuration
*
* Program DCB settings into HW and reconfigure VEB/VSIs on
* given PF
**/
int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg)
{
struct i40e_aqc_configure_switching_comp_ets_data ets_data;
u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0};
u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS];
struct i40e_dcbx_config *old_cfg;
u8 mode[I40E_MAX_TRAFFIC_CLASS];
struct i40e_rx_pb_config pb_cfg;
struct i40e_hw *hw = &pf->hw;
u8 num_ports = hw->num_ports;
bool need_reconfig;
int ret = -EINVAL;
u8 lltc_map = 0;
u8 tc_map = 0;
u8 new_numtc;
u8 i;
dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n");
/* Un-pack information to Program ETS HW via shared API
* numtc, tcmap
* LLTC map
* ETS/NON-ETS arbiter mode
* max exponent (credit refills)
* Total number of ports
* PFC priority bit-map
* Priority Table
* BW % per TC
* Arbiter mode between UPs sharing same TC
* TSA table (ETS or non-ETS)
* EEE enabled or not
* MFS TC table
*/
new_numtc = i40e_dcb_get_num_tc(new_cfg);
memset(&ets_data, 0, sizeof(ets_data));
for (i = 0; i < new_numtc; i++) {
tc_map |= BIT(i);
switch (new_cfg->etscfg.tsatable[i]) {
case I40E_IEEE_TSA_ETS:
prio_type[i] = I40E_DCB_PRIO_TYPE_ETS;
ets_data.tc_bw_share_credits[i] =
new_cfg->etscfg.tcbwtable[i];
break;
case I40E_IEEE_TSA_STRICT:
prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT;
lltc_map |= BIT(i);
ets_data.tc_bw_share_credits[i] =
I40E_DCB_STRICT_PRIO_CREDITS;
break;
default:
/* Invalid TSA type */
need_reconfig = false;
goto out;
}
}
old_cfg = &hw->local_dcbx_config;
/* Check if need reconfiguration */
need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg);
/* If needed, enable/disable frame tagging, disable all VSIs
* and suspend port tx
*/
if (need_reconfig) {
/* Enable DCB tagging only when more than one TC */
if (new_numtc > 1)
set_bit(I40E_FLAG_DCB_ENA, pf->flags);
else
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
set_bit(__I40E_PORT_SUSPENDED, pf->state);
/* Reconfiguration needed quiesce all VSIs */
i40e_pf_quiesce_all_vsi(pf);
ret = i40e_suspend_port_tx(pf);
if (ret)
goto err;
}
/* Configure Port ETS Tx Scheduler */
ets_data.tc_valid_bits = tc_map;
ets_data.tc_strict_priority_flags = lltc_map;
ret = i40e_aq_config_switch_comp_ets
(hw, pf->mac_seid, &ets_data,
i40e_aqc_opc_modify_switching_comp_ets, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Modify Port ETS failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
goto out;
}
/* Configure Rx ETS HW */
memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode));
i40e_dcb_hw_set_num_tc(hw, new_numtc);
i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN,
I40E_DCB_ARB_MODE_STRICT_PRIORITY,
I40E_DCB_DEFAULT_MAX_EXPONENT,
lltc_map);
i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports);
i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode,
prio_type);
i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable,
new_cfg->etscfg.prioritytable);
i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable);
/* Configure Rx Packet Buffers in HW */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu;
mfs_tc[i] += I40E_PACKET_HDR_PAD;
}
i40e_dcb_hw_calculate_pool_sizes(hw, num_ports,
false, new_cfg->pfc.pfcenable,
mfs_tc, &pb_cfg);
i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg);
/* Update the local Rx Packet buffer config */
pf->pb_cfg = pb_cfg;
/* Inform the FW about changes to DCB configuration */
ret = i40e_aq_dcb_updated(&pf->hw, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"DCB Updated failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
goto out;
}
/* Update the port DCBx configuration */
*old_cfg = *new_cfg;
/* Changes in configuration update VEB/VSI */
i40e_dcb_reconfigure(pf);
out:
/* Re-start the VSIs if disabled */
if (need_reconfig) {
ret = i40e_resume_port_tx(pf);
clear_bit(__I40E_PORT_SUSPENDED, pf->state);
/* In case of error no point in resuming VSIs */
if (ret)
goto err;
/* Wait for the PF's queues to be disabled */
ret = i40e_pf_wait_queues_disabled(pf);
if (ret) {
/* Schedule PF reset to recover */
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
goto err;
} else {
i40e_pf_unquiesce_all_vsi(pf);
set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
}
/* registers are set, lets apply */
if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps))
ret = i40e_hw_set_dcb_config(pf, new_cfg);
}
err:
return ret;
}
/**
* i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW
* @pf: PF being queried
*
* Set default DCB configuration in case DCB is to be done in SW.
**/
int i40e_dcb_sw_default_config(struct i40e_pf *pf)
{
struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config;
struct i40e_aqc_configure_switching_comp_ets_data ets_data;
struct i40e_hw *hw = &pf->hw;
int err;
if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) {
/* Update the local cached instance with TC0 ETS */
memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config));
pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
pf->tmp_cfg.etscfg.maxtcs = 0;
pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS;
pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING;
pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
/* FW needs one App to configure HW */
pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS;
pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE;
pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO;
pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE;
return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg);
}
memset(&ets_data, 0, sizeof(ets_data));
ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */
ets_data.tc_strict_priority_flags = 0; /* ETS */
ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */
/* Enable ETS on the Physical port */
err = i40e_aq_config_switch_comp_ets
(hw, pf->mac_seid, &ets_data,
i40e_aqc_opc_enable_switching_comp_ets, NULL);
if (err) {
dev_info(&pf->pdev->dev,
"Enable Port ETS failed, err %pe aq_err %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
err = -ENOENT;
goto out;
}
/* Update the local cached instance with TC0 ETS */
dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
dcb_cfg->etscfg.cbs = 0;
dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS;
dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
out:
return err;
}
/**
* i40e_init_pf_dcb - Initialize DCB configuration
* @pf: PF being configured
*
* Query the current DCB configuration and cache it
* in the hardware structure
**/
static int i40e_init_pf_dcb(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int err;
/* Do not enable DCB for SW1 and SW2 images even if the FW is capable
* Also do not enable DCBx if FW LLDP agent is disabled
*/
if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) {
dev_info(&pf->pdev->dev, "DCB is not supported.\n");
err = -EOPNOTSUPP;
goto out;
}
if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) {
dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n");
err = i40e_dcb_sw_default_config(pf);
if (err) {
dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n");
goto out;
}
dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n");
pf->dcbx_cap = DCB_CAP_DCBX_HOST |
DCB_CAP_DCBX_VER_IEEE;
/* at init capable but disabled */
set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
goto out;
}
err = i40e_init_dcb(hw, true);
if (!err) {
/* Device/Function is not DCBX capable */
if ((!hw->func_caps.dcb) ||
(hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
dev_info(&pf->pdev->dev,
"DCBX offload is not supported or is disabled for this PF.\n");
} else {
/* When status is not DISABLED then DCBX in FW */
pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
DCB_CAP_DCBX_VER_IEEE;
set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
/* Enable DCB tagging only when more than one TC
* or explicitly disable if only one TC
*/
if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
set_bit(I40E_FLAG_DCB_ENA, pf->flags);
else
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
dev_dbg(&pf->pdev->dev,
"DCBX offload is supported for this PF.\n");
}
} else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) {
dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n");
set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags);
} else {
dev_info(&pf->pdev->dev,
"Query for DCB configuration failed, err %pe aq_err %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
}
out:
return err;
}
#endif /* CONFIG_I40E_DCB */
/**
* i40e_print_link_message - print link up or down
* @vsi: the VSI for which link needs a message
* @isup: true of link is up, false otherwise
*/
void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
{
enum i40e_aq_link_speed new_speed;
struct i40e_pf *pf = vsi->back;
char *speed = "Unknown";
char *fc = "Unknown";
char *fec = "";
char *req_fec = "";
char *an = "";
if (isup)
new_speed = pf->hw.phy.link_info.link_speed;
else
new_speed = I40E_LINK_SPEED_UNKNOWN;
if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
return;
vsi->current_isup = isup;
vsi->current_speed = new_speed;
if (!isup) {
netdev_info(vsi->netdev, "NIC Link is Down\n");
return;
}
/* Warn user if link speed on NPAR enabled partition is not at
* least 10GB
*/
if (pf->hw.func_caps.npar_enable &&
(pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
netdev_warn(vsi->netdev,
"The partition detected link speed that is less than 10Gbps\n");
switch (pf->hw.phy.link_info.link_speed) {
case I40E_LINK_SPEED_40GB:
speed = "40 G";
break;
case I40E_LINK_SPEED_20GB:
speed = "20 G";
break;
case I40E_LINK_SPEED_25GB:
speed = "25 G";
break;
case I40E_LINK_SPEED_10GB:
speed = "10 G";
break;
case I40E_LINK_SPEED_5GB:
speed = "5 G";
break;
case I40E_LINK_SPEED_2_5GB:
speed = "2.5 G";
break;
case I40E_LINK_SPEED_1GB:
speed = "1000 M";
break;
case I40E_LINK_SPEED_100MB:
speed = "100 M";
break;
default:
break;
}
switch (pf->hw.fc.current_mode) {
case I40E_FC_FULL:
fc = "RX/TX";
break;
case I40E_FC_TX_PAUSE:
fc = "TX";
break;
case I40E_FC_RX_PAUSE:
fc = "RX";
break;
default:
fc = "None";
break;
}
if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
req_fec = "None";
fec = "None";
an = "False";
if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
an = "True";
if (pf->hw.phy.link_info.fec_info &
I40E_AQ_CONFIG_FEC_KR_ENA)
fec = "CL74 FC-FEC/BASE-R";
else if (pf->hw.phy.link_info.fec_info &
I40E_AQ_CONFIG_FEC_RS_ENA)
fec = "CL108 RS-FEC";
/* 'CL108 RS-FEC' should be displayed when RS is requested, or
* both RS and FC are requested
*/
if (vsi->back->hw.phy.link_info.req_fec_info &
(I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
if (vsi->back->hw.phy.link_info.req_fec_info &
I40E_AQ_REQUEST_FEC_RS)
req_fec = "CL108 RS-FEC";
else
req_fec = "CL74 FC-FEC/BASE-R";
}
netdev_info(vsi->netdev,
"NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
speed, req_fec, fec, an, fc);
} else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) {
req_fec = "None";
fec = "None";
an = "False";
if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
an = "True";
if (pf->hw.phy.link_info.fec_info &
I40E_AQ_CONFIG_FEC_KR_ENA)
fec = "CL74 FC-FEC/BASE-R";
if (pf->hw.phy.link_info.req_fec_info &
I40E_AQ_REQUEST_FEC_KR)
req_fec = "CL74 FC-FEC/BASE-R";
netdev_info(vsi->netdev,
"NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
speed, req_fec, fec, an, fc);
} else {
netdev_info(vsi->netdev,
"NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n",
speed, fc);
}
}
/**
* i40e_up_complete - Finish the last steps of bringing up a connection
* @vsi: the VSI being configured
**/
static int i40e_up_complete(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int err;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
i40e_vsi_configure_msix(vsi);
else
i40e_configure_msi_and_legacy(vsi);
/* start rings */
err = i40e_vsi_start_rings(vsi);
if (err)
return err;
clear_bit(__I40E_VSI_DOWN, vsi->state);
i40e_napi_enable_all(vsi);
i40e_vsi_enable_irq(vsi);
if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
(vsi->netdev)) {
i40e_print_link_message(vsi, true);
netif_tx_start_all_queues(vsi->netdev);
netif_carrier_on(vsi->netdev);
}
/* replay FDIR SB filters */
if (vsi->type == I40E_VSI_FDIR) {
/* reset fd counters */
pf->fd_add_err = 0;
pf->fd_atr_cnt = 0;
i40e_fdir_filter_restore(vsi);
}
/* On the next run of the service_task, notify any clients of the new
* opened netdev
*/
set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
return 0;
}
/**
* i40e_vsi_reinit_locked - Reset the VSI
* @vsi: the VSI being configured
*
* Rebuild the ring structs after some configuration
* has changed, e.g. MTU size.
**/
static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
usleep_range(1000, 2000);
i40e_down(vsi);
i40e_up(vsi);
clear_bit(__I40E_CONFIG_BUSY, pf->state);
}
/**
* i40e_force_link_state - Force the link status
* @pf: board private structure
* @is_up: whether the link state should be forced up or down
**/
static int i40e_force_link_state(struct i40e_pf *pf, bool is_up)
{
struct i40e_aq_get_phy_abilities_resp abilities;
struct i40e_aq_set_phy_config config = {0};
bool non_zero_phy_type = is_up;
struct i40e_hw *hw = &pf->hw;
u64 mask;
u8 speed;
int err;
/* Card might've been put in an unstable state by other drivers
* and applications, which causes incorrect speed values being
* set on startup. In order to clear speed registers, we call
* get_phy_capabilities twice, once to get initial state of
* available speeds, and once to get current PHY config.
*/
err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities,
NULL);
if (err) {
dev_err(&pf->pdev->dev,
"failed to get phy cap., ret = %pe last_status = %s\n",
ERR_PTR(err),
i40e_aq_str(hw, hw->aq.asq_last_status));
return err;
}
speed = abilities.link_speed;
/* Get the current phy config */
err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
NULL);
if (err) {
dev_err(&pf->pdev->dev,
"failed to get phy cap., ret = %pe last_status = %s\n",
ERR_PTR(err),
i40e_aq_str(hw, hw->aq.asq_last_status));
return err;
}
/* If link needs to go up, but was not forced to go down,
* and its speed values are OK, no need for a flap
* if non_zero_phy_type was set, still need to force up
*/
if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags))
non_zero_phy_type = true;
else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0)
return 0;
/* To force link we need to set bits for all supported PHY types,
* but there are now more than 32, so we need to split the bitmap
* across two fields.
*/
mask = I40E_PHY_TYPES_BITMASK;
config.phy_type =
non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0;
config.phy_type_ext =
non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0;
/* Copy the old settings, except of phy_type */
config.abilities = abilities.abilities;
if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
if (is_up)
config.abilities |= I40E_AQ_PHY_ENABLE_LINK;
else
config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK);
}
if (abilities.link_speed != 0)
config.link_speed = abilities.link_speed;
else
config.link_speed = speed;
config.eee_capability = abilities.eee_capability;
config.eeer = abilities.eeer_val;
config.low_power_ctrl = abilities.d3_lpan;
config.fec_config = abilities.fec_cfg_curr_mod_ext_info &
I40E_AQ_PHY_FEC_CONFIG_MASK;
err = i40e_aq_set_phy_config(hw, &config, NULL);
if (err) {
dev_err(&pf->pdev->dev,
"set phy config ret = %pe last_status = %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return err;
}
/* Update the link info */
err = i40e_update_link_info(hw);
if (err) {
/* Wait a little bit (on 40G cards it sometimes takes a really
* long time for link to come back from the atomic reset)
* and try once more
*/
msleep(1000);
i40e_update_link_info(hw);
}
i40e_aq_set_link_restart_an(hw, is_up, NULL);
return 0;
}
/**
* i40e_up - Bring the connection back up after being down
* @vsi: the VSI being configured
**/
int i40e_up(struct i40e_vsi *vsi)
{
int err;
if (vsi->type == I40E_VSI_MAIN &&
(test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
i40e_force_link_state(vsi->back, true);
err = i40e_vsi_configure(vsi);
if (!err)
err = i40e_up_complete(vsi);
return err;
}
/**
* i40e_down - Shutdown the connection processing
* @vsi: the VSI being stopped
**/
void i40e_down(struct i40e_vsi *vsi)
{
int i;
/* It is assumed that the caller of this function
* sets the vsi->state __I40E_VSI_DOWN bit.
*/
if (vsi->netdev) {
netif_carrier_off(vsi->netdev);
netif_tx_disable(vsi->netdev);
}
i40e_vsi_disable_irq(vsi);
i40e_vsi_stop_rings(vsi);
if (vsi->type == I40E_VSI_MAIN &&
(test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
i40e_force_link_state(vsi->back, false);
i40e_napi_disable_all(vsi);
for (i = 0; i < vsi->num_queue_pairs; i++) {
i40e_clean_tx_ring(vsi->tx_rings[i]);
if (i40e_enabled_xdp_vsi(vsi)) {
/* Make sure that in-progress ndo_xdp_xmit and
* ndo_xsk_wakeup calls are completed.
*/
synchronize_rcu();
i40e_clean_tx_ring(vsi->xdp_rings[i]);
}
i40e_clean_rx_ring(vsi->rx_rings[i]);
}
}
/**
* i40e_validate_mqprio_qopt- validate queue mapping info
* @vsi: the VSI being configured
* @mqprio_qopt: queue parametrs
**/
static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi,
struct tc_mqprio_qopt_offload *mqprio_qopt)
{
u64 sum_max_rate = 0;
u64 max_rate = 0;
int i;
if (mqprio_qopt->qopt.offset[0] != 0 ||
mqprio_qopt->qopt.num_tc < 1 ||
mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS)
return -EINVAL;
for (i = 0; ; i++) {
if (!mqprio_qopt->qopt.count[i])
return -EINVAL;
if (mqprio_qopt->min_rate[i]) {
dev_err(&vsi->back->pdev->dev,
"Invalid min tx rate (greater than 0) specified\n");
return -EINVAL;
}
max_rate = mqprio_qopt->max_rate[i];
do_div(max_rate, I40E_BW_MBPS_DIVISOR);
sum_max_rate += max_rate;
if (i >= mqprio_qopt->qopt.num_tc - 1)
break;
if (mqprio_qopt->qopt.offset[i + 1] !=
(mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
return -EINVAL;
}
if (vsi->num_queue_pairs <
(mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) {
dev_err(&vsi->back->pdev->dev,
"Failed to create traffic channel, insufficient number of queues.\n");
return -EINVAL;
}
if (sum_max_rate > i40e_get_link_speed(vsi)) {
dev_err(&vsi->back->pdev->dev,
"Invalid max tx rate specified\n");
return -EINVAL;
}
return 0;
}
/**
* i40e_vsi_set_default_tc_config - set default values for tc configuration
* @vsi: the VSI being configured
**/
static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi)
{
u16 qcount;
int i;
/* Only TC0 is enabled */
vsi->tc_config.numtc = 1;
vsi->tc_config.enabled_tc = 1;
qcount = min_t(int, vsi->alloc_queue_pairs,
i40e_pf_get_max_q_per_tc(vsi->back));
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
/* For the TC that is not enabled set the offset to default
* queue and allocate one queue for the given TC.
*/
vsi->tc_config.tc_info[i].qoffset = 0;
if (i == 0)
vsi->tc_config.tc_info[i].qcount = qcount;
else
vsi->tc_config.tc_info[i].qcount = 1;
vsi->tc_config.tc_info[i].netdev_tc = 0;
}
}
/**
* i40e_del_macvlan_filter
* @hw: pointer to the HW structure
* @seid: seid of the channel VSI
* @macaddr: the mac address to apply as a filter
* @aq_err: store the admin Q error
*
* This function deletes a mac filter on the channel VSI which serves as the
* macvlan. Returns 0 on success.
**/
static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid,
const u8 *macaddr, int *aq_err)
{
struct i40e_aqc_remove_macvlan_element_data element;
int status;
memset(&element, 0, sizeof(element));
ether_addr_copy(element.mac_addr, macaddr);
element.vlan_tag = 0;
element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL);
*aq_err = hw->aq.asq_last_status;
return status;
}
/**
* i40e_add_macvlan_filter
* @hw: pointer to the HW structure
* @seid: seid of the channel VSI
* @macaddr: the mac address to apply as a filter
* @aq_err: store the admin Q error
*
* This function adds a mac filter on the channel VSI which serves as the
* macvlan. Returns 0 on success.
**/
static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid,
const u8 *macaddr, int *aq_err)
{
struct i40e_aqc_add_macvlan_element_data element;
u16 cmd_flags = 0;
int status;
ether_addr_copy(element.mac_addr, macaddr);
element.vlan_tag = 0;
element.queue_number = 0;
element.match_method = I40E_AQC_MM_ERR_NO_RES;
cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
element.flags = cpu_to_le16(cmd_flags);
status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL);
*aq_err = hw->aq.asq_last_status;
return status;
}
/**
* i40e_reset_ch_rings - Reset the queue contexts in a channel
* @vsi: the VSI we want to access
* @ch: the channel we want to access
*/
static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch)
{
struct i40e_ring *tx_ring, *rx_ring;
u16 pf_q;
int i;
for (i = 0; i < ch->num_queue_pairs; i++) {
pf_q = ch->base_queue + i;
tx_ring = vsi->tx_rings[pf_q];
tx_ring->ch = NULL;
rx_ring = vsi->rx_rings[pf_q];
rx_ring->ch = NULL;
}
}
/**
* i40e_free_macvlan_channels
* @vsi: the VSI we want to access
*
* This function frees the Qs of the channel VSI from
* the stack and also deletes the channel VSIs which
* serve as macvlans.
*/
static void i40e_free_macvlan_channels(struct i40e_vsi *vsi)
{
struct i40e_channel *ch, *ch_tmp;
int ret;
if (list_empty(&vsi->macvlan_list))
return;
list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
struct i40e_vsi *parent_vsi;
if (i40e_is_channel_macvlan(ch)) {
i40e_reset_ch_rings(vsi, ch);
clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev);
netdev_set_sb_channel(ch->fwd->netdev, 0);
kfree(ch->fwd);
ch->fwd = NULL;
}
list_del(&ch->list);
parent_vsi = ch->parent_vsi;
if (!parent_vsi || !ch->initialized) {
kfree(ch);
continue;
}
/* remove the VSI */
ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
NULL);
if (ret)
dev_err(&vsi->back->pdev->dev,
"unable to remove channel (%d) for parent VSI(%d)\n",
ch->seid, parent_vsi->seid);
kfree(ch);
}
vsi->macvlan_cnt = 0;
}
/**
* i40e_fwd_ring_up - bring the macvlan device up
* @vsi: the VSI we want to access
* @vdev: macvlan netdevice
* @fwd: the private fwd structure
*/
static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev,
struct i40e_fwd_adapter *fwd)
{
struct i40e_channel *ch = NULL, *ch_tmp, *iter;
int ret = 0, num_tc = 1, i, aq_err;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
/* Go through the list and find an available channel */
list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) {
if (!i40e_is_channel_macvlan(iter)) {
iter->fwd = fwd;
/* record configuration for macvlan interface in vdev */
for (i = 0; i < num_tc; i++)
netdev_bind_sb_channel_queue(vsi->netdev, vdev,
i,
iter->num_queue_pairs,
iter->base_queue);
for (i = 0; i < iter->num_queue_pairs; i++) {
struct i40e_ring *tx_ring, *rx_ring;
u16 pf_q;
pf_q = iter->base_queue + i;
/* Get to TX ring ptr */
tx_ring = vsi->tx_rings[pf_q];
tx_ring->ch = iter;
/* Get the RX ring ptr */
rx_ring = vsi->rx_rings[pf_q];
rx_ring->ch = iter;
}
ch = iter;
break;
}
}
if (!ch)
return -EINVAL;
/* Guarantee all rings are updated before we update the
* MAC address filter.
*/
wmb();
/* Add a mac filter */
ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err);
if (ret) {
/* if we cannot add the MAC rule then disable the offload */
macvlan_release_l2fw_offload(vdev);
for (i = 0; i < ch->num_queue_pairs; i++) {
struct i40e_ring *rx_ring;
u16 pf_q;
pf_q = ch->base_queue + i;
rx_ring = vsi->rx_rings[pf_q];
rx_ring->netdev = NULL;
}
dev_info(&pf->pdev->dev,
"Error adding mac filter on macvlan err %pe, aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, aq_err));
netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n");
}
return ret;
}
/**
* i40e_setup_macvlans - create the channels which will be macvlans
* @vsi: the VSI we want to access
* @macvlan_cnt: no. of macvlans to be setup
* @qcnt: no. of Qs per macvlan
* @vdev: macvlan netdevice
*/
static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt,
struct net_device *vdev)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi_context ctxt;
u16 sections, qmap, num_qps;
struct i40e_channel *ch;
int i, pow, ret = 0;
u8 offset = 0;
if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt)
return -EINVAL;
num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt);
/* find the next higher power-of-2 of num queue pairs */
pow = fls(roundup_pow_of_two(num_qps) - 1);
qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
/* Setup context bits for the main VSI */
sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = vsi->seid;
ctxt.pf_num = vsi->back->hw.pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.info = vsi->info;
ctxt.info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
ctxt.info.valid_sections |= cpu_to_le16(sections);
/* Reconfigure RSS for main VSI with new max queue count */
vsi->rss_size = max_t(u16, num_qps, qcnt);
ret = i40e_vsi_config_rss(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"Failed to reconfig RSS for num_queues (%u)\n",
vsi->rss_size);
return ret;
}
vsi->reconfig_rss = true;
dev_dbg(&vsi->back->pdev->dev,
"Reconfigured RSS with num_queues (%u)\n", vsi->rss_size);
vsi->next_base_queue = num_qps;
vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps;
/* Update the VSI after updating the VSI queue-mapping
* information
*/
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"Update vsi tc config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
/* update the local VSI info with updated queue map */
i40e_vsi_update_queue_map(vsi, &ctxt);
vsi->info.valid_sections = 0;
/* Create channels for macvlans */
INIT_LIST_HEAD(&vsi->macvlan_list);
for (i = 0; i < macvlan_cnt; i++) {
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch) {
ret = -ENOMEM;
goto err_free;
}
INIT_LIST_HEAD(&ch->list);
ch->num_queue_pairs = qcnt;
if (!i40e_setup_channel(pf, vsi, ch)) {
ret = -EINVAL;
kfree(ch);
goto err_free;
}
ch->parent_vsi = vsi;
vsi->cnt_q_avail -= ch->num_queue_pairs;
vsi->macvlan_cnt++;
list_add_tail(&ch->list, &vsi->macvlan_list);
}
return ret;
err_free:
dev_info(&pf->pdev->dev, "Failed to setup macvlans\n");
i40e_free_macvlan_channels(vsi);
return ret;
}
/**
* i40e_fwd_add - configure macvlans
* @netdev: net device to configure
* @vdev: macvlan netdevice
**/
static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors;
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_fwd_adapter *fwd;
int avail_macvlan, ret;
if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n");
return ERR_PTR(-EINVAL);
}
if (i40e_is_tc_mqprio_enabled(pf)) {
netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n");
return ERR_PTR(-EINVAL);
}
if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) {
netdev_info(netdev, "Not enough vectors available to support macvlans\n");
return ERR_PTR(-EINVAL);
}
/* The macvlan device has to be a single Q device so that the
* tc_to_txq field can be reused to pick the tx queue.
*/
if (netif_is_multiqueue(vdev))
return ERR_PTR(-ERANGE);
if (!vsi->macvlan_cnt) {
/* reserve bit 0 for the pf device */
set_bit(0, vsi->fwd_bitmask);
/* Try to reserve as many queues as possible for macvlans. First
* reserve 3/4th of max vectors, then half, then quarter and
* calculate Qs per macvlan as you go
*/
vectors = pf->num_lan_msix;
if (vectors <= I40E_MAX_MACVLANS && vectors > 64) {
/* allocate 4 Qs per macvlan and 32 Qs to the PF*/
q_per_macvlan = 4;
macvlan_cnt = (vectors - 32) / 4;
} else if (vectors <= 64 && vectors > 32) {
/* allocate 2 Qs per macvlan and 16 Qs to the PF*/
q_per_macvlan = 2;
macvlan_cnt = (vectors - 16) / 2;
} else if (vectors <= 32 && vectors > 16) {
/* allocate 1 Q per macvlan and 16 Qs to the PF*/
q_per_macvlan = 1;
macvlan_cnt = vectors - 16;
} else if (vectors <= 16 && vectors > 8) {
/* allocate 1 Q per macvlan and 8 Qs to the PF */
q_per_macvlan = 1;
macvlan_cnt = vectors - 8;
} else {
/* allocate 1 Q per macvlan and 1 Q to the PF */
q_per_macvlan = 1;
macvlan_cnt = vectors - 1;
}
if (macvlan_cnt == 0)
return ERR_PTR(-EBUSY);
/* Quiesce VSI queues */
i40e_quiesce_vsi(vsi);
/* sets up the macvlans but does not "enable" them */
ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan,
vdev);
if (ret)
return ERR_PTR(ret);
/* Unquiesce VSI */
i40e_unquiesce_vsi(vsi);
}
avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask,
vsi->macvlan_cnt);
if (avail_macvlan >= I40E_MAX_MACVLANS)
return ERR_PTR(-EBUSY);
/* create the fwd struct */
fwd = kzalloc(sizeof(*fwd), GFP_KERNEL);
if (!fwd)
return ERR_PTR(-ENOMEM);
set_bit(avail_macvlan, vsi->fwd_bitmask);
fwd->bit_no = avail_macvlan;
netdev_set_sb_channel(vdev, avail_macvlan);
fwd->netdev = vdev;
if (!netif_running(netdev))
return fwd;
/* Set fwd ring up */
ret = i40e_fwd_ring_up(vsi, vdev, fwd);
if (ret) {
/* unbind the queues and drop the subordinate channel config */
netdev_unbind_sb_channel(netdev, vdev);
netdev_set_sb_channel(vdev, 0);
kfree(fwd);
return ERR_PTR(-EINVAL);
}
return fwd;
}
/**
* i40e_del_all_macvlans - Delete all the mac filters on the channels
* @vsi: the VSI we want to access
*/
static void i40e_del_all_macvlans(struct i40e_vsi *vsi)
{
struct i40e_channel *ch, *ch_tmp;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int aq_err, ret = 0;
if (list_empty(&vsi->macvlan_list))
return;
list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
if (i40e_is_channel_macvlan(ch)) {
ret = i40e_del_macvlan_filter(hw, ch->seid,
i40e_channel_mac(ch),
&aq_err);
if (!ret) {
/* Reset queue contexts */
i40e_reset_ch_rings(vsi, ch);
clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
netdev_unbind_sb_channel(vsi->netdev,
ch->fwd->netdev);
netdev_set_sb_channel(ch->fwd->netdev, 0);
kfree(ch->fwd);
ch->fwd = NULL;
}
}
}
}
/**
* i40e_fwd_del - delete macvlan interfaces
* @netdev: net device to configure
* @vdev: macvlan netdevice
*/
static void i40e_fwd_del(struct net_device *netdev, void *vdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_fwd_adapter *fwd = vdev;
struct i40e_channel *ch, *ch_tmp;
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int aq_err, ret = 0;
/* Find the channel associated with the macvlan and del mac filter */
list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
if (i40e_is_channel_macvlan(ch) &&
ether_addr_equal(i40e_channel_mac(ch),
fwd->netdev->dev_addr)) {
ret = i40e_del_macvlan_filter(hw, ch->seid,
i40e_channel_mac(ch),
&aq_err);
if (!ret) {
/* Reset queue contexts */
i40e_reset_ch_rings(vsi, ch);
clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
netdev_unbind_sb_channel(netdev, fwd->netdev);
netdev_set_sb_channel(fwd->netdev, 0);
kfree(ch->fwd);
ch->fwd = NULL;
} else {
dev_info(&pf->pdev->dev,
"Error deleting mac filter on macvlan err %pe, aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, aq_err));
}
break;
}
}
}
/**
* i40e_setup_tc - configure multiple traffic classes
* @netdev: net device to configure
* @type_data: tc offload data
**/
static int i40e_setup_tc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
u8 enabled_tc = 0, num_tc, hw;
bool need_reset = false;
int old_queue_pairs;
int ret = -EINVAL;
u16 mode;
int i;
old_queue_pairs = vsi->num_queue_pairs;
num_tc = mqprio_qopt->qopt.num_tc;
hw = mqprio_qopt->qopt.hw;
mode = mqprio_qopt->mode;
if (!hw) {
clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
goto config_tc;
}
/* Check if MFP enabled */
if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
netdev_info(netdev,
"Configuring TC not supported in MFP mode\n");
return ret;
}
switch (mode) {
case TC_MQPRIO_MODE_DCB:
clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
/* Check if DCB enabled to continue */
if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
netdev_info(netdev,
"DCB is not enabled for adapter\n");
return ret;
}
/* Check whether tc count is within enabled limit */
if (num_tc > i40e_pf_get_num_tc(pf)) {
netdev_info(netdev,
"TC count greater than enabled on link for adapter\n");
return ret;
}
break;
case TC_MQPRIO_MODE_CHANNEL:
if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
netdev_info(netdev,
"Full offload of TC Mqprio options is not supported when DCB is enabled\n");
return ret;
}
if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
return ret;
ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt);
if (ret)
return ret;
memcpy(&vsi->mqprio_qopt, mqprio_qopt,
sizeof(*mqprio_qopt));
set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
break;
default:
return -EINVAL;
}
config_tc:
/* Generate TC map for number of tc requested */
for (i = 0; i < num_tc; i++)
enabled_tc |= BIT(i);
/* Requesting same TC configuration as already enabled */
if (enabled_tc == vsi->tc_config.enabled_tc &&
mode != TC_MQPRIO_MODE_CHANNEL)
return 0;
/* Quiesce VSI queues */
i40e_quiesce_vsi(vsi);
if (!hw && !i40e_is_tc_mqprio_enabled(pf))
i40e_remove_queue_channels(vsi);
/* Configure VSI for enabled TCs */
ret = i40e_vsi_config_tc(vsi, enabled_tc);
if (ret) {
netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
vsi->seid);
need_reset = true;
goto exit;
} else if (enabled_tc &&
(!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) {
netdev_info(netdev,
"Failed to create channel. Override queues (%u) not power of 2\n",
vsi->tc_config.tc_info[0].qcount);
ret = -EINVAL;
need_reset = true;
goto exit;
}
dev_info(&vsi->back->pdev->dev,
"Setup channel (id:%u) utilizing num_queues %d\n",
vsi->seid, vsi->tc_config.tc_info[0].qcount);
if (i40e_is_tc_mqprio_enabled(pf)) {
if (vsi->mqprio_qopt.max_rate[0]) {
u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
vsi->mqprio_qopt.max_rate[0]);
ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
if (!ret) {
u64 credits = max_tx_rate;
do_div(credits, I40E_BW_CREDIT_DIVISOR);
dev_dbg(&vsi->back->pdev->dev,
"Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
max_tx_rate,
credits,
vsi->seid);
} else {
need_reset = true;
goto exit;
}
}
ret = i40e_configure_queue_channels(vsi);
if (ret) {
vsi->num_queue_pairs = old_queue_pairs;
netdev_info(netdev,
"Failed configuring queue channels\n");
need_reset = true;
goto exit;
}
}
exit:
/* Reset the configuration data to defaults, only TC0 is enabled */
if (need_reset) {
i40e_vsi_set_default_tc_config(vsi);
need_reset = false;
}
/* Unquiesce VSI */
i40e_unquiesce_vsi(vsi);
return ret;
}
/**
* i40e_set_cld_element - sets cloud filter element data
* @filter: cloud filter rule
* @cld: ptr to cloud filter element data
*
* This is helper function to copy data into cloud filter element
**/
static inline void
i40e_set_cld_element(struct i40e_cloud_filter *filter,
struct i40e_aqc_cloud_filters_element_data *cld)
{
u32 ipa;
int i;
memset(cld, 0, sizeof(*cld));
ether_addr_copy(cld->outer_mac, filter->dst_mac);
ether_addr_copy(cld->inner_mac, filter->src_mac);
if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6)
return;
if (filter->n_proto == ETH_P_IPV6) {
#define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1)
for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) {
ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]);
*(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa);
}
} else {
ipa = be32_to_cpu(filter->dst_ipv4);
memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa));
}
cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id));
/* tenant_id is not supported by FW now, once the support is enabled
* fill the cld->tenant_id with cpu_to_le32(filter->tenant_id)
*/
if (filter->tenant_id)
return;
}
/**
* i40e_add_del_cloud_filter - Add/del cloud filter
* @vsi: pointer to VSI
* @filter: cloud filter rule
* @add: if true, add, if false, delete
*
* Add or delete a cloud filter for a specific flow spec.
* Returns 0 if the filter were successfully added.
**/
int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
struct i40e_cloud_filter *filter, bool add)
{
struct i40e_aqc_cloud_filters_element_data cld_filter;
struct i40e_pf *pf = vsi->back;
int ret;
static const u16 flag_table[128] = {
[I40E_CLOUD_FILTER_FLAGS_OMAC] =
I40E_AQC_ADD_CLOUD_FILTER_OMAC,
[I40E_CLOUD_FILTER_FLAGS_IMAC] =
I40E_AQC_ADD_CLOUD_FILTER_IMAC,
[I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] =
I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN,
[I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] =
I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID,
[I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] =
I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC,
[I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] =
I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID,
[I40E_CLOUD_FILTER_FLAGS_IIP] =
I40E_AQC_ADD_CLOUD_FILTER_IIP,
};
if (filter->flags >= ARRAY_SIZE(flag_table))
return -EIO;
memset(&cld_filter, 0, sizeof(cld_filter));
/* copy element needed to add cloud filter from filter */
i40e_set_cld_element(filter, &cld_filter);
if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE)
cld_filter.flags = cpu_to_le16(filter->tunnel_type <<
I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
if (filter->n_proto == ETH_P_IPV6)
cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
else
cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
if (add)
ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid,
&cld_filter, 1);
else
ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid,
&cld_filter, 1);
if (ret)
dev_dbg(&pf->pdev->dev,
"Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n",
add ? "add" : "delete", filter->dst_port, ret,
pf->hw.aq.asq_last_status);
else
dev_info(&pf->pdev->dev,
"%s cloud filter for VSI: %d\n",
add ? "Added" : "Deleted", filter->seid);
return ret;
}
/**
* i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf
* @vsi: pointer to VSI
* @filter: cloud filter rule
* @add: if true, add, if false, delete
*
* Add or delete a cloud filter for a specific flow spec using big buffer.
* Returns 0 if the filter were successfully added.
**/
int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
struct i40e_cloud_filter *filter,
bool add)
{
struct i40e_aqc_cloud_filters_element_bb cld_filter;
struct i40e_pf *pf = vsi->back;
int ret;
/* Both (src/dst) valid mac_addr are not supported */
if ((is_valid_ether_addr(filter->dst_mac) &&
is_valid_ether_addr(filter->src_mac)) ||
(is_multicast_ether_addr(filter->dst_mac) &&
is_multicast_ether_addr(filter->src_mac)))
return -EOPNOTSUPP;
/* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP
* ports are not supported via big buffer now.
*/
if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP)
return -EOPNOTSUPP;
/* adding filter using src_port/src_ip is not supported at this stage */
if (filter->src_port ||
(filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) ||
!ipv6_addr_any(&filter->ip.v6.src_ip6))
return -EOPNOTSUPP;
memset(&cld_filter, 0, sizeof(cld_filter));
/* copy element needed to add cloud filter from filter */
i40e_set_cld_element(filter, &cld_filter.element);
if (is_valid_ether_addr(filter->dst_mac) ||
is_valid_ether_addr(filter->src_mac) ||
is_multicast_ether_addr(filter->dst_mac) ||
is_multicast_ether_addr(filter->src_mac)) {
/* MAC + IP : unsupported mode */
if (filter->dst_ipv4)
return -EOPNOTSUPP;
/* since we validated that L4 port must be valid before
* we get here, start with respective "flags" value
* and update if vlan is present or not
*/
cld_filter.element.flags =
cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT);
if (filter->vlan_id) {
cld_filter.element.flags =
cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT);
}
} else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) ||
!ipv6_addr_any(&filter->ip.v6.dst_ip6)) {
cld_filter.element.flags =
cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT);
if (filter->n_proto == ETH_P_IPV6)
cld_filter.element.flags |=
cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
else
cld_filter.element.flags |=
cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
} else {
dev_err(&pf->pdev->dev,
"either mac or ip has to be valid for cloud filter\n");
return -EINVAL;
}
/* Now copy L4 port in Byte 6..7 in general fields */
cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] =
be16_to_cpu(filter->dst_port);
if (add) {
/* Validate current device switch mode, change if necessary */
ret = i40e_validate_and_set_switch_mode(vsi);
if (ret) {
dev_err(&pf->pdev->dev,
"failed to set switch mode, ret %d\n",
ret);
return ret;
}
ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid,
&cld_filter, 1);
} else {
ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid,
&cld_filter, 1);
}
if (ret)
dev_dbg(&pf->pdev->dev,
"Failed to %s cloud filter(big buffer) err %d aq_err %d\n",
add ? "add" : "delete", ret, pf->hw.aq.asq_last_status);
else
dev_info(&pf->pdev->dev,
"%s cloud filter for VSI: %d, L4 port: %d\n",
add ? "add" : "delete", filter->seid,
ntohs(filter->dst_port));
return ret;
}
/**
* i40e_parse_cls_flower - Parse tc flower filters provided by kernel
* @vsi: Pointer to VSI
* @f: Pointer to struct flow_cls_offload
* @filter: Pointer to cloud filter structure
*
**/
static int i40e_parse_cls_flower(struct i40e_vsi *vsi,
struct flow_cls_offload *f,
struct i40e_cloud_filter *filter)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
struct i40e_pf *pf = vsi->back;
u8 field_flags = 0;
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
if (match.mask->keyid != 0)
field_flags |= I40E_CLOUD_FIELD_TEN_ID;
filter->tenant_id = be32_to_cpu(match.key->keyid);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
n_proto_key = ntohs(match.key->n_proto);
n_proto_mask = ntohs(match.mask->n_proto);
if (n_proto_key == ETH_P_ALL) {
n_proto_key = 0;
n_proto_mask = 0;
}
filter->n_proto = n_proto_key & n_proto_mask;
filter->ip_proto = match.key->ip_proto;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
/* use is_broadcast and is_zero to check for all 0xf or 0 */
if (!is_zero_ether_addr(match.mask->dst)) {
if (is_broadcast_ether_addr(match.mask->dst)) {
field_flags |= I40E_CLOUD_FIELD_OMAC;
} else {
dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n",
match.mask->dst);
return -EIO;
}
}
if (!is_zero_ether_addr(match.mask->src)) {
if (is_broadcast_ether_addr(match.mask->src)) {
field_flags |= I40E_CLOUD_FIELD_IMAC;
} else {
dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n",
match.mask->src);
return -EIO;
}
}
ether_addr_copy(filter->dst_mac, match.key->dst);
ether_addr_copy(filter->src_mac, match.key->src);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_id) {
if (match.mask->vlan_id == VLAN_VID_MASK) {
field_flags |= I40E_CLOUD_FIELD_IVLAN;
} else {
dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n",
match.mask->vlan_id);
return -EIO;
}
}
filter->vlan_id = cpu_to_be16(match.key->vlan_id);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
addr_type = match.key->addr_type;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
if (match.mask->dst) {
if (match.mask->dst == cpu_to_be32(0xffffffff)) {
field_flags |= I40E_CLOUD_FIELD_IIP;
} else {
dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n",
&match.mask->dst);
return -EIO;
}
}
if (match.mask->src) {
if (match.mask->src == cpu_to_be32(0xffffffff)) {
field_flags |= I40E_CLOUD_FIELD_IIP;
} else {
dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n",
&match.mask->src);
return -EIO;
}
}
if (field_flags & I40E_CLOUD_FIELD_TEN_ID) {
dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n");
return -EIO;
}
filter->dst_ipv4 = match.key->dst;
filter->src_ipv4 = match.key->src;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
/* src and dest IPV6 address should not be LOOPBACK
* (0:0:0:0:0:0:0:1), which can be represented as ::1
*/
if (ipv6_addr_loopback(&match.key->dst) ||
ipv6_addr_loopback(&match.key->src)) {
dev_err(&pf->pdev->dev,
"Bad ipv6, addr is LOOPBACK\n");
return -EIO;
}
if (!ipv6_addr_any(&match.mask->dst) ||
!ipv6_addr_any(&match.mask->src))
field_flags |= I40E_CLOUD_FIELD_IIP;
memcpy(&filter->src_ipv6, &match.key->src.s6_addr32,
sizeof(filter->src_ipv6));
memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32,
sizeof(filter->dst_ipv6));
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
if (match.mask->src) {
if (match.mask->src == cpu_to_be16(0xffff)) {
field_flags |= I40E_CLOUD_FIELD_IIP;
} else {
dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n",
be16_to_cpu(match.mask->src));
return -EIO;
}
}
if (match.mask->dst) {
if (match.mask->dst == cpu_to_be16(0xffff)) {
field_flags |= I40E_CLOUD_FIELD_IIP;
} else {
dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n",
be16_to_cpu(match.mask->dst));
return -EIO;
}
}
filter->dst_port = match.key->dst;
filter->src_port = match.key->src;
switch (filter->ip_proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
break;
default:
dev_err(&pf->pdev->dev,
"Only UDP and TCP transport are supported\n");
return -EINVAL;
}
}
filter->flags = field_flags;
return 0;
}
/**
* i40e_handle_tclass: Forward to a traffic class on the device
* @vsi: Pointer to VSI
* @tc: traffic class index on the device
* @filter: Pointer to cloud filter structure
*
**/
static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc,
struct i40e_cloud_filter *filter)
{
struct i40e_channel *ch, *ch_tmp;
/* direct to a traffic class on the same device */
if (tc == 0) {
filter->seid = vsi->seid;
return 0;
} else if (vsi->tc_config.enabled_tc & BIT(tc)) {
if (!filter->dst_port) {
dev_err(&vsi->back->pdev->dev,
"Specify destination port to direct to traffic class that is not default\n");
return -EINVAL;
}
if (list_empty(&vsi->ch_list))
return -EINVAL;
list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list,
list) {
if (ch->seid == vsi->tc_seid_map[tc])
filter->seid = ch->seid;
}
return 0;
}
dev_err(&vsi->back->pdev->dev, "TC is not enabled\n");
return -EINVAL;
}
/**
* i40e_configure_clsflower - Configure tc flower filters
* @vsi: Pointer to VSI
* @cls_flower: Pointer to struct flow_cls_offload
*
**/
static int i40e_configure_clsflower(struct i40e_vsi *vsi,
struct flow_cls_offload *cls_flower)
{
int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
struct i40e_cloud_filter *filter = NULL;
struct i40e_pf *pf = vsi->back;
int err = 0;
if (tc < 0) {
dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n");
return -EOPNOTSUPP;
}
if (!tc) {
dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination");
return -EINVAL;
}
if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
test_bit(__I40E_RESET_INTR_RECEIVED, pf->state))
return -EBUSY;
if (pf->fdir_pf_active_filters ||
(!hlist_empty(&pf->fdir_filter_list))) {
dev_err(&vsi->back->pdev->dev,
"Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n");
return -EINVAL;
}
if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) {
dev_err(&vsi->back->pdev->dev,
"Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n");
clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags);
clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags);
}
filter = kzalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return -ENOMEM;
filter->cookie = cls_flower->cookie;
err = i40e_parse_cls_flower(vsi, cls_flower, filter);
if (err < 0)
goto err;
err = i40e_handle_tclass(vsi, tc, filter);
if (err < 0)
goto err;
/* Add cloud filter */
if (filter->dst_port)
err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true);
else
err = i40e_add_del_cloud_filter(vsi, filter, true);
if (err) {
dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n",
err);
goto err;
}
/* add filter to the ordered list */
INIT_HLIST_NODE(&filter->cloud_node);
hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list);
pf->num_cloud_filters++;
return err;
err:
kfree(filter);
return err;
}
/**
* i40e_find_cloud_filter - Find the could filter in the list
* @vsi: Pointer to VSI
* @cookie: filter specific cookie
*
**/
static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi,
unsigned long *cookie)
{
struct i40e_cloud_filter *filter = NULL;
struct hlist_node *node2;
hlist_for_each_entry_safe(filter, node2,
&vsi->back->cloud_filter_list, cloud_node)
if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
return filter;
return NULL;
}
/**
* i40e_delete_clsflower - Remove tc flower filters
* @vsi: Pointer to VSI
* @cls_flower: Pointer to struct flow_cls_offload
*
**/
static int i40e_delete_clsflower(struct i40e_vsi *vsi,
struct flow_cls_offload *cls_flower)
{
struct i40e_cloud_filter *filter = NULL;
struct i40e_pf *pf = vsi->back;
int err = 0;
filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie);
if (!filter)
return -EINVAL;
hash_del(&filter->cloud_node);
if (filter->dst_port)
err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false);
else
err = i40e_add_del_cloud_filter(vsi, filter, false);
kfree(filter);
if (err) {
dev_err(&pf->pdev->dev,
"Failed to delete cloud filter, err %pe\n",
ERR_PTR(err));
return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
}
pf->num_cloud_filters--;
if (!pf->num_cloud_filters)
if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
!test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
}
return 0;
}
/**
* i40e_setup_tc_cls_flower - flower classifier offloads
* @np: net device to configure
* @cls_flower: offload data
**/
static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np,
struct flow_cls_offload *cls_flower)
{
struct i40e_vsi *vsi = np->vsi;
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return i40e_configure_clsflower(vsi, cls_flower);
case FLOW_CLS_DESTROY:
return i40e_delete_clsflower(vsi, cls_flower);
case FLOW_CLS_STATS:
return -EOPNOTSUPP;
default:
return -EOPNOTSUPP;
}
}
static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct i40e_netdev_priv *np = cb_priv;
if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return i40e_setup_tc_cls_flower(np, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(i40e_block_cb_list);
static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
void *type_data)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return i40e_setup_tc(netdev, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&i40e_block_cb_list,
i40e_setup_tc_block_cb,
np, np, true);
default:
return -EOPNOTSUPP;
}
}
/**
* i40e_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the netdev watchdog subtask is
* enabled, and the stack is notified that the interface is ready.
*
* Returns 0 on success, negative value on failure
**/
int i40e_open(struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
int err;
/* disallow open during test or if eeprom is broken */
if (test_bit(__I40E_TESTING, pf->state) ||
test_bit(__I40E_BAD_EEPROM, pf->state))
return -EBUSY;
netif_carrier_off(netdev);
if (i40e_force_link_state(pf, true))
return -EAGAIN;
err = i40e_vsi_open(vsi);
if (err)
return err;
/* configure global TSO hardware offload settings */
wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
TCP_FLAG_FIN) >> 16);
wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
TCP_FLAG_FIN |
TCP_FLAG_CWR) >> 16);
wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
udp_tunnel_get_rx_info(netdev);
return 0;
}
/**
* i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues
* @vsi: vsi structure
*
* This updates netdev's number of tx/rx queues
*
* Returns status of setting tx/rx queues
**/
static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi)
{
int ret;
ret = netif_set_real_num_rx_queues(vsi->netdev,
vsi->num_queue_pairs);
if (ret)
return ret;
return netif_set_real_num_tx_queues(vsi->netdev,
vsi->num_queue_pairs);
}
/**
* i40e_vsi_open -
* @vsi: the VSI to open
*
* Finish initialization of the VSI.
*
* Returns 0 on success, negative value on failure
*
* Note: expects to be called while under rtnl_lock()
**/
int i40e_vsi_open(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
char int_name[I40E_INT_NAME_STR_LEN];
int err;
/* allocate descriptors */
err = i40e_vsi_setup_tx_resources(vsi);
if (err)
goto err_setup_tx;
err = i40e_vsi_setup_rx_resources(vsi);
if (err)
goto err_setup_rx;
err = i40e_vsi_configure(vsi);
if (err)
goto err_setup_rx;
if (vsi->netdev) {
snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
err = i40e_vsi_request_irq(vsi, int_name);
if (err)
goto err_setup_rx;
/* Notify the stack of the actual queue counts. */
err = i40e_netif_set_realnum_tx_rx_queues(vsi);
if (err)
goto err_set_queues;
} else if (vsi->type == I40E_VSI_FDIR) {
snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
dev_driver_string(&pf->pdev->dev),
dev_name(&pf->pdev->dev));
err = i40e_vsi_request_irq(vsi, int_name);
if (err)
goto err_setup_rx;
} else {
err = -EINVAL;
goto err_setup_rx;
}
err = i40e_up_complete(vsi);
if (err)
goto err_up_complete;
return 0;
err_up_complete:
i40e_down(vsi);
err_set_queues:
i40e_vsi_free_irq(vsi);
err_setup_rx:
i40e_vsi_free_rx_resources(vsi);
err_setup_tx:
i40e_vsi_free_tx_resources(vsi);
if (vsi == pf->vsi[pf->lan_vsi])
i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
return err;
}
/**
* i40e_fdir_filter_exit - Cleans up the Flow Director accounting
* @pf: Pointer to PF
*
* This function destroys the hlist where all the Flow Director
* filters were saved.
**/
static void i40e_fdir_filter_exit(struct i40e_pf *pf)
{
struct i40e_fdir_filter *filter;
struct i40e_flex_pit *pit_entry, *tmp;
struct hlist_node *node2;
hlist_for_each_entry_safe(filter, node2,
&pf->fdir_filter_list, fdir_node) {
hlist_del(&filter->fdir_node);
kfree(filter);
}
list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
list_del(&pit_entry->list);
kfree(pit_entry);
}
INIT_LIST_HEAD(&pf->l3_flex_pit_list);
list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
list_del(&pit_entry->list);
kfree(pit_entry);
}
INIT_LIST_HEAD(&pf->l4_flex_pit_list);
pf->fdir_pf_active_filters = 0;
i40e_reset_fdir_filter_cnt(pf);
/* Reprogram the default input set for TCP/IPv4 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for TCP/IPv6 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP,
I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for UDP/IPv4 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for UDP/IPv6 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP,
I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for SCTP/IPv4 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for SCTP/IPv6 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP,
I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
/* Reprogram the default input set for Other/IPv4 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
/* Reprogram the default input set for Other/IPv6 */
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
}
/**
* i40e_cloud_filter_exit - Cleans up the cloud filters
* @pf: Pointer to PF
*
* This function destroys the hlist where all the cloud filters
* were saved.
**/
static void i40e_cloud_filter_exit(struct i40e_pf *pf)
{
struct i40e_cloud_filter *cfilter;
struct hlist_node *node;
hlist_for_each_entry_safe(cfilter, node,
&pf->cloud_filter_list, cloud_node) {
hlist_del(&cfilter->cloud_node);
kfree(cfilter);
}
pf->num_cloud_filters = 0;
if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
!test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
}
}
/**
* i40e_close - Disables a network interface
* @netdev: network interface device structure
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the driver's control, but
* this netdev interface is disabled.
*
* Returns 0, this is not allowed to fail
**/
int i40e_close(struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
i40e_vsi_close(vsi);
return 0;
}
/**
* i40e_do_reset - Start a PF or Core Reset sequence
* @pf: board private structure
* @reset_flags: which reset is requested
* @lock_acquired: indicates whether or not the lock has been acquired
* before this function was called.
*
* The essential difference in resets is that the PF Reset
* doesn't clear the packet buffers, doesn't reset the PE
* firmware, and doesn't bother the other PFs on the chip.
**/
void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
{
struct i40e_vsi *vsi;
u32 val;
int i;
/* do the biggest reset indicated */
if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
/* Request a Global Reset
*
* This will start the chip's countdown to the actual full
* chip reset event, and a warning interrupt to be sent
* to all PFs, including the requestor. Our handler
* for the warning interrupt will deal with the shutdown
* and recovery of the switch setup.
*/
dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
} else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
/* Request a Core Reset
*
* Same as Global Reset, except does *not* include the MAC/PHY
*/
dev_dbg(&pf->pdev->dev, "CoreR requested\n");
val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
val |= I40E_GLGEN_RTRIG_CORER_MASK;
wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
i40e_flush(&pf->hw);
} else if (reset_flags & I40E_PF_RESET_FLAG) {
/* Request a PF Reset
*
* Resets only the PF-specific registers
*
* This goes directly to the tear-down and rebuild of
* the switch, since we need to do all the recovery as
* for the Core Reset.
*/
dev_dbg(&pf->pdev->dev, "PFR requested\n");
i40e_handle_reset_warning(pf, lock_acquired);
} else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) {
/* Request a PF Reset
*
* Resets PF and reinitializes PFs VSI.
*/
i40e_prep_for_reset(pf);
i40e_reset_and_rebuild(pf, true, lock_acquired);
dev_info(&pf->pdev->dev,
test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
"FW LLDP is disabled\n" :
"FW LLDP is enabled\n");
} else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
/* Find the VSI(s) that requested a re-init */
dev_info(&pf->pdev->dev, "VSI reinit requested\n");
i40e_pf_for_each_vsi(pf, i, vsi) {
if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
vsi->state))
i40e_vsi_reinit_locked(vsi);
}
} else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
/* Find the VSI(s) that needs to be brought down */
dev_info(&pf->pdev->dev, "VSI down requested\n");
i40e_pf_for_each_vsi(pf, i, vsi) {
if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
vsi->state)) {
set_bit(__I40E_VSI_DOWN, vsi->state);
i40e_down(vsi);
}
}
} else {
dev_info(&pf->pdev->dev,
"bad reset request 0x%08x\n", reset_flags);
}
}
#ifdef CONFIG_I40E_DCB
/**
* i40e_dcb_need_reconfig - Check if DCB needs reconfig
* @pf: board private structure
* @old_cfg: current DCB config
* @new_cfg: new DCB config
**/
bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
struct i40e_dcbx_config *old_cfg,
struct i40e_dcbx_config *new_cfg)
{
bool need_reconfig = false;
/* Check if ETS configuration has changed */
if (memcmp(&new_cfg->etscfg,
&old_cfg->etscfg,
sizeof(new_cfg->etscfg))) {
/* If Priority Table has changed reconfig is needed */
if (memcmp(&new_cfg->etscfg.prioritytable,
&old_cfg->etscfg.prioritytable,
sizeof(new_cfg->etscfg.prioritytable))) {
need_reconfig = true;
dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
}
if (memcmp(&new_cfg->etscfg.tcbwtable,
&old_cfg->etscfg.tcbwtable,
sizeof(new_cfg->etscfg.tcbwtable)))
dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
if (memcmp(&new_cfg->etscfg.tsatable,
&old_cfg->etscfg.tsatable,
sizeof(new_cfg->etscfg.tsatable)))
dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
}
/* Check if PFC configuration has changed */
if (memcmp(&new_cfg->pfc,
&old_cfg->pfc,
sizeof(new_cfg->pfc))) {
need_reconfig = true;
dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
}
/* Check if APP Table has changed */
if (memcmp(&new_cfg->app,
&old_cfg->app,
sizeof(new_cfg->app))) {
need_reconfig = true;
dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
}
dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
return need_reconfig;
}
/**
* i40e_handle_lldp_event - Handle LLDP Change MIB event
* @pf: board private structure
* @e: event info posted on ARQ
**/
static int i40e_handle_lldp_event(struct i40e_pf *pf,
struct i40e_arq_event_info *e)
{
struct i40e_aqc_lldp_get_mib *mib =
(struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw;
struct i40e_hw *hw = &pf->hw;
struct i40e_dcbx_config tmp_dcbx_cfg;
bool need_reconfig = false;
int ret = 0;
u8 type;
/* X710-T*L 2.5G and 5G speeds don't support DCB */
if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
(hw->phy.link_info.link_speed &
~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) &&
!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
/* let firmware decide if the DCB should be disabled */
set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
/* Not DCB capable or capability disabled */
if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
return ret;
/* Ignore if event is not for Nearest Bridge */
type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
& I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
return ret;
/* Check MIB Type and return if event for Remote MIB update */
type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
dev_dbg(&pf->pdev->dev,
"LLDP event mib type %s\n", type ? "remote" : "local");
if (type == I40E_AQ_LLDP_MIB_REMOTE) {
/* Update the remote cached instance and return */
ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
&hw->remote_dcbx_config);
goto exit;
}
/* Store the old configuration */
tmp_dcbx_cfg = hw->local_dcbx_config;
/* Reset the old DCBx configuration data */
memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
/* Get updated DCBX data from firmware */
ret = i40e_get_dcb_config(&pf->hw);
if (ret) {
/* X710-T*L 2.5G and 5G speeds don't support DCB */
if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
(hw->phy.link_info.link_speed &
(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
dev_warn(&pf->pdev->dev,
"DCB is not supported for X710-T*L 2.5/5G speeds\n");
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
} else {
dev_info(&pf->pdev->dev,
"Failed querying DCB configuration data from firmware, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
}
goto exit;
}
/* No change detected in DCBX configs */
if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
sizeof(tmp_dcbx_cfg))) {
dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
goto exit;
}
need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
&hw->local_dcbx_config);
i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
if (!need_reconfig)
goto exit;
/* Enable DCB tagging only when more than one TC */
if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
set_bit(I40E_FLAG_DCB_ENA, pf->flags);
else
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
set_bit(__I40E_PORT_SUSPENDED, pf->state);
/* Reconfiguration needed quiesce all VSIs */
i40e_pf_quiesce_all_vsi(pf);
/* Changes in configuration update VEB/VSI */
i40e_dcb_reconfigure(pf);
ret = i40e_resume_port_tx(pf);
clear_bit(__I40E_PORT_SUSPENDED, pf->state);
/* In case of error no point in resuming VSIs */
if (ret)
goto exit;
/* Wait for the PF's queues to be disabled */
ret = i40e_pf_wait_queues_disabled(pf);
if (ret) {
/* Schedule PF reset to recover */
set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
i40e_service_event_schedule(pf);
} else {
i40e_pf_unquiesce_all_vsi(pf);
set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
}
exit:
return ret;
}
#endif /* CONFIG_I40E_DCB */
/**
* i40e_do_reset_safe - Protected reset path for userland calls.
* @pf: board private structure
* @reset_flags: which reset is requested
*
**/
void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
{
rtnl_lock();
i40e_do_reset(pf, reset_flags, true);
rtnl_unlock();
}
/**
* i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
* @pf: board private structure
* @e: event info posted on ARQ
*
* Handler for LAN Queue Overflow Event generated by the firmware for PF
* and VF queues
**/
static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
struct i40e_arq_event_info *e)
{
struct i40e_aqc_lan_overflow *data =
(struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
u32 queue = le32_to_cpu(data->prtdcb_rupto);
u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
struct i40e_hw *hw = &pf->hw;
struct i40e_vf *vf;
u16 vf_id;
dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
queue, qtx_ctl);
if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) !=
I40E_QTX_CTL_VF_QUEUE)
return;
/* Queue belongs to VF, find the VF and issue VF reset */
vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl);
vf_id -= hw->func_caps.vf_base_id;
vf = &pf->vf[vf_id];
i40e_vc_notify_vf_reset(vf);
/* Allow VF to process pending reset notification */
msleep(20);
i40e_reset_vf(vf, false);
}
/**
* i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters
* @pf: board private structure
**/
u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf)
{
u32 val, fcnt_prog;
val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK);
return fcnt_prog;
}
/**
* i40e_get_current_fd_count - Get total FD filters programmed for this PF
* @pf: board private structure
**/
u32 i40e_get_current_fd_count(struct i40e_pf *pf)
{
u32 val, fcnt_prog;
val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val);
return fcnt_prog;
}
/**
* i40e_get_global_fd_count - Get total FD filters programmed on device
* @pf: board private structure
**/
u32 i40e_get_global_fd_count(struct i40e_pf *pf)
{
u32 val, fcnt_prog;
val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val);
return fcnt_prog;
}
/**
* i40e_reenable_fdir_sb - Restore FDir SB capability
* @pf: board private structure
**/
static void i40e_reenable_fdir_sb(struct i40e_pf *pf)
{
if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
(I40E_DEBUG_FD & pf->hw.debug_mask))
dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
}
/**
* i40e_reenable_fdir_atr - Restore FDir ATR capability
* @pf: board private structure
**/
static void i40e_reenable_fdir_atr(struct i40e_pf *pf)
{
if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) {
/* ATR uses the same filtering logic as SB rules. It only
* functions properly if the input set mask is at the default
* settings. It is safe to restore the default input set
* because there are no active TCPv4 filter rules.
*/
i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
(I40E_DEBUG_FD & pf->hw.debug_mask))
dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
}
}
/**
* i40e_delete_invalid_filter - Delete an invalid FDIR filter
* @pf: board private structure
* @filter: FDir filter to remove
*/
static void i40e_delete_invalid_filter(struct i40e_pf *pf,
struct i40e_fdir_filter *filter)
{
/* Update counters */
pf->fdir_pf_active_filters--;
pf->fd_inv = 0;
switch (filter->flow_type) {
case TCP_V4_FLOW:
pf->fd_tcp4_filter_cnt--;
break;
case UDP_V4_FLOW:
pf->fd_udp4_filter_cnt--;
break;
case SCTP_V4_FLOW:
pf->fd_sctp4_filter_cnt--;
break;
case TCP_V6_FLOW:
pf->fd_tcp6_filter_cnt--;
break;
case UDP_V6_FLOW:
pf->fd_udp6_filter_cnt--;
break;
case SCTP_V6_FLOW:
pf->fd_udp6_filter_cnt--;
break;
case IP_USER_FLOW:
switch (filter->ipl4_proto) {
case IPPROTO_TCP:
pf->fd_tcp4_filter_cnt--;
break;
case IPPROTO_UDP:
pf->fd_udp4_filter_cnt--;
break;
case IPPROTO_SCTP:
pf->fd_sctp4_filter_cnt--;
break;
case IPPROTO_IP:
pf->fd_ip4_filter_cnt--;
break;
}
break;
case IPV6_USER_FLOW:
switch (filter->ipl4_proto) {
case IPPROTO_TCP:
pf->fd_tcp6_filter_cnt--;
break;
case IPPROTO_UDP:
pf->fd_udp6_filter_cnt--;
break;
case IPPROTO_SCTP:
pf->fd_sctp6_filter_cnt--;
break;
case IPPROTO_IP:
pf->fd_ip6_filter_cnt--;
break;
}
break;
}
/* Remove the filter from the list and free memory */
hlist_del(&filter->fdir_node);
kfree(filter);
}
/**
* i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
* @pf: board private structure
**/
void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
{
struct i40e_fdir_filter *filter;
u32 fcnt_prog, fcnt_avail;
struct hlist_node *node;
if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
return;
/* Check if we have enough room to re-enable FDir SB capability. */
fcnt_prog = i40e_get_global_fd_count(pf);
fcnt_avail = pf->fdir_pf_filter_count;
if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
(pf->fd_add_err == 0) ||
(i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt))
i40e_reenable_fdir_sb(pf);
/* We should wait for even more space before re-enabling ATR.
* Additionally, we cannot enable ATR as long as we still have TCP SB
* rules active.
*/
if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0)
i40e_reenable_fdir_atr(pf);
/* if hw had a problem adding a filter, delete it */
if (pf->fd_inv > 0) {
hlist_for_each_entry_safe(filter, node,
&pf->fdir_filter_list, fdir_node)
if (filter->fd_id == pf->fd_inv)
i40e_delete_invalid_filter(pf, filter);
}
}
#define I40E_MIN_FD_FLUSH_INTERVAL 10
#define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
/**
* i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
* @pf: board private structure
**/
static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
{
unsigned long min_flush_time;
int flush_wait_retry = 50;
bool disable_atr = false;
int fd_room;
int reg;
if (!time_after(jiffies, pf->fd_flush_timestamp +
(I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
return;
/* If the flush is happening too quick and we have mostly SB rules we
* should not re-enable ATR for some time.
*/
min_flush_time = pf->fd_flush_timestamp +
(I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
if (!(time_after(jiffies, min_flush_time)) &&
(fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
if (I40E_DEBUG_FD & pf->hw.debug_mask)
dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
disable_atr = true;
}
pf->fd_flush_timestamp = jiffies;
set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
/* flush all filters */
wr32(&pf->hw, I40E_PFQF_CTL_1,
I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
i40e_flush(&pf->hw);
pf->fd_flush_cnt++;
pf->fd_add_err = 0;
do {
/* Check FD flush status every 5-6msec */
usleep_range(5000, 6000);
reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
break;
} while (flush_wait_retry--);
if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
} else {
/* replay sideband filters */
i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]);
if (!disable_atr && !pf->fd_tcp4_filter_cnt)
clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
if (I40E_DEBUG_FD & pf->hw.debug_mask)
dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
}
}
/**
* i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed
* @pf: board private structure
**/
u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
{
return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
}
/**
* i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
* @pf: board private structure
**/
static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
{
/* if interface is down do nothing */
if (test_bit(__I40E_DOWN, pf->state))
return;
if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
i40e_fdir_flush_and_replay(pf);
i40e_fdir_check_and_reenable(pf);
}
/**
* i40e_vsi_link_event - notify VSI of a link event
* @vsi: vsi to be notified
* @link_up: link up or down
**/
static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
{
if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
return;
switch (vsi->type) {
case I40E_VSI_MAIN:
if (!vsi->netdev || !vsi->netdev_registered)
break;
if (link_up) {
netif_carrier_on(vsi->netdev);
netif_tx_wake_all_queues(vsi->netdev);
} else {
netif_carrier_off(vsi->netdev);
netif_tx_stop_all_queues(vsi->netdev);
}
break;
case I40E_VSI_SRIOV:
case I40E_VSI_VMDQ2:
case I40E_VSI_CTRL:
case I40E_VSI_IWARP:
case I40E_VSI_MIRROR:
default:
/* there is no notification for other VSIs */
break;
}
}
/**
* i40e_veb_link_event - notify elements on the veb of a link event
* @veb: veb to be notified
* @link_up: link up or down
**/
static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
{
struct i40e_vsi *vsi;
struct i40e_pf *pf;
int i;
if (!veb || !veb->pf)
return;
pf = veb->pf;
/* Send link event to contained VSIs */
i40e_pf_for_each_vsi(pf, i, vsi)
if (vsi->uplink_seid == veb->seid)
i40e_vsi_link_event(vsi, link_up);
}
/**
* i40e_link_event - Update netif_carrier status
* @pf: board private structure
**/
static void i40e_link_event(struct i40e_pf *pf)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
u8 new_link_speed, old_link_speed;
bool new_link, old_link;
int status;
#ifdef CONFIG_I40E_DCB
int err;
#endif /* CONFIG_I40E_DCB */
/* set this to force the get_link_status call to refresh state */
pf->hw.phy.get_link_info = true;
old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
status = i40e_get_link_status(&pf->hw, &new_link);
/* On success, disable temp link polling */
if (status == 0) {
clear_bit(__I40E_TEMP_LINK_POLLING, pf->state);
} else {
/* Enable link polling temporarily until i40e_get_link_status
* returns 0
*/
set_bit(__I40E_TEMP_LINK_POLLING, pf->state);
dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
status);
return;
}
old_link_speed = pf->hw.phy.link_info_old.link_speed;
new_link_speed = pf->hw.phy.link_info.link_speed;
if (new_link == old_link &&
new_link_speed == old_link_speed &&
(test_bit(__I40E_VSI_DOWN, vsi->state) ||
new_link == netif_carrier_ok(vsi->netdev)))
return;
i40e_print_link_message(vsi, new_link);
/* Notify the base of the switch tree connected to
* the link. Floating VEBs are not notified.
*/
if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb])
i40e_veb_link_event(pf->veb[pf->lan_veb], new_link);
else
i40e_vsi_link_event(vsi, new_link);
if (pf->vf)
i40e_vc_notify_link_state(pf);
if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
i40e_ptp_set_increment(pf);
#ifdef CONFIG_I40E_DCB
if (new_link == old_link)
return;
/* Not SW DCB so firmware will take care of default settings */
if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED)
return;
/* We cover here only link down, as after link up in case of SW DCB
* SW LLDP agent will take care of setting it up
*/
if (!new_link) {
dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n");
memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg));
err = i40e_dcb_sw_default_config(pf);
if (err) {
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
} else {
pf->dcbx_cap = DCB_CAP_DCBX_HOST |
DCB_CAP_DCBX_VER_IEEE;
set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
}
}
#endif /* CONFIG_I40E_DCB */
}
/**
* i40e_watchdog_subtask - periodic checks not using event driven response
* @pf: board private structure
**/
static void i40e_watchdog_subtask(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
struct i40e_veb *veb;
int i;
/* if interface is down do nothing */
if (test_bit(__I40E_DOWN, pf->state) ||
test_bit(__I40E_CONFIG_BUSY, pf->state))
return;
/* make sure we don't do these things too often */
if (time_before(jiffies, (pf->service_timer_previous +
pf->service_timer_period)))
return;
pf->service_timer_previous = jiffies;
if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) ||
test_bit(__I40E_TEMP_LINK_POLLING, pf->state))
i40e_link_event(pf);
/* Update the stats for active netdevs so the network stack
* can look at updated numbers whenever it cares to
*/
i40e_pf_for_each_vsi(pf, i, vsi)
if (vsi->netdev)
i40e_update_stats(vsi);
if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) {
/* Update the stats for the active switching components */
i40e_pf_for_each_veb(pf, i, veb)
i40e_update_veb_stats(veb);
}
i40e_ptp_rx_hang(pf);
i40e_ptp_tx_hang(pf);
}
/**
* i40e_reset_subtask - Set up for resetting the device and driver
* @pf: board private structure
**/
static void i40e_reset_subtask(struct i40e_pf *pf)
{
u32 reset_flags = 0;
if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
reset_flags |= BIT(__I40E_REINIT_REQUESTED);
clear_bit(__I40E_REINIT_REQUESTED, pf->state);
}
if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
}
if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
}
if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
}
if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
reset_flags |= BIT(__I40E_DOWN_REQUESTED);
clear_bit(__I40E_DOWN_REQUESTED, pf->state);
}
/* If there's a recovery already waiting, it takes
* precedence before starting a new reset sequence.
*/
if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
i40e_prep_for_reset(pf);
i40e_reset(pf);
i40e_rebuild(pf, false, false);
}
/* If we're already down or resetting, just bail */
if (reset_flags &&
!test_bit(__I40E_DOWN, pf->state) &&
!test_bit(__I40E_CONFIG_BUSY, pf->state)) {
i40e_do_reset(pf, reset_flags, false);
}
}
/**
* i40e_handle_link_event - Handle link event
* @pf: board private structure
* @e: event info posted on ARQ
**/
static void i40e_handle_link_event(struct i40e_pf *pf,
struct i40e_arq_event_info *e)
{
struct i40e_aqc_get_link_status *status =
(struct i40e_aqc_get_link_status *)&e->desc.params.raw;
/* Do a new status request to re-enable LSE reporting
* and load new status information into the hw struct
* This completely ignores any state information
* in the ARQ event info, instead choosing to always
* issue the AQ update link status command.
*/
i40e_link_event(pf);
/* Check if module meets thermal requirements */
if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) {
dev_err(&pf->pdev->dev,
"Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n");
dev_err(&pf->pdev->dev,
"Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
} else {
/* check for unqualified module, if link is down, suppress
* the message if link was forced to be down.
*/
if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
(!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
(!(status->link_info & I40E_AQ_LINK_UP)) &&
(!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) {
dev_err(&pf->pdev->dev,
"Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n");
dev_err(&pf->pdev->dev,
"Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
}
}
}
/**
* i40e_clean_adminq_subtask - Clean the AdminQ rings
* @pf: board private structure
**/
static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
{
struct i40e_arq_event_info event;
struct i40e_hw *hw = &pf->hw;
u16 pending, i = 0;
u16 opcode;
u32 oldval;
int ret;
u32 val;
/* Do not run clean AQ when PF reset fails */
if (test_bit(__I40E_RESET_FAILED, pf->state))
return;
/* check for error indications */
val = rd32(&pf->hw, I40E_PF_ARQLEN);
oldval = val;
if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
if (hw->debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
}
if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
if (hw->debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
pf->arq_overflows++;
}
if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
if (hw->debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
}
if (oldval != val)
wr32(&pf->hw, I40E_PF_ARQLEN, val);
val = rd32(&pf->hw, I40E_PF_ATQLEN);
oldval = val;
if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
if (pf->hw.debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
}
if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
if (pf->hw.debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
}
if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
if (pf->hw.debug_mask & I40E_DEBUG_AQ)
dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
}
if (oldval != val)
wr32(&pf->hw, I40E_PF_ATQLEN, val);
event.buf_len = I40E_MAX_AQ_BUF_SIZE;
event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
if (!event.msg_buf)
return;
do {
ret = i40e_clean_arq_element(hw, &event, &pending);
if (ret == -EALREADY)
break;
else if (ret) {
dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
break;
}
opcode = le16_to_cpu(event.desc.opcode);
switch (opcode) {
case i40e_aqc_opc_get_link_status:
rtnl_lock();
i40e_handle_link_event(pf, &event);
rtnl_unlock();
break;
case i40e_aqc_opc_send_msg_to_pf:
ret = i40e_vc_process_vf_msg(pf,
le16_to_cpu(event.desc.retval),
le32_to_cpu(event.desc.cookie_high),
le32_to_cpu(event.desc.cookie_low),
event.msg_buf,
event.msg_len);
break;
case i40e_aqc_opc_lldp_update_mib:
dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
#ifdef CONFIG_I40E_DCB
rtnl_lock();
i40e_handle_lldp_event(pf, &event);
rtnl_unlock();
#endif /* CONFIG_I40E_DCB */
break;
case i40e_aqc_opc_event_lan_overflow:
dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
i40e_handle_lan_overflow_event(pf, &event);
break;
case i40e_aqc_opc_send_msg_to_peer:
dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
break;
case i40e_aqc_opc_nvm_erase:
case i40e_aqc_opc_nvm_update:
case i40e_aqc_opc_oem_post_update:
i40e_debug(&pf->hw, I40E_DEBUG_NVM,
"ARQ NVM operation 0x%04x completed\n",
opcode);
break;
default:
dev_info(&pf->pdev->dev,
"ARQ: Unknown event 0x%04x ignored\n",
opcode);
break;
}
} while (i++ < I40E_AQ_WORK_LIMIT);
if (i < I40E_AQ_WORK_LIMIT)
clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
/* re-enable Admin queue interrupt cause */
val = rd32(hw, I40E_PFINT_ICR0_ENA);
val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
wr32(hw, I40E_PFINT_ICR0_ENA, val);
i40e_flush(hw);
kfree(event.msg_buf);
}
/**
* i40e_verify_eeprom - make sure eeprom is good to use
* @pf: board private structure
**/
static void i40e_verify_eeprom(struct i40e_pf *pf)
{
int err;
err = i40e_diag_eeprom_test(&pf->hw);
if (err) {
/* retry in case of garbage read */
err = i40e_diag_eeprom_test(&pf->hw);
if (err) {
dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
err);
set_bit(__I40E_BAD_EEPROM, pf->state);
}
}
if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
clear_bit(__I40E_BAD_EEPROM, pf->state);
}
}
/**
* i40e_enable_pf_switch_lb
* @pf: pointer to the PF structure
*
* enable switch loop back or die - no point in a return value
**/
static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
struct i40e_vsi_context ctxt;
int ret;
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = pf->hw.pf_id;
ctxt.vf_num = 0;
ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get PF vsi config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return;
}
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"update vsi switch failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
}
}
/**
* i40e_disable_pf_switch_lb
* @pf: pointer to the PF structure
*
* disable switch loop back or die - no point in a return value
**/
static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
struct i40e_vsi_context ctxt;
int ret;
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = pf->hw.pf_id;
ctxt.vf_num = 0;
ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get PF vsi config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return;
}
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"update vsi switch failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
}
}
/**
* i40e_config_bridge_mode - Configure the HW bridge mode
* @veb: pointer to the bridge instance
*
* Configure the loop back mode for the LAN VSI that is downlink to the
* specified HW bridge instance. It is expected this function is called
* when a new HW bridge is instantiated.
**/
static void i40e_config_bridge_mode(struct i40e_veb *veb)
{
struct i40e_pf *pf = veb->pf;
if (pf->hw.debug_mask & I40E_DEBUG_LAN)
dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
if (veb->bridge_mode & BRIDGE_MODE_VEPA)
i40e_disable_pf_switch_lb(pf);
else
i40e_enable_pf_switch_lb(pf);
}
/**
* i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it
* @veb: pointer to the VEB instance
*
* This is a function that builds the attached VSIs. We track the connections
* through our own index numbers because the seid's from the HW could change
* across the reset.
**/
static int i40e_reconstitute_veb(struct i40e_veb *veb)
{
struct i40e_vsi *ctl_vsi = NULL;
struct i40e_pf *pf = veb->pf;
struct i40e_vsi *vsi;
int v, ret;
/* As we do not maintain PV (port virtualizer) switch element then
* there can be only one non-floating VEB that have uplink to MAC SEID
* and its control VSI is the main one.
*/
if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) {
dev_err(&pf->pdev->dev,
"Invalid uplink SEID for VEB %d\n", veb->idx);
return -ENOENT;
}
if (veb->uplink_seid == pf->mac_seid) {
/* Check that the LAN VSI has VEB owning flag set */
ctl_vsi = pf->vsi[pf->lan_vsi];
if (WARN_ON(ctl_vsi->veb_idx != veb->idx ||
!(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) {
dev_err(&pf->pdev->dev,
"Invalid control VSI for VEB %d\n", veb->idx);
return -ENOENT;
}
/* Add the control VSI to switch */
ret = i40e_add_vsi(ctl_vsi);
if (ret) {
dev_err(&pf->pdev->dev,
"Rebuild of owner VSI for VEB %d failed: %d\n",
veb->idx, ret);
return ret;
}
i40e_vsi_reset_stats(ctl_vsi);
}
/* create the VEB in the switch and move the VSI onto the VEB */
ret = i40e_add_veb(veb, ctl_vsi);
if (ret)
return ret;
if (veb->uplink_seid) {
if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
veb->bridge_mode = BRIDGE_MODE_VEB;
else
veb->bridge_mode = BRIDGE_MODE_VEPA;
i40e_config_bridge_mode(veb);
}
/* create the remaining VSIs attached to this VEB */
i40e_pf_for_each_vsi(pf, v, vsi) {
if (vsi == ctl_vsi)
continue;
if (vsi->veb_idx == veb->idx) {
vsi->uplink_seid = veb->seid;
ret = i40e_add_vsi(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"rebuild of vsi_idx %d failed: %d\n",
v, ret);
return ret;
}
i40e_vsi_reset_stats(vsi);
}
}
return ret;
}
/**
* i40e_get_capabilities - get info about the HW
* @pf: the PF struct
* @list_type: AQ capability to be queried
**/
static int i40e_get_capabilities(struct i40e_pf *pf,
enum i40e_admin_queue_opc list_type)
{
struct i40e_aqc_list_capabilities_element_resp *cap_buf;
u16 data_size;
int buf_len;
int err;
buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
do {
cap_buf = kzalloc(buf_len, GFP_KERNEL);
if (!cap_buf)
return -ENOMEM;
/* this loads the data into the hw struct for us */
err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
&data_size, list_type,
NULL);
/* data loaded, buffer no longer needed */
kfree(cap_buf);
if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
/* retry with a larger buffer */
buf_len = data_size;
} else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK || err) {
dev_info(&pf->pdev->dev,
"capability discovery failed, err %pe aq_err %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return -ENODEV;
}
} while (err);
if (pf->hw.debug_mask & I40E_DEBUG_USER) {
if (list_type == i40e_aqc_opc_list_func_capabilities) {
dev_info(&pf->pdev->dev,
"pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
pf->hw.pf_id, pf->hw.func_caps.num_vfs,
pf->hw.func_caps.num_msix_vectors,
pf->hw.func_caps.num_msix_vectors_vf,
pf->hw.func_caps.fd_filters_guaranteed,
pf->hw.func_caps.fd_filters_best_effort,
pf->hw.func_caps.num_tx_qp,
pf->hw.func_caps.num_vsis);
} else if (list_type == i40e_aqc_opc_list_dev_capabilities) {
dev_info(&pf->pdev->dev,
"switch_mode=0x%04x, function_valid=0x%08x\n",
pf->hw.dev_caps.switch_mode,
pf->hw.dev_caps.valid_functions);
dev_info(&pf->pdev->dev,
"SR-IOV=%d, num_vfs for all function=%u\n",
pf->hw.dev_caps.sr_iov_1_1,
pf->hw.dev_caps.num_vfs);
dev_info(&pf->pdev->dev,
"num_vsis=%u, num_rx:%u, num_tx=%u\n",
pf->hw.dev_caps.num_vsis,
pf->hw.dev_caps.num_rx_qp,
pf->hw.dev_caps.num_tx_qp);
}
}
if (list_type == i40e_aqc_opc_list_func_capabilities) {
#define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
+ pf->hw.func_caps.num_vfs)
if (pf->hw.revision_id == 0 &&
pf->hw.func_caps.num_vsis < DEF_NUM_VSI) {
dev_info(&pf->pdev->dev,
"got num_vsis %d, setting num_vsis to %d\n",
pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
}
}
return 0;
}
static int i40e_vsi_clear(struct i40e_vsi *vsi);
/**
* i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
* @pf: board private structure
**/
static void i40e_fdir_sb_setup(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
/* quick workaround for an NVM issue that leaves a critical register
* uninitialized
*/
if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
static const u32 hkey[] = {
0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
0x95b3a76d};
int i;
for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
}
if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
return;
/* find existing VSI and see if it needs configuring */
vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
/* create a new VSI if none exists */
if (!vsi) {
vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR,
pf->vsi[pf->lan_vsi]->seid, 0);
if (!vsi) {
dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
return;
}
}
i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
}
/**
* i40e_fdir_teardown - release the Flow Director resources
* @pf: board private structure
**/
static void i40e_fdir_teardown(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
i40e_fdir_filter_exit(pf);
vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
if (vsi)
i40e_vsi_release(vsi);
}
/**
* i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs
* @vsi: PF main vsi
* @seid: seid of main or channel VSIs
*
* Rebuilds cloud filters associated with main VSI and channel VSIs if they
* existed before reset
**/
static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid)
{
struct i40e_cloud_filter *cfilter;
struct i40e_pf *pf = vsi->back;
struct hlist_node *node;
int ret;
/* Add cloud filters back if they exist */
hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list,
cloud_node) {
if (cfilter->seid != seid)
continue;
if (cfilter->dst_port)
ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter,
true);
else
ret = i40e_add_del_cloud_filter(vsi, cfilter, true);
if (ret) {
dev_dbg(&pf->pdev->dev,
"Failed to rebuild cloud filter, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return ret;
}
}
return 0;
}
/**
* i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset
* @vsi: PF main vsi
*
* Rebuilds channel VSIs if they existed before reset
**/
static int i40e_rebuild_channels(struct i40e_vsi *vsi)
{
struct i40e_channel *ch, *ch_tmp;
int ret;
if (list_empty(&vsi->ch_list))
return 0;
list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
if (!ch->initialized)
break;
/* Proceed with creation of channel (VMDq2) VSI */
ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"failed to rebuild channels using uplink_seid %u\n",
vsi->uplink_seid);
return ret;
}
/* Reconfigure TX queues using QTX_CTL register */
ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"failed to configure TX rings for channel %u\n",
ch->seid);
return ret;
}
/* update 'next_base_queue' */
vsi->next_base_queue = vsi->next_base_queue +
ch->num_queue_pairs;
if (ch->max_tx_rate) {
u64 credits = ch->max_tx_rate;
if (i40e_set_bw_limit(vsi, ch->seid,
ch->max_tx_rate))
return -EINVAL;
do_div(credits, I40E_BW_CREDIT_DIVISOR);
dev_dbg(&vsi->back->pdev->dev,
"Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
ch->max_tx_rate,
credits,
ch->seid);
}
ret = i40e_rebuild_cloud_filters(vsi, ch->seid);
if (ret) {
dev_dbg(&vsi->back->pdev->dev,
"Failed to rebuild cloud filters for channel VSI %u\n",
ch->seid);
return ret;
}
}
return 0;
}
/**
* i40e_clean_xps_state - clean xps state for every tx_ring
* @vsi: ptr to the VSI
**/
static void i40e_clean_xps_state(struct i40e_vsi *vsi)
{
int i;
if (vsi->tx_rings)
for (i = 0; i < vsi->num_queue_pairs; i++)
if (vsi->tx_rings[i])
clear_bit(__I40E_TX_XPS_INIT_DONE,
vsi->tx_rings[i]->state);
}
/**
* i40e_prep_for_reset - prep for the core to reset
* @pf: board private structure
*
* Close up the VFs and other things in prep for PF Reset.
**/
static void i40e_prep_for_reset(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi *vsi;
int ret = 0;
u32 v;
clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
return;
if (i40e_check_asq_alive(&pf->hw))
i40e_vc_notify_reset(pf);
dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
/* quiesce the VSIs and their queues that are not already DOWN */
i40e_pf_quiesce_all_vsi(pf);
i40e_pf_for_each_vsi(pf, v, vsi) {
i40e_clean_xps_state(vsi);
vsi->seid = 0;
}
i40e_shutdown_adminq(&pf->hw);
/* call shutdown HMC */
if (hw->hmc.hmc_obj) {
ret = i40e_shutdown_lan_hmc(hw);
if (ret)
dev_warn(&pf->pdev->dev,
"shutdown_lan_hmc failed: %d\n", ret);
}
/* Save the current PTP time so that we can restore the time after the
* reset completes.
*/
i40e_ptp_save_hw_time(pf);
}
/**
* i40e_send_version - update firmware with driver version
* @pf: PF struct
*/
static void i40e_send_version(struct i40e_pf *pf)
{
struct i40e_driver_version dv;
dv.major_version = 0xff;
dv.minor_version = 0xff;
dv.build_version = 0xff;
dv.subbuild_version = 0;
strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string));
i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
}
/**
* i40e_get_oem_version - get OEM specific version information
* @hw: pointer to the hardware structure
**/
static void i40e_get_oem_version(struct i40e_hw *hw)
{
u16 block_offset = 0xffff;
u16 block_length = 0;
u16 capabilities = 0;
u16 gen_snap = 0;
u16 release = 0;
#define I40E_SR_NVM_OEM_VERSION_PTR 0x1B
#define I40E_NVM_OEM_LENGTH_OFFSET 0x00
#define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01
#define I40E_NVM_OEM_GEN_OFFSET 0x02
#define I40E_NVM_OEM_RELEASE_OFFSET 0x03
#define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F
#define I40E_NVM_OEM_LENGTH 3
/* Check if pointer to OEM version block is valid. */
i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
if (block_offset == 0xffff)
return;
/* Check if OEM version block has correct length. */
i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
&block_length);
if (block_length < I40E_NVM_OEM_LENGTH)
return;
/* Check if OEM version format is as expected. */
i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
&capabilities);
if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
return;
i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
&gen_snap);
i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
&release);
hw->nvm.oem_ver =
FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) |
FIELD_PREP(I40E_OEM_RELEASE_MASK, release);
hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
}
/**
* i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
* @pf: board private structure
**/
static int i40e_reset(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int ret;
ret = i40e_pf_reset(hw);
if (ret) {
dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
set_bit(__I40E_RESET_FAILED, pf->state);
clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
} else {
pf->pfr_count++;
}
return ret;
}
/**
* i40e_rebuild - rebuild using a saved config
* @pf: board private structure
* @reinit: if the Main VSI needs to re-initialized.
* @lock_acquired: indicates whether or not the lock has been acquired
* before this function was called.
**/
static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
{
const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf);
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
struct i40e_hw *hw = &pf->hw;
struct i40e_veb *veb;
int ret;
u32 val;
int v;
if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) &&
is_recovery_mode_reported)
i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev);
if (test_bit(__I40E_DOWN, pf->state) &&
!test_bit(__I40E_RECOVERY_MODE, pf->state))
goto clear_recovery;
dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
/* rebuild the basics for the AdminQ, HMC, and initial HW switch */
ret = i40e_init_adminq(&pf->hw);
if (ret) {
dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
goto clear_recovery;
}
i40e_get_oem_version(&pf->hw);
if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) {
/* The following delay is necessary for firmware update. */
mdelay(1000);
}
/* re-verify the eeprom if we just had an EMP reset */
if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
i40e_verify_eeprom(pf);
/* if we are going out of or into recovery mode we have to act
* accordingly with regard to resources initialization
* and deinitialization
*/
if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
if (i40e_get_capabilities(pf,
i40e_aqc_opc_list_func_capabilities))
goto end_unlock;
if (is_recovery_mode_reported) {
/* we're staying in recovery mode so we'll reinitialize
* misc vector here
*/
if (i40e_setup_misc_vector_for_recovery_mode(pf))
goto end_unlock;
} else {
if (!lock_acquired)
rtnl_lock();
/* we're going out of recovery mode so we'll free
* the IRQ allocated specifically for recovery mode
* and restore the interrupt scheme
*/
free_irq(pf->pdev->irq, pf);
i40e_clear_interrupt_scheme(pf);
if (i40e_restore_interrupt_scheme(pf))
goto end_unlock;
}
/* tell the firmware that we're starting */
i40e_send_version(pf);
/* bail out in case recovery mode was detected, as there is
* no need for further configuration.
*/
goto end_unlock;
}
i40e_clear_pxe_mode(hw);
ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
if (ret)
goto end_core_reset;
ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
hw->func_caps.num_rx_qp, 0, 0);
if (ret) {
dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
goto end_core_reset;
}
ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
if (ret) {
dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
goto end_core_reset;
}
#ifdef CONFIG_I40E_DCB
/* Enable FW to write a default DCB config on link-up
* unless I40E_FLAG_TC_MQPRIO was enabled or DCB
* is not supported with new link speed
*/
if (i40e_is_tc_mqprio_enabled(pf)) {
i40e_aq_set_dcb_parameters(hw, false, NULL);
} else {
if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
(hw->phy.link_info.link_speed &
(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
i40e_aq_set_dcb_parameters(hw, false, NULL);
dev_warn(&pf->pdev->dev,
"DCB is not supported for X710-T*L 2.5/5G speeds\n");
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
} else {
i40e_aq_set_dcb_parameters(hw, true, NULL);
ret = i40e_init_pf_dcb(pf);
if (ret) {
dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n",
ret);
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
/* Continue without DCB enabled */
}
}
}
#endif /* CONFIG_I40E_DCB */
if (!lock_acquired)
rtnl_lock();
ret = i40e_setup_pf_switch(pf, reinit, true);
if (ret)
goto end_unlock;
/* The driver only wants link up/down and module qualification
* reports from firmware. Note the negative logic.
*/
ret = i40e_aq_set_phy_int_mask(&pf->hw,
~(I40E_AQ_EVENT_LINK_UPDOWN |
I40E_AQ_EVENT_MEDIA_NA |
I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
if (ret)
dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* Rebuild the VSIs and VEBs that existed before reset.
* They are still in our local switch element arrays, so only
* need to rebuild the switch model in the HW.
*
* If there were VEBs but the reconstitution failed, we'll try
* to recover minimal use by getting the basic PF VSI working.
*/
if (vsi->uplink_seid != pf->mac_seid) {
dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
/* Rebuild VEBs */
i40e_pf_for_each_veb(pf, v, veb) {
ret = i40e_reconstitute_veb(veb);
if (!ret)
continue;
/* If Main VEB failed, we're in deep doodoo,
* so give up rebuilding the switch and set up
* for minimal rebuild of PF VSI.
* If orphan failed, we'll report the error
* but try to keep going.
*/
if (veb->uplink_seid == pf->mac_seid) {
dev_info(&pf->pdev->dev,
"rebuild of switch failed: %d, will try to set up simple PF connection\n",
ret);
vsi->uplink_seid = pf->mac_seid;
break;
} else if (veb->uplink_seid == 0) {
dev_info(&pf->pdev->dev,
"rebuild of orphan VEB failed: %d\n",
ret);
}
}
}
if (vsi->uplink_seid == pf->mac_seid) {
dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
/* no VEB, so rebuild only the Main VSI */
ret = i40e_add_vsi(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"rebuild of Main VSI failed: %d\n", ret);
goto end_unlock;
}
}
if (vsi->mqprio_qopt.max_rate[0]) {
u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
vsi->mqprio_qopt.max_rate[0]);
u64 credits = 0;
ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
if (ret)
goto end_unlock;
credits = max_tx_rate;
do_div(credits, I40E_BW_CREDIT_DIVISOR);
dev_dbg(&vsi->back->pdev->dev,
"Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
max_tx_rate,
credits,
vsi->seid);
}
ret = i40e_rebuild_cloud_filters(vsi, vsi->seid);
if (ret)
goto end_unlock;
/* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs
* for this main VSI if they exist
*/
ret = i40e_rebuild_channels(vsi);
if (ret)
goto end_unlock;
/* Reconfigure hardware for allowing smaller MSS in the case
* of TSO, so that we avoid the MDD being fired and causing
* a reset in the case of small MSS+TSO.
*/
#define I40E_REG_MSS 0x000E64DC
#define I40E_REG_MSS_MIN_MASK 0x3FF0000
#define I40E_64BYTE_MSS 0x400000
val = rd32(hw, I40E_REG_MSS);
if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
val &= ~I40E_REG_MSS_MIN_MASK;
val |= I40E_64BYTE_MSS;
wr32(hw, I40E_REG_MSS, val);
}
if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
msleep(75);
ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
if (ret)
dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
}
/* reinit the misc interrupt */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
ret = i40e_setup_misc_vector(pf);
if (ret)
goto end_unlock;
}
/* Add a filter to drop all Flow control frames from any VSI from being
* transmitted. By doing so we stop a malicious VF from sending out
* PAUSE or PFC frames and potentially controlling traffic for other
* PF/VF VSIs.
* The FW can still send Flow control frames if enabled.
*/
i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
pf->main_vsi_seid);
/* restart the VSIs that were rebuilt and running before the reset */
i40e_pf_unquiesce_all_vsi(pf);
/* Release the RTNL lock before we start resetting VFs */
if (!lock_acquired)
rtnl_unlock();
/* Restore promiscuous settings */
ret = i40e_set_promiscuous(pf, pf->cur_promisc);
if (ret)
dev_warn(&pf->pdev->dev,
"Failed to restore promiscuous setting: %s, err %pe aq_err %s\n",
pf->cur_promisc ? "on" : "off",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
i40e_reset_all_vfs(pf, true);
/* tell the firmware that we're starting */
i40e_send_version(pf);
/* We've already released the lock, so don't do it again */
goto end_core_reset;
end_unlock:
if (!lock_acquired)
rtnl_unlock();
end_core_reset:
clear_bit(__I40E_RESET_FAILED, pf->state);
clear_recovery:
clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state);
}
/**
* i40e_reset_and_rebuild - reset and rebuild using a saved config
* @pf: board private structure
* @reinit: if the Main VSI needs to re-initialized.
* @lock_acquired: indicates whether or not the lock has been acquired
* before this function was called.
**/
static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
bool lock_acquired)
{
int ret;
if (test_bit(__I40E_IN_REMOVE, pf->state))
return;
/* Now we wait for GRST to settle out.
* We don't have to delete the VEBs or VSIs from the hw switch
* because the reset will make them disappear.
*/
ret = i40e_reset(pf);
if (!ret)
i40e_rebuild(pf, reinit, lock_acquired);
}
/**
* i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
* @pf: board private structure
*
* Close up the VFs and other things in prep for a Core Reset,
* then get ready to rebuild the world.
* @lock_acquired: indicates whether or not the lock has been acquired
* before this function was called.
**/
static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
{
i40e_prep_for_reset(pf);
i40e_reset_and_rebuild(pf, false, lock_acquired);
}
/**
* i40e_handle_mdd_event
* @pf: pointer to the PF structure
*
* Called from the MDD irq handler to identify possibly malicious vfs
**/
static void i40e_handle_mdd_event(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
bool mdd_detected = false;
struct i40e_vf *vf;
u32 reg;
int i;
if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state))
return;
/* find what triggered the MDD event */
reg = rd32(hw, I40E_GL_MDET_TX);
if (reg & I40E_GL_MDET_TX_VALID_MASK) {
u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg);
u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg);
u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg);
u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) -
pf->hw.func_caps.base_queue;
if (netif_msg_tx_err(pf))
dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
event, queue, pf_num, vf_num);
wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
mdd_detected = true;
}
reg = rd32(hw, I40E_GL_MDET_RX);
if (reg & I40E_GL_MDET_RX_VALID_MASK) {
u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg);
u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg);
u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) -
pf->hw.func_caps.base_queue;
if (netif_msg_rx_err(pf))
dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
event, queue, func);
wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
mdd_detected = true;
}
if (mdd_detected) {
reg = rd32(hw, I40E_PF_MDET_TX);
if (reg & I40E_PF_MDET_TX_VALID_MASK) {
wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n");
}
reg = rd32(hw, I40E_PF_MDET_RX);
if (reg & I40E_PF_MDET_RX_VALID_MASK) {
wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n");
}
}
/* see if one of the VFs needs its hand slapped */
for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
vf = &(pf->vf[i]);
reg = rd32(hw, I40E_VP_MDET_TX(i));
if (reg & I40E_VP_MDET_TX_VALID_MASK) {
wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
vf->num_mdd_events++;
dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
i);
dev_info(&pf->pdev->dev,
"Use PF Control I/F to re-enable the VF\n");
set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
}
reg = rd32(hw, I40E_VP_MDET_RX(i));
if (reg & I40E_VP_MDET_RX_VALID_MASK) {
wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
vf->num_mdd_events++;
dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
i);
dev_info(&pf->pdev->dev,
"Use PF Control I/F to re-enable the VF\n");
set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
}
}
/* re-enable mdd interrupt cause */
clear_bit(__I40E_MDD_EVENT_PENDING, pf->state);
reg = rd32(hw, I40E_PFINT_ICR0_ENA);
reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
wr32(hw, I40E_PFINT_ICR0_ENA, reg);
i40e_flush(hw);
}
/**
* i40e_service_task - Run the driver's async subtasks
* @work: pointer to work_struct containing our data
**/
static void i40e_service_task(struct work_struct *work)
{
struct i40e_pf *pf = container_of(work,
struct i40e_pf,
service_task);
unsigned long start_time = jiffies;
/* don't bother with service tasks if a reset is in progress */
if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
test_bit(__I40E_SUSPENDED, pf->state))
return;
if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
return;
if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) {
i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]);
i40e_sync_filters_subtask(pf);
i40e_reset_subtask(pf);
i40e_handle_mdd_event(pf);
i40e_vc_process_vflr_event(pf);
i40e_watchdog_subtask(pf);
i40e_fdir_reinit_subtask(pf);
if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) {
/* Client subtask will reopen next time through. */
i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi],
true);
} else {
i40e_client_subtask(pf);
if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE,
pf->state))
i40e_notify_client_of_l2_param_changes(
pf->vsi[pf->lan_vsi]);
}
i40e_sync_filters_subtask(pf);
} else {
i40e_reset_subtask(pf);
}
i40e_clean_adminq_subtask(pf);
/* flush memory to make sure state is correct before next watchdog */
smp_mb__before_atomic();
clear_bit(__I40E_SERVICE_SCHED, pf->state);
/* If the tasks have taken longer than one timer cycle or there
* is more work to be done, reschedule the service task now
* rather than wait for the timer to tick again.
*/
if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) ||
test_bit(__I40E_MDD_EVENT_PENDING, pf->state) ||
test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
i40e_service_event_schedule(pf);
}
/**
* i40e_service_timer - timer callback
* @t: timer list pointer
**/
static void i40e_service_timer(struct timer_list *t)
{
struct i40e_pf *pf = from_timer(pf, t, service_timer);
mod_timer(&pf->service_timer,
round_jiffies(jiffies + pf->service_timer_period));
i40e_service_event_schedule(pf);
}
/**
* i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
* @vsi: the VSI being configured
**/
static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
switch (vsi->type) {
case I40E_VSI_MAIN:
vsi->alloc_queue_pairs = pf->num_lan_qps;
if (!vsi->num_tx_desc)
vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
if (!vsi->num_rx_desc)
vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
vsi->num_q_vectors = pf->num_lan_msix;
else
vsi->num_q_vectors = 1;
break;
case I40E_VSI_FDIR:
vsi->alloc_queue_pairs = 1;
vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT,
I40E_REQ_DESCRIPTOR_MULTIPLE);
vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT,
I40E_REQ_DESCRIPTOR_MULTIPLE);
vsi->num_q_vectors = pf->num_fdsb_msix;
break;
case I40E_VSI_VMDQ2:
vsi->alloc_queue_pairs = pf->num_vmdq_qps;
if (!vsi->num_tx_desc)
vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
if (!vsi->num_rx_desc)
vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
vsi->num_q_vectors = pf->num_vmdq_msix;
break;
case I40E_VSI_SRIOV:
vsi->alloc_queue_pairs = pf->num_vf_qps;
if (!vsi->num_tx_desc)
vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
if (!vsi->num_rx_desc)
vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
I40E_REQ_DESCRIPTOR_MULTIPLE);
break;
default:
WARN_ON(1);
return -ENODATA;
}
if (is_kdump_kernel()) {
vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS;
vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS;
}
return 0;
}
/**
* i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
* @vsi: VSI pointer
* @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
*
* On error: returns error code (negative)
* On success: returns 0
**/
static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
{
struct i40e_ring **next_rings;
int size;
int ret = 0;
/* allocate memory for both Tx, XDP Tx and Rx ring pointers */
size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
(i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
vsi->tx_rings = kzalloc(size, GFP_KERNEL);
if (!vsi->tx_rings)
return -ENOMEM;
next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
if (i40e_enabled_xdp_vsi(vsi)) {
vsi->xdp_rings = next_rings;
next_rings += vsi->alloc_queue_pairs;
}
vsi->rx_rings = next_rings;
if (alloc_qvectors) {
/* allocate memory for q_vector pointers */
size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
vsi->q_vectors = kzalloc(size, GFP_KERNEL);
if (!vsi->q_vectors) {
ret = -ENOMEM;
goto err_vectors;
}
}
return ret;
err_vectors:
kfree(vsi->tx_rings);
return ret;
}
/**
* i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
* @pf: board private structure
* @type: type of VSI
*
* On error: returns error code (negative)
* On success: returns vsi index in PF (positive)
**/
static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
{
int ret = -ENODEV;
struct i40e_vsi *vsi;
int vsi_idx;
int i;
/* Need to protect the allocation of the VSIs at the PF level */
mutex_lock(&pf->switch_mutex);
/* VSI list may be fragmented if VSI creation/destruction has
* been happening. We can afford to do a quick scan to look
* for any free VSIs in the list.
*
* find next empty vsi slot, looping back around if necessary
*/
i = pf->next_vsi;
while (i < pf->num_alloc_vsi && pf->vsi[i])
i++;
if (i >= pf->num_alloc_vsi) {
i = 0;
while (i < pf->next_vsi && pf->vsi[i])
i++;
}
if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
vsi_idx = i; /* Found one! */
} else {
ret = -ENODEV;
goto unlock_pf; /* out of VSI slots! */
}
pf->next_vsi = ++i;
vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
if (!vsi) {
ret = -ENOMEM;
goto unlock_pf;
}
vsi->type = type;
vsi->back = pf;
set_bit(__I40E_VSI_DOWN, vsi->state);
vsi->flags = 0;
vsi->idx = vsi_idx;
vsi->int_rate_limit = 0;
vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
pf->rss_table_size : 64;
vsi->netdev_registered = false;
vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
hash_init(vsi->mac_filter_hash);
vsi->irqs_ready = false;
if (type == I40E_VSI_MAIN) {
vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL);
if (!vsi->af_xdp_zc_qps)
goto err_rings;
}
ret = i40e_set_num_rings_in_vsi(vsi);
if (ret)
goto err_rings;
ret = i40e_vsi_alloc_arrays(vsi, true);
if (ret)
goto err_rings;
/* Setup default MSIX irq handler for VSI */
i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
/* Initialize VSI lock */
spin_lock_init(&vsi->mac_filter_hash_lock);
pf->vsi[vsi_idx] = vsi;
ret = vsi_idx;
goto unlock_pf;
err_rings:
bitmap_free(vsi->af_xdp_zc_qps);
pf->next_vsi = i - 1;
kfree(vsi);
unlock_pf:
mutex_unlock(&pf->switch_mutex);
return ret;
}
/**
* i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
* @vsi: VSI pointer
* @free_qvectors: a bool to specify if q_vectors need to be freed.
*
* On error: returns error code (negative)
* On success: returns 0
**/
static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
{
/* free the ring and vector containers */
if (free_qvectors) {
kfree(vsi->q_vectors);
vsi->q_vectors = NULL;
}
kfree(vsi->tx_rings);
vsi->tx_rings = NULL;
vsi->rx_rings = NULL;
vsi->xdp_rings = NULL;
}
/**
* i40e_clear_rss_config_user - clear the user configured RSS hash keys
* and lookup table
* @vsi: Pointer to VSI structure
*/
static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
{
if (!vsi)
return;
kfree(vsi->rss_hkey_user);
vsi->rss_hkey_user = NULL;
kfree(vsi->rss_lut_user);
vsi->rss_lut_user = NULL;
}
/**
* i40e_vsi_clear - Deallocate the VSI provided
* @vsi: the VSI being un-configured
**/
static int i40e_vsi_clear(struct i40e_vsi *vsi)
{
struct i40e_pf *pf;
if (!vsi)
return 0;
if (!vsi->back)
goto free_vsi;
pf = vsi->back;
mutex_lock(&pf->switch_mutex);
if (!pf->vsi[vsi->idx]) {
dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n",
vsi->idx, vsi->idx, vsi->type);
goto unlock_vsi;
}
if (pf->vsi[vsi->idx] != vsi) {
dev_err(&pf->pdev->dev,
"pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n",
pf->vsi[vsi->idx]->idx,
pf->vsi[vsi->idx]->type,
vsi->idx, vsi->type);
goto unlock_vsi;
}
/* updates the PF for this cleared vsi */
i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
bitmap_free(vsi->af_xdp_zc_qps);
i40e_vsi_free_arrays(vsi, true);
i40e_clear_rss_config_user(vsi);
pf->vsi[vsi->idx] = NULL;
if (vsi->idx < pf->next_vsi)
pf->next_vsi = vsi->idx;
unlock_vsi:
mutex_unlock(&pf->switch_mutex);
free_vsi:
kfree(vsi);
return 0;
}
/**
* i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
* @vsi: the VSI being cleaned
**/
static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
{
int i;
if (vsi->tx_rings && vsi->tx_rings[0]) {
for (i = 0; i < vsi->alloc_queue_pairs; i++) {
kfree_rcu(vsi->tx_rings[i], rcu);
WRITE_ONCE(vsi->tx_rings[i], NULL);
WRITE_ONCE(vsi->rx_rings[i], NULL);
if (vsi->xdp_rings)
WRITE_ONCE(vsi->xdp_rings[i], NULL);
}
}
}
/**
* i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
* @vsi: the VSI being configured
**/
static int i40e_alloc_rings(struct i40e_vsi *vsi)
{
int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
struct i40e_pf *pf = vsi->back;
struct i40e_ring *ring;
/* Set basic values in the rings to be used later during open() */
for (i = 0; i < vsi->alloc_queue_pairs; i++) {
/* allocate space for both Tx and Rx in one shot */
ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->queue_index = i;
ring->reg_idx = vsi->base_queue + i;
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_tx_desc;
ring->size = 0;
ring->dcb_tc = 0;
if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
ring->itr_setting = pf->tx_itr_default;
WRITE_ONCE(vsi->tx_rings[i], ring++);
if (!i40e_enabled_xdp_vsi(vsi))
goto setup_rx;
ring->queue_index = vsi->alloc_queue_pairs + i;
ring->reg_idx = vsi->base_queue + ring->queue_index;
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = NULL;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_tx_desc;
ring->size = 0;
ring->dcb_tc = 0;
if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
set_ring_xdp(ring);
ring->itr_setting = pf->tx_itr_default;
WRITE_ONCE(vsi->xdp_rings[i], ring++);
setup_rx:
ring->queue_index = i;
ring->reg_idx = vsi->base_queue + i;
ring->ring_active = false;
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = &pf->pdev->dev;
ring->count = vsi->num_rx_desc;
ring->size = 0;
ring->dcb_tc = 0;
ring->itr_setting = pf->rx_itr_default;
WRITE_ONCE(vsi->rx_rings[i], ring);
}
return 0;
err_out:
i40e_vsi_clear_rings(vsi);
return -ENOMEM;
}
/**
* i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
* @pf: board private structure
* @vectors: the number of MSI-X vectors to request
*
* Returns the number of vectors reserved, or error
**/
static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
{
vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
I40E_MIN_MSIX, vectors);
if (vectors < 0) {
dev_info(&pf->pdev->dev,
"MSI-X vector reservation failed: %d\n", vectors);
vectors = 0;
}
return vectors;
}
/**
* i40e_init_msix - Setup the MSIX capability
* @pf: board private structure
*
* Work with the OS to set up the MSIX vectors needed.
*
* Returns the number of vectors reserved or negative on failure
**/
static int i40e_init_msix(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int cpus, extra_vectors;
int vectors_left;
int v_budget, i;
int v_actual;
int iwarp_requested = 0;
if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
return -ENODEV;
/* The number of vectors we'll request will be comprised of:
* - Add 1 for "other" cause for Admin Queue events, etc.
* - The number of LAN queue pairs
* - Queues being used for RSS.
* We don't need as many as max_rss_size vectors.
* use rss_size instead in the calculation since that
* is governed by number of cpus in the system.
* - assumes symmetric Tx/Rx pairing
* - The number of VMDq pairs
* - The CPU count within the NUMA node if iWARP is enabled
* Once we count this up, try the request.
*
* If we can't get what we want, we'll simplify to nearly nothing
* and try again. If that still fails, we punt.
*/
vectors_left = hw->func_caps.num_msix_vectors;
v_budget = 0;
/* reserve one vector for miscellaneous handler */
if (vectors_left) {
v_budget++;
vectors_left--;
}
/* reserve some vectors for the main PF traffic queues. Initially we
* only reserve at most 50% of the available vectors, in the case that
* the number of online CPUs is large. This ensures that we can enable
* extra features as well. Once we've enabled the other features, we
* will use any remaining vectors to reach as close as we can to the
* number of online CPUs.
*/
cpus = num_online_cpus();
pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
vectors_left -= pf->num_lan_msix;
/* reserve one vector for sideband flow director */
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
if (vectors_left) {
pf->num_fdsb_msix = 1;
v_budget++;
vectors_left--;
} else {
pf->num_fdsb_msix = 0;
}
}
/* can we reserve enough for iWARP? */
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
iwarp_requested = pf->num_iwarp_msix;
if (!vectors_left)
pf->num_iwarp_msix = 0;
else if (vectors_left < pf->num_iwarp_msix)
pf->num_iwarp_msix = 1;
v_budget += pf->num_iwarp_msix;
vectors_left -= pf->num_iwarp_msix;
}
/* any vectors left over go for VMDq support */
if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) {
if (!vectors_left) {
pf->num_vmdq_msix = 0;
pf->num_vmdq_qps = 0;
} else {
int vmdq_vecs_wanted =
pf->num_vmdq_vsis * pf->num_vmdq_qps;
int vmdq_vecs =
min_t(int, vectors_left, vmdq_vecs_wanted);
/* if we're short on vectors for what's desired, we limit
* the queues per vmdq. If this is still more than are
* available, the user will need to change the number of
* queues/vectors used by the PF later with the ethtool
* channels command
*/
if (vectors_left < vmdq_vecs_wanted) {
pf->num_vmdq_qps = 1;
vmdq_vecs_wanted = pf->num_vmdq_vsis;
vmdq_vecs = min_t(int,
vectors_left,
vmdq_vecs_wanted);
}
pf->num_vmdq_msix = pf->num_vmdq_qps;
v_budget += vmdq_vecs;
vectors_left -= vmdq_vecs;
}
}
/* On systems with a large number of SMP cores, we previously limited
* the number of vectors for num_lan_msix to be at most 50% of the
* available vectors, to allow for other features. Now, we add back
* the remaining vectors. However, we ensure that the total
* num_lan_msix will not exceed num_online_cpus(). To do this, we
* calculate the number of vectors we can add without going over the
* cap of CPUs. For systems with a small number of CPUs this will be
* zero.
*/
extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
pf->num_lan_msix += extra_vectors;
vectors_left -= extra_vectors;
WARN(vectors_left < 0,
"Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
v_budget += pf->num_lan_msix;
pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
GFP_KERNEL);
if (!pf->msix_entries)
return -ENOMEM;
for (i = 0; i < v_budget; i++)
pf->msix_entries[i].entry = i;
v_actual = i40e_reserve_msix_vectors(pf, v_budget);
if (v_actual < I40E_MIN_MSIX) {
clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
kfree(pf->msix_entries);
pf->msix_entries = NULL;
pci_disable_msix(pf->pdev);
return -ENODEV;
} else if (v_actual == I40E_MIN_MSIX) {
/* Adjust for minimal MSIX use */
pf->num_vmdq_vsis = 0;
pf->num_vmdq_qps = 0;
pf->num_lan_qps = 1;
pf->num_lan_msix = 1;
} else if (v_actual != v_budget) {
/* If we have limited resources, we will start with no vectors
* for the special features and then allocate vectors to some
* of these features based on the policy and at the end disable
* the features that did not get any vectors.
*/
int vec;
dev_info(&pf->pdev->dev,
"MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n",
v_actual, v_budget);
/* reserve the misc vector */
vec = v_actual - 1;
/* Scale vector usage down */
pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
pf->num_vmdq_vsis = 1;
pf->num_vmdq_qps = 1;
/* partition out the remaining vectors */
switch (vec) {
case 2:
pf->num_lan_msix = 1;
break;
case 3:
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
pf->num_lan_msix = 1;
pf->num_iwarp_msix = 1;
} else {
pf->num_lan_msix = 2;
}
break;
default:
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
pf->num_iwarp_msix = min_t(int, (vec / 3),
iwarp_requested);
pf->num_vmdq_vsis = min_t(int, (vec / 3),
I40E_DEFAULT_NUM_VMDQ_VSI);
} else {
pf->num_vmdq_vsis = min_t(int, (vec / 2),
I40E_DEFAULT_NUM_VMDQ_VSI);
}
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
pf->num_fdsb_msix = 1;
vec--;
}
pf->num_lan_msix = min_t(int,
(vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
pf->num_lan_msix);
pf->num_lan_qps = pf->num_lan_msix;
break;
}
}
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) {
dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
}
if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) {
dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
}
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
pf->num_iwarp_msix == 0) {
dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
}
i40e_debug(&pf->hw, I40E_DEBUG_INIT,
"MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
pf->num_lan_msix,
pf->num_vmdq_msix * pf->num_vmdq_vsis,
pf->num_fdsb_msix,
pf->num_iwarp_msix);
return v_actual;
}
/**
* i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the vsi struct
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx)
{
struct i40e_q_vector *q_vector;
/* allocate q_vector */
q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll);
/* tie q_vector and vsi together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
}
/**
* i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int err, v_idx, num_q_vectors;
/* if not MSIX, give the one vector only to the LAN VSI */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
num_q_vectors = vsi->num_q_vectors;
else if (vsi == pf->vsi[pf->lan_vsi])
num_q_vectors = 1;
else
return -EINVAL;
for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
err = i40e_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
i40e_free_q_vector(vsi, v_idx);
return err;
}
/**
* i40e_init_interrupt_scheme - Determine proper interrupt scheme
* @pf: board private structure to initialize
**/
static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
{
int vectors = 0;
ssize_t size;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
vectors = i40e_init_msix(pf);
if (vectors < 0) {
clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
/* rework the queue expectations without MSIX */
i40e_determine_queue_usage(pf);
}
}
if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
vectors = pci_enable_msi(pf->pdev);
if (vectors < 0) {
dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
vectors);
clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
}
vectors = 1; /* one MSI or Legacy vector */
}
if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) &&
!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
/* set up vector assignment tracking */
size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
pf->irq_pile = kzalloc(size, GFP_KERNEL);
if (!pf->irq_pile)
return -ENOMEM;
pf->irq_pile->num_entries = vectors;
/* track first vector for misc interrupts, ignore return */
(void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
return 0;
}
/**
* i40e_restore_interrupt_scheme - Restore the interrupt scheme
* @pf: private board data structure
*
* Restore the interrupt scheme that was cleared when we suspended the
* device. This should be called during resume to re-allocate the q_vectors
* and reacquire IRQs.
*/
static int i40e_restore_interrupt_scheme(struct i40e_pf *pf)
{
struct i40e_vsi *vsi;
int err, i;
/* We cleared the MSI and MSI-X flags when disabling the old interrupt
* scheme. We need to re-enabled them here in order to attempt to
* re-acquire the MSI or MSI-X vectors
*/
set_bit(I40E_FLAG_MSI_ENA, pf->flags);
set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
err = i40e_init_interrupt_scheme(pf);
if (err)
return err;
/* Now that we've re-acquired IRQs, we need to remap the vectors and
* rings together again.
*/
i40e_pf_for_each_vsi(pf, i, vsi) {
err = i40e_vsi_alloc_q_vectors(vsi);
if (err)
goto err_unwind;
i40e_vsi_map_rings_to_vectors(vsi);
}
err = i40e_setup_misc_vector(pf);
if (err)
goto err_unwind;
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
i40e_client_update_msix_info(pf);
return 0;
err_unwind:
while (i--) {
if (pf->vsi[i])
i40e_vsi_free_q_vectors(pf->vsi[i]);
}
return err;
}
/**
* i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle
* non queue events in recovery mode
* @pf: board private structure
*
* This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage
* the non-queue interrupts, e.g. AdminQ and errors in recovery mode.
* This is handled differently than in recovery mode since no Tx/Rx resources
* are being allocated.
**/
static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf)
{
int err;
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
err = i40e_setup_misc_vector(pf);
if (err) {
dev_info(&pf->pdev->dev,
"MSI-X misc vector request failed, error %d\n",
err);
return err;
}
} else {
u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED;
err = request_irq(pf->pdev->irq, i40e_intr, flags,
pf->int_name, pf);
if (err) {
dev_info(&pf->pdev->dev,
"MSI/legacy misc vector request failed, error %d\n",
err);
return err;
}
i40e_enable_misc_int_causes(pf);
i40e_irq_dynamic_enable_icr0(pf);
}
return 0;
}
/**
* i40e_setup_misc_vector - Setup the misc vector to handle non queue events
* @pf: board private structure
*
* This sets up the handler for MSIX 0, which is used to manage the
* non-queue interrupts, e.g. AdminQ and errors. This is not used
* when in MSI or Legacy interrupt mode.
**/
static int i40e_setup_misc_vector(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
int err = 0;
/* Only request the IRQ once, the first time through. */
if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) {
err = request_irq(pf->msix_entries[0].vector,
i40e_intr, 0, pf->int_name, pf);
if (err) {
clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
dev_info(&pf->pdev->dev,
"request_irq for %s failed: %d\n",
pf->int_name, err);
return -EFAULT;
}
}
i40e_enable_misc_int_causes(pf);
/* associate no queues to the misc vector */
wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1);
i40e_flush(hw);
i40e_irq_dynamic_enable_icr0(pf);
return err;
}
/**
* i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
* @vsi: Pointer to vsi structure
* @seed: Buffter to store the hash keys
* @lut: Buffer to store the lookup table entries
* @lut_size: Size of buffer to store the lookup table entries
*
* Return 0 on success, negative on failure
*/
static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
int ret = 0;
if (seed) {
ret = i40e_aq_get_rss_key(hw, vsi->id,
(struct i40e_aqc_get_set_rss_key_data *)seed);
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot get RSS key, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return ret;
}
}
if (lut) {
bool pf_lut = vsi->type == I40E_VSI_MAIN;
ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot get RSS lut, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return ret;
}
}
return ret;
}
/**
* i40e_config_rss_reg - Configure RSS keys and lut by writing registers
* @vsi: Pointer to vsi structure
* @seed: RSS hash seed
* @lut: Lookup table
* @lut_size: Lookup table size
*
* Returns 0 on success, negative on failure
**/
static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
const u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u16 vf_id = vsi->vf_id;
u8 i;
/* Fill out hash function seed */
if (seed) {
u32 *seed_dw = (u32 *)seed;
if (vsi->type == I40E_VSI_MAIN) {
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
} else if (vsi->type == I40E_VSI_SRIOV) {
for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
} else {
dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
}
}
if (lut) {
u32 *lut_dw = (u32 *)lut;
if (vsi->type == I40E_VSI_MAIN) {
if (lut_size != I40E_HLUT_ARRAY_SIZE)
return -EINVAL;
for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
} else if (vsi->type == I40E_VSI_SRIOV) {
if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
return -EINVAL;
for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
} else {
dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
}
}
i40e_flush(hw);
return 0;
}
/**
* i40e_get_rss_reg - Get the RSS keys and lut by reading registers
* @vsi: Pointer to VSI structure
* @seed: Buffer to store the keys
* @lut: Buffer to store the lookup table entries
* @lut_size: Size of buffer to store the lookup table entries
*
* Returns 0 on success, negative on failure
*/
static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u16 i;
if (seed) {
u32 *seed_dw = (u32 *)seed;
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
}
if (lut) {
u32 *lut_dw = (u32 *)lut;
if (lut_size != I40E_HLUT_ARRAY_SIZE)
return -EINVAL;
for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
}
return 0;
}
/**
* i40e_config_rss - Configure RSS keys and lut
* @vsi: Pointer to VSI structure
* @seed: RSS hash seed
* @lut: Lookup table
* @lut_size: Lookup table size
*
* Returns 0 on success, negative on failure
*/
int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
return i40e_config_rss_aq(vsi, seed, lut, lut_size);
else
return i40e_config_rss_reg(vsi, seed, lut, lut_size);
}
/**
* i40e_get_rss - Get RSS keys and lut
* @vsi: Pointer to VSI structure
* @seed: Buffer to store the keys
* @lut: Buffer to store the lookup table entries
* @lut_size: Size of buffer to store the lookup table entries
*
* Returns 0 on success, negative on failure
*/
int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
{
struct i40e_pf *pf = vsi->back;
if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
return i40e_get_rss_aq(vsi, seed, lut, lut_size);
else
return i40e_get_rss_reg(vsi, seed, lut, lut_size);
}
/**
* i40e_fill_rss_lut - Fill the RSS lookup table with default values
* @pf: Pointer to board private structure
* @lut: Lookup table
* @rss_table_size: Lookup table size
* @rss_size: Range of queue number for hashing
*/
void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
u16 rss_table_size, u16 rss_size)
{
u16 i;
for (i = 0; i < rss_table_size; i++)
lut[i] = i % rss_size;
}
/**
* i40e_pf_config_rss - Prepare for RSS if used
* @pf: board private structure
**/
static int i40e_pf_config_rss(struct i40e_pf *pf)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
u8 seed[I40E_HKEY_ARRAY_SIZE];
u8 *lut;
struct i40e_hw *hw = &pf->hw;
u32 reg_val;
u64 hena;
int ret;
/* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
hena |= i40e_pf_get_default_rss_hena(pf);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
/* Determine the RSS table size based on the hardware capabilities */
reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
reg_val = (pf->rss_table_size == 512) ?
(reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
(reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
/* Determine the RSS size of the VSI */
if (!vsi->rss_size) {
u16 qcount;
/* If the firmware does something weird during VSI init, we
* could end up with zero TCs. Check for that to avoid
* divide-by-zero. It probably won't pass traffic, but it also
* won't panic.
*/
qcount = vsi->num_queue_pairs /
(vsi->tc_config.numtc ? vsi->tc_config.numtc : 1);
vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
}
if (!vsi->rss_size)
return -EINVAL;
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
/* Use user configured lut if there is one, otherwise use default */
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
/* Use user configured hash key if there is one, otherwise
* use default.
*/
if (vsi->rss_hkey_user)
memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
else
netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
kfree(lut);
return ret;
}
/**
* i40e_reconfig_rss_queues - change number of queues for rss and rebuild
* @pf: board private structure
* @queue_count: the requested queue count for rss.
*
* returns 0 if rss is not enabled, if enabled returns the final rss queue
* count which may be different from the requested queue count.
* Note: expects to be called while under rtnl_lock()
**/
int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
{
struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
int new_rss_size;
if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags))
return 0;
queue_count = min_t(int, queue_count, num_online_cpus());
new_rss_size = min_t(int, queue_count, pf->rss_size_max);
if (queue_count != vsi->num_queue_pairs) {
u16 qcount;
vsi->req_queue_pairs = queue_count;
i40e_prep_for_reset(pf);
if (test_bit(__I40E_IN_REMOVE, pf->state))
return pf->alloc_rss_size;
pf->alloc_rss_size = new_rss_size;
i40e_reset_and_rebuild(pf, true, true);
/* Discard the user configured hash keys and lut, if less
* queues are enabled.
*/
if (queue_count < vsi->rss_size) {
i40e_clear_rss_config_user(vsi);
dev_dbg(&pf->pdev->dev,
"discard user configured hash keys and lut\n");
}
/* Reset vsi->rss_size, as number of enabled queues changed */
qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
i40e_pf_config_rss(pf);
}
dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n",
vsi->req_queue_pairs, pf->rss_size_max);
return pf->alloc_rss_size;
}
/**
* i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
* @pf: board private structure
**/
int i40e_get_partition_bw_setting(struct i40e_pf *pf)
{
bool min_valid, max_valid;
u32 max_bw, min_bw;
int status;
status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
&min_valid, &max_valid);
if (!status) {
if (min_valid)
pf->min_bw = min_bw;
if (max_valid)
pf->max_bw = max_bw;
}
return status;
}
/**
* i40e_set_partition_bw_setting - Set BW settings for this PF partition
* @pf: board private structure
**/
int i40e_set_partition_bw_setting(struct i40e_pf *pf)
{
struct i40e_aqc_configure_partition_bw_data bw_data;
int status;
memset(&bw_data, 0, sizeof(bw_data));
/* Set the valid bit for this PF */
bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
/* Set the new bandwidths */
status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
return status;
}
/**
* i40e_commit_partition_bw_setting - Commit BW settings for this PF partition
* @pf: board private structure
**/
int i40e_commit_partition_bw_setting(struct i40e_pf *pf)
{
/* Commit temporary BW setting to permanent NVM image */
enum i40e_admin_queue_err last_aq_status;
u16 nvm_word;
int ret;
if (pf->hw.partition_id != 1) {
dev_info(&pf->pdev->dev,
"Commit BW only works on partition 1! This is partition %d",
pf->hw.partition_id);
ret = -EOPNOTSUPP;
goto bw_commit_out;
}
/* Acquire NVM for read access */
ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ);
last_aq_status = pf->hw.aq.asq_last_status;
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot acquire NVM for read access, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, last_aq_status));
goto bw_commit_out;
}
/* Read word 0x10 of NVM - SW compatibility word 1 */
ret = i40e_aq_read_nvm(&pf->hw,
I40E_SR_NVM_CONTROL_WORD,
0x10, sizeof(nvm_word), &nvm_word,
false, NULL);
/* Save off last admin queue command status before releasing
* the NVM
*/
last_aq_status = pf->hw.aq.asq_last_status;
i40e_release_nvm(&pf->hw);
if (ret) {
dev_info(&pf->pdev->dev, "NVM read error, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, last_aq_status));
goto bw_commit_out;
}
/* Wait a bit for NVM release to complete */
msleep(50);
/* Acquire NVM for write access */
ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE);
last_aq_status = pf->hw.aq.asq_last_status;
if (ret) {
dev_info(&pf->pdev->dev,
"Cannot acquire NVM for write access, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, last_aq_status));
goto bw_commit_out;
}
/* Write it back out unchanged to initiate update NVM,
* which will force a write of the shadow (alt) RAM to
* the NVM - thus storing the bandwidth values permanently.
*/
ret = i40e_aq_update_nvm(&pf->hw,
I40E_SR_NVM_CONTROL_WORD,
0x10, sizeof(nvm_word),
&nvm_word, true, 0, NULL);
/* Save off last admin queue command status before releasing
* the NVM
*/
last_aq_status = pf->hw.aq.asq_last_status;
i40e_release_nvm(&pf->hw);
if (ret)
dev_info(&pf->pdev->dev,
"BW settings NOT SAVED, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, last_aq_status));
bw_commit_out:
return ret;
}
/**
* i40e_is_total_port_shutdown_enabled - read NVM and return value
* if total port shutdown feature is enabled for this PF
* @pf: board private structure
**/
static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf)
{
#define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4)
#define I40E_FEATURES_ENABLE_PTR 0x2A
#define I40E_CURRENT_SETTING_PTR 0x2B
#define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D
#define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1
#define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0)
#define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4
u16 sr_emp_sr_settings_ptr = 0;
u16 features_enable = 0;
u16 link_behavior = 0;
int read_status = 0;
bool ret = false;
read_status = i40e_read_nvm_word(&pf->hw,
I40E_SR_EMP_SR_SETTINGS_PTR,
&sr_emp_sr_settings_ptr);
if (read_status)
goto err_nvm;
read_status = i40e_read_nvm_word(&pf->hw,
sr_emp_sr_settings_ptr +
I40E_FEATURES_ENABLE_PTR,
&features_enable);
if (read_status)
goto err_nvm;
if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) {
read_status = i40e_read_nvm_module_data(&pf->hw,
I40E_SR_EMP_SR_SETTINGS_PTR,
I40E_CURRENT_SETTING_PTR,
I40E_LINK_BEHAVIOR_WORD_OFFSET,
I40E_LINK_BEHAVIOR_WORD_LENGTH,
&link_behavior);
if (read_status)
goto err_nvm;
link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH);
ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior;
}
return ret;
err_nvm:
dev_warn(&pf->pdev->dev,
"total-port-shutdown feature is off due to read nvm error: %pe\n",
ERR_PTR(read_status));
return ret;
}
/**
* i40e_sw_init - Initialize general software structures (struct i40e_pf)
* @pf: board private structure to initialize
*
* i40e_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int i40e_sw_init(struct i40e_pf *pf)
{
int err = 0;
int size;
u16 pow;
/* Set default capability flags */
bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS);
set_bit(I40E_FLAG_MSI_ENA, pf->flags);
set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
/* Set default ITR */
pf->rx_itr_default = I40E_ITR_RX_DEF;
pf->tx_itr_default = I40E_ITR_TX_DEF;
/* Depending on PF configurations, it is possible that the RSS
* maximum might end up larger than the available queues
*/
pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
pf->alloc_rss_size = 1;
pf->rss_table_size = pf->hw.func_caps.rss_table_size;
pf->rss_size_max = min_t(int, pf->rss_size_max,
pf->hw.func_caps.num_tx_qp);
/* find the next higher power-of-2 of num cpus */
pow = roundup_pow_of_two(num_online_cpus());
pf->rss_size_max = min_t(int, pf->rss_size_max, pow);
if (pf->hw.func_caps.rss) {
set_bit(I40E_FLAG_RSS_ENA, pf->flags);
pf->alloc_rss_size = min_t(int, pf->rss_size_max,
num_online_cpus());
}
/* MFP mode enabled */
if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
set_bit(I40E_FLAG_MFP_ENA, pf->flags);
dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
if (i40e_get_partition_bw_setting(pf)) {
dev_warn(&pf->pdev->dev,
"Could not get partition bw settings\n");
} else {
dev_info(&pf->pdev->dev,
"Partition BW Min = %8.8x, Max = %8.8x\n",
pf->min_bw, pf->max_bw);
/* nudge the Tx scheduler */
i40e_set_partition_bw_setting(pf);
}
}
if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
(pf->hw.func_caps.fd_filters_best_effort > 0)) {
set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
pf->hw.num_partitions > 1)
dev_info(&pf->pdev->dev,
"Flow Director Sideband mode Disabled in MFP mode\n");
else
set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
pf->fdir_pf_filter_count =
pf->hw.func_caps.fd_filters_guaranteed;
pf->hw.fdir_shared_filter_count =
pf->hw.func_caps.fd_filters_best_effort;
}
/* Enable HW ATR eviction if possible */
if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps))
set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags);
if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) {
pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
set_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
}
if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) {
set_bit(I40E_FLAG_IWARP_ENA, pf->flags);
/* IWARP needs one extra vector for CQP just like MISC.*/
pf->num_iwarp_msix = (int)num_online_cpus() + 1;
}
/* Stopping FW LLDP engine is supported on XL710 and X722
* starting from FW versions determined in i40e_init_adminq.
* Stopping the FW LLDP engine is not supported on XL710
* if NPAR is functioning so unset this hw flag in this case.
*/
if (pf->hw.mac.type == I40E_MAC_XL710 &&
pf->hw.func_caps.npar_enable)
clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps);
#ifdef CONFIG_PCI_IOV
if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
set_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
pf->num_req_vfs = min_t(int,
pf->hw.func_caps.num_vfs,
I40E_MAX_VF_COUNT);
}
#endif /* CONFIG_PCI_IOV */
pf->lan_veb = I40E_NO_VEB;
pf->lan_vsi = I40E_NO_VSI;
/* By default FW has this off for performance reasons */
clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
/* set up queue assignment tracking */
size = sizeof(struct i40e_lump_tracking)
+ (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
pf->qp_pile = kzalloc(size, GFP_KERNEL);
if (!pf->qp_pile) {
err = -ENOMEM;
goto sw_init_done;
}
pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
pf->tx_timeout_recovery_level = 1;
if (pf->hw.mac.type != I40E_MAC_X722 &&
i40e_is_total_port_shutdown_enabled(pf)) {
/* Link down on close must be on when total port shutdown
* is enabled for a given port
*/
set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
dev_info(&pf->pdev->dev,
"total-port-shutdown was enabled, link-down-on-close is forced on\n");
}
mutex_init(&pf->switch_mutex);
sw_init_done:
return err;
}
/**
* i40e_set_ntuple - set the ntuple feature flag and take action
* @pf: board private structure to initialize
* @features: the feature set that the stack is suggesting
*
* returns a bool to indicate if reset needs to happen
**/
bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
{
bool need_reset = false;
/* Check if Flow Director n-tuple support was enabled or disabled. If
* the state changed, we need to reset.
*/
if (features & NETIF_F_NTUPLE) {
/* Enable filters and mark for reset */
if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
need_reset = true;
/* enable FD_SB only if there is MSI-X vector and no cloud
* filters exist
*/
if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) {
set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
}
} else {
/* turn off filters, mark for reset and clear SW filter list */
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
need_reset = true;
i40e_fdir_filter_exit(pf);
}
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
/* reset fd counters */
pf->fd_add_err = 0;
pf->fd_atr_cnt = 0;
/* if ATR was auto disabled it can be re-enabled. */
if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
(I40E_DEBUG_FD & pf->hw.debug_mask))
dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
}
return need_reset;
}
/**
* i40e_clear_rss_lut - clear the rx hash lookup table
* @vsi: the VSI being configured
**/
static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u16 vf_id = vsi->vf_id;
u8 i;
if (vsi->type == I40E_VSI_MAIN) {
for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
wr32(hw, I40E_PFQF_HLUT(i), 0);
} else if (vsi->type == I40E_VSI_SRIOV) {
for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
} else {
dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
}
}
/**
* i40e_set_loopback - turn on/off loopback mode on underlying PF
* @vsi: ptr to VSI
* @ena: flag to indicate the on/off setting
*/
static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena)
{
bool if_running = netif_running(vsi->netdev) &&
!test_and_set_bit(__I40E_VSI_DOWN, vsi->state);
int ret;
if (if_running)
i40e_down(vsi);
ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
if (ret)
netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
if (if_running)
i40e_up(vsi);
return ret;
}
/**
* i40e_set_features - set the netdev feature flags
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
* Note: expects to be called while under rtnl_lock()
**/
static int i40e_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
bool need_reset;
if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
i40e_pf_config_rss(pf);
else if (!(features & NETIF_F_RXHASH) &&
netdev->features & NETIF_F_RXHASH)
i40e_clear_rss_lut(vsi);
if (features & NETIF_F_HW_VLAN_CTAG_RX)
i40e_vlan_stripping_enable(vsi);
else
i40e_vlan_stripping_disable(vsi);
if (!(features & NETIF_F_HW_TC) &&
(netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) {
dev_err(&pf->pdev->dev,
"Offloaded tc filters active, can't turn hw_tc_offload off");
return -EINVAL;
}
if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt)
i40e_del_all_macvlans(vsi);
need_reset = i40e_set_ntuple(pf, features);
if (need_reset)
i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
if ((features ^ netdev->features) & NETIF_F_LOOPBACK)
return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
return 0;
}
static int i40e_udp_tunnel_set_port(struct net_device *netdev,
unsigned int table, unsigned int idx,
struct udp_tunnel_info *ti)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_hw *hw = &np->vsi->back->hw;
u8 type, filter_index;
int ret;
type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN :
I40E_AQC_TUNNEL_TYPE_NGE;
ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index,
NULL);
if (ret) {
netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return -EIO;
}
udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index);
return 0;
}
static int i40e_udp_tunnel_unset_port(struct net_device *netdev,
unsigned int table, unsigned int idx,
struct udp_tunnel_info *ti)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_hw *hw = &np->vsi->back->hw;
int ret;
ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL);
if (ret) {
netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return -EIO;
}
return 0;
}
static int i40e_get_phys_port_id(struct net_device *netdev,
struct netdev_phys_item_id *ppid)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_pf *pf = np->vsi->back;
struct i40e_hw *hw = &pf->hw;
if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps))
return -EOPNOTSUPP;
ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
return 0;
}
/**
* i40e_ndo_fdb_add - add an entry to the hardware database
* @ndm: the input from the stack
* @tb: pointer to array of nladdr (unused)
* @dev: the net device pointer
* @addr: the MAC address entry being added
* @vid: VLAN ID
* @flags: instructions from stack about fdb operation
* @extack: netlink extended ack, unused currently
*/
static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags,
struct netlink_ext_ack *extack)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
struct i40e_pf *pf = np->vsi->back;
int err = 0;
if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags))
return -EOPNOTSUPP;
if (vid) {
pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
return -EINVAL;
}
/* Hardware does not support aging addresses so if a
* ndm_state is given only allow permanent addresses
*/
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
netdev_info(dev, "FDB only supports static addresses\n");
return -EINVAL;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
else
err = -EINVAL;
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
/**
* i40e_ndo_bridge_setlink - Set the hardware bridge mode
* @dev: the netdev being configured
* @nlh: RTNL message
* @flags: bridge flags
* @extack: netlink extended ack
*
* Inserts a new hardware bridge if not already created and
* enables the bridging mode requested (VEB or VEPA). If the
* hardware bridge has already been inserted and the request
* is to change the mode then that requires a PF reset to
* allow rebuild of the components with required hardware
* bridge mode enabled.
*
* Note: expects to be called while under rtnl_lock()
**/
static int i40e_ndo_bridge_setlink(struct net_device *dev,
struct nlmsghdr *nlh,
u16 flags,
struct netlink_ext_ack *extack)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct nlattr *attr, *br_spec;
struct i40e_veb *veb;
int rem;
/* Only for PF VSI for now */
if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
return -EOPNOTSUPP;
/* Find the HW bridge for PF VSI */
veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (!br_spec)
return -EINVAL;
nla_for_each_nested(attr, br_spec, rem) {
__u16 mode;
if (nla_type(attr) != IFLA_BRIDGE_MODE)
continue;
mode = nla_get_u16(attr);
if ((mode != BRIDGE_MODE_VEPA) &&
(mode != BRIDGE_MODE_VEB))
return -EINVAL;
/* Insert a new HW bridge */
if (!veb) {
veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
vsi->tc_config.enabled_tc);
if (veb) {
veb->bridge_mode = mode;
i40e_config_bridge_mode(veb);
} else {
/* No Bridge HW offload available */
return -ENOENT;
}
break;
} else if (mode != veb->bridge_mode) {
/* Existing HW bridge but different mode needs reset */
veb->bridge_mode = mode;
/* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
if (mode == BRIDGE_MODE_VEB)
set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
else
clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
break;
}
}
return 0;
}
/**
* i40e_ndo_bridge_getlink - Get the hardware bridge mode
* @skb: skb buff
* @pid: process id
* @seq: RTNL message seq #
* @dev: the netdev being configured
* @filter_mask: unused
* @nlflags: netlink flags passed in
*
* Return the mode in which the hardware bridge is operating in
* i.e VEB or VEPA.
**/
static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev,
u32 __always_unused filter_mask,
int nlflags)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
struct i40e_vsi *vsi = np->vsi;
struct i40e_pf *pf = vsi->back;
struct i40e_veb *veb;
/* Only for PF VSI for now */
if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
return -EOPNOTSUPP;
/* Find the HW bridge for the PF VSI */
veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
if (!veb)
return 0;
return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
0, 0, nlflags, filter_mask, NULL);
}
/**
* i40e_features_check - Validate encapsulated packet conforms to limits
* @skb: skb buff
* @dev: This physical port's netdev
* @features: Offload features that the stack believes apply
**/
static netdev_features_t i40e_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
size_t len;
/* No point in doing any of this if neither checksum nor GSO are
* being requested for this frame. We can rule out both by just
* checking for CHECKSUM_PARTIAL
*/
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
/* We cannot support GSO if the MSS is going to be less than
* 64 bytes. If it is then we need to drop support for GSO.
*/
if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
features &= ~NETIF_F_GSO_MASK;
/* MACLEN can support at most 63 words */
len = skb_network_offset(skb);
if (len & ~(63 * 2))
goto out_err;
/* IPLEN and EIPLEN can support at most 127 dwords */
len = skb_network_header_len(skb);
if (len & ~(127 * 4))
goto out_err;
if (skb->encapsulation) {
/* L4TUNLEN can support 127 words */
len = skb_inner_network_header(skb) - skb_transport_header(skb);
if (len & ~(127 * 2))
goto out_err;
/* IPLEN can support at most 127 dwords */
len = skb_inner_transport_header(skb) -
skb_inner_network_header(skb);
if (len & ~(127 * 4))
goto out_err;
}
/* No need to validate L4LEN as TCP is the only protocol with a
* flexible value and we support all possible values supported
* by TCP, which is at most 15 dwords
*/
return features;
out_err:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
/**
* i40e_xdp_setup - add/remove an XDP program
* @vsi: VSI to changed
* @prog: XDP program
* @extack: netlink extended ack
**/
static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
int frame_size = i40e_max_vsi_frame_size(vsi, prog);
struct i40e_pf *pf = vsi->back;
struct bpf_prog *old_prog;
bool need_reset;
int i;
/* Don't allow frames that span over multiple buffers */
if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) {
NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags");
return -EINVAL;
}
/* When turning XDP on->off/off->on we reset and rebuild the rings. */
need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
if (need_reset)
i40e_prep_for_reset(pf);
/* VSI shall be deleted in a moment, just return EINVAL */
if (test_bit(__I40E_IN_REMOVE, pf->state))
return -EINVAL;
old_prog = xchg(&vsi->xdp_prog, prog);
if (need_reset) {
if (!prog) {
xdp_features_clear_redirect_target(vsi->netdev);
/* Wait until ndo_xsk_wakeup completes. */
synchronize_rcu();
}
i40e_reset_and_rebuild(pf, true, true);
}
if (!i40e_enabled_xdp_vsi(vsi) && prog) {
if (i40e_realloc_rx_bi_zc(vsi, true))
return -ENOMEM;
} else if (i40e_enabled_xdp_vsi(vsi) && !prog) {
if (i40e_realloc_rx_bi_zc(vsi, false))
return -ENOMEM;
}
for (i = 0; i < vsi->num_queue_pairs; i++)
WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
if (old_prog)
bpf_prog_put(old_prog);
/* Kick start the NAPI context if there is an AF_XDP socket open
* on that queue id. This so that receiving will start.
*/
if (need_reset && prog) {
for (i = 0; i < vsi->num_queue_pairs; i++)
if (vsi->xdp_rings[i]->xsk_pool)
(void)i40e_xsk_wakeup(vsi->netdev, i,
XDP_WAKEUP_RX);
xdp_features_set_redirect_target(vsi->netdev, true);
}
return 0;
}
/**
* i40e_enter_busy_conf - Enters busy config state
* @vsi: vsi
*
* Returns 0 on success, <0 for failure.
**/
static int i40e_enter_busy_conf(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
int timeout = 50;
while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
return 0;
}
/**
* i40e_exit_busy_conf - Exits busy config state
* @vsi: vsi
**/
static void i40e_exit_busy_conf(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
clear_bit(__I40E_CONFIG_BUSY, pf->state);
}
/**
* i40e_queue_pair_reset_stats - Resets all statistics for a queue pair
* @vsi: vsi
* @queue_pair: queue pair
**/
static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair)
{
memset(&vsi->rx_rings[queue_pair]->rx_stats, 0,
sizeof(vsi->rx_rings[queue_pair]->rx_stats));
memset(&vsi->tx_rings[queue_pair]->stats, 0,
sizeof(vsi->tx_rings[queue_pair]->stats));
if (i40e_enabled_xdp_vsi(vsi)) {
memset(&vsi->xdp_rings[queue_pair]->stats, 0,
sizeof(vsi->xdp_rings[queue_pair]->stats));
}
}
/**
* i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair
* @vsi: vsi
* @queue_pair: queue pair
**/
static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair)
{
i40e_clean_tx_ring(vsi->tx_rings[queue_pair]);
if (i40e_enabled_xdp_vsi(vsi)) {
/* Make sure that in-progress ndo_xdp_xmit calls are
* completed.
*/
synchronize_rcu();
i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]);
}
i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
}
/**
* i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair
* @vsi: vsi
* @queue_pair: queue pair
* @enable: true for enable, false for disable
**/
static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair,
bool enable)
{
struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
struct i40e_q_vector *q_vector = rxr->q_vector;
if (!vsi->netdev)
return;
/* All rings in a qp belong to the same qvector. */
if (q_vector->rx.ring || q_vector->tx.ring) {
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
}
/**
* i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair
* @vsi: vsi
* @queue_pair: queue pair
* @enable: true for enable, false for disable
*
* Returns 0 on success, <0 on failure.
**/
static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair,
bool enable)
{
struct i40e_pf *pf = vsi->back;
int pf_q, ret = 0;
pf_q = vsi->base_queue + queue_pair;
ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q,
false /*is xdp*/, enable);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d Tx ring %d %sable timeout\n",
vsi->seid, pf_q, (enable ? "en" : "dis"));
return ret;
}
i40e_control_rx_q(pf, pf_q, enable);
ret = i40e_pf_rxq_wait(pf, pf_q, enable);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d Rx ring %d %sable timeout\n",
vsi->seid, pf_q, (enable ? "en" : "dis"));
return ret;
}
/* Due to HW errata, on Rx disable only, the register can
* indicate done before it really is. Needs 50ms to be sure
*/
if (!enable)
mdelay(50);
if (!i40e_enabled_xdp_vsi(vsi))
return ret;
ret = i40e_control_wait_tx_q(vsi->seid, pf,
pf_q + vsi->alloc_queue_pairs,
true /*is xdp*/, enable);
if (ret) {
dev_info(&pf->pdev->dev,
"VSI seid %d XDP Tx ring %d %sable timeout\n",
vsi->seid, pf_q, (enable ? "en" : "dis"));
}
return ret;
}
/**
* i40e_queue_pair_enable_irq - Enables interrupts for a queue pair
* @vsi: vsi
* @queue_pair: queue_pair
**/
static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair)
{
struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
/* All rings in a qp belong to the same qvector. */
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx);
else
i40e_irq_dynamic_enable_icr0(pf);
i40e_flush(hw);
}
/**
* i40e_queue_pair_disable_irq - Disables interrupts for a queue pair
* @vsi: vsi
* @queue_pair: queue_pair
**/
static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair)
{
struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
/* For simplicity, instead of removing the qp interrupt causes
* from the interrupt linked list, we simply disable the interrupt, and
* leave the list intact.
*
* All rings in a qp belong to the same qvector.
*/
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
u32 intpf = vsi->base_vector + rxr->q_vector->v_idx;
wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0);
i40e_flush(hw);
synchronize_irq(pf->msix_entries[intpf].vector);
} else {
/* Legacy and MSI mode - this stops all interrupt handling */
wr32(hw, I40E_PFINT_ICR0_ENA, 0);
wr32(hw, I40E_PFINT_DYN_CTL0, 0);
i40e_flush(hw);
synchronize_irq(pf->pdev->irq);
}
}
/**
* i40e_queue_pair_disable - Disables a queue pair
* @vsi: vsi
* @queue_pair: queue pair
*
* Returns 0 on success, <0 on failure.
**/
int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair)
{
int err;
err = i40e_enter_busy_conf(vsi);
if (err)
return err;
i40e_queue_pair_disable_irq(vsi, queue_pair);
i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */);
err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */);
i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
i40e_queue_pair_clean_rings(vsi, queue_pair);
i40e_queue_pair_reset_stats(vsi, queue_pair);
return err;
}
/**
* i40e_queue_pair_enable - Enables a queue pair
* @vsi: vsi
* @queue_pair: queue pair
*
* Returns 0 on success, <0 on failure.
**/
int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair)
{
int err;
err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]);
if (err)
return err;
if (i40e_enabled_xdp_vsi(vsi)) {
err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]);
if (err)
return err;
}
err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]);
if (err)
return err;
err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */);
i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */);
i40e_queue_pair_enable_irq(vsi, queue_pair);
i40e_exit_busy_conf(vsi);
return err;
}
/**
* i40e_xdp - implements ndo_bpf for i40e
* @dev: netdevice
* @xdp: XDP command
**/
static int i40e_xdp(struct net_device *dev,
struct netdev_bpf *xdp)
{
struct i40e_netdev_priv *np = netdev_priv(dev);
struct i40e_vsi *vsi = np->vsi;
if (vsi->type != I40E_VSI_MAIN)
return -EINVAL;
switch (xdp->command) {
case XDP_SETUP_PROG:
return i40e_xdp_setup(vsi, xdp->prog, xdp->extack);
case XDP_SETUP_XSK_POOL:
return i40e_xsk_pool_setup(vsi, xdp->xsk.pool,
xdp->xsk.queue_id);
default:
return -EINVAL;
}
}
static const struct net_device_ops i40e_netdev_ops = {
.ndo_open = i40e_open,
.ndo_stop = i40e_close,
.ndo_start_xmit = i40e_lan_xmit_frame,
.ndo_get_stats64 = i40e_get_netdev_stats_struct,
.ndo_set_rx_mode = i40e_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = i40e_set_mac,
.ndo_change_mtu = i40e_change_mtu,
.ndo_eth_ioctl = i40e_ioctl,
.ndo_tx_timeout = i40e_tx_timeout,
.ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = i40e_netpoll,
#endif
.ndo_setup_tc = __i40e_setup_tc,
.ndo_select_queue = i40e_lan_select_queue,
.ndo_set_features = i40e_set_features,
.ndo_set_vf_mac = i40e_ndo_set_vf_mac,
.ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
.ndo_get_vf_stats = i40e_get_vf_stats,
.ndo_set_vf_rate = i40e_ndo_set_vf_bw,
.ndo_get_vf_config = i40e_ndo_get_vf_config,
.ndo_set_vf_link_state = i40e_ndo_set_vf_link_state,
.ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk,
.ndo_set_vf_trust = i40e_ndo_set_vf_trust,
.ndo_get_phys_port_id = i40e_get_phys_port_id,
.ndo_fdb_add = i40e_ndo_fdb_add,
.ndo_features_check = i40e_features_check,
.ndo_bridge_getlink = i40e_ndo_bridge_getlink,
.ndo_bridge_setlink = i40e_ndo_bridge_setlink,
.ndo_bpf = i40e_xdp,
.ndo_xdp_xmit = i40e_xdp_xmit,
.ndo_xsk_wakeup = i40e_xsk_wakeup,
.ndo_dfwd_add_station = i40e_fwd_add,
.ndo_dfwd_del_station = i40e_fwd_del,
};
/**
* i40e_config_netdev - Setup the netdev flags
* @vsi: the VSI being configured
*
* Returns 0 on success, negative value on failure
**/
static int i40e_config_netdev(struct i40e_vsi *vsi)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_netdev_priv *np;
struct net_device *netdev;
u8 broadcast[ETH_ALEN];
u8 mac_addr[ETH_ALEN];
int etherdev_size;
netdev_features_t hw_enc_features;
netdev_features_t hw_features;
etherdev_size = sizeof(struct i40e_netdev_priv);
netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
if (!netdev)
return -ENOMEM;
vsi->netdev = netdev;
np = netdev_priv(netdev);
np->vsi = vsi;
hw_enc_features = NETIF_F_SG |
NETIF_F_HW_CSUM |
NETIF_F_HIGHDMA |
NETIF_F_SOFT_FEATURES |
NETIF_F_TSO |
NETIF_F_TSO_ECN |
NETIF_F_TSO6 |
NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_PARTIAL |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_IPXIP6 |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_UDP_L4 |
NETIF_F_SCTP_CRC |
NETIF_F_RXHASH |
NETIF_F_RXCSUM |
0;
if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps))
netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic;
netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
netdev->hw_enc_features |= hw_enc_features;
/* record features VLANs can make use of */
netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
#define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
NETIF_F_GSO_GRE_CSUM | \
NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | \
NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES;
netdev->features |= NETIF_F_GSO_PARTIAL |
I40E_GSO_PARTIAL_FEATURES;
netdev->mpls_features |= NETIF_F_SG;
netdev->mpls_features |= NETIF_F_HW_CSUM;
netdev->mpls_features |= NETIF_F_TSO;
netdev->mpls_features |= NETIF_F_TSO6;
netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES;
/* enable macvlan offloads */
netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
hw_features = hw_enc_features |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC;
netdev->hw_features |= hw_features | NETIF_F_LOOPBACK;
netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
netdev->features &= ~NETIF_F_HW_TC;
if (vsi->type == I40E_VSI_MAIN) {
SET_NETDEV_DEV(netdev, &pf->pdev->dev);
ether_addr_copy(mac_addr, hw->mac.perm_addr);
/* The following steps are necessary for two reasons. First,
* some older NVM configurations load a default MAC-VLAN
* filter that will accept any tagged packet, and we want to
* replace this with a normal filter. Additionally, it is
* possible our MAC address was provided by the platform using
* Open Firmware or similar.
*
* Thus, we need to remove the default filter and install one
* specific to the MAC address.
*/
i40e_rm_default_mac_filter(vsi, mac_addr);
spin_lock_bh(&vsi->mac_filter_hash_lock);
i40e_add_mac_filter(vsi, mac_addr);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_XSK_ZEROCOPY |
NETDEV_XDP_ACT_RX_SG;
netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD;
} else {
/* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
* are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
* the end, which is 4 bytes long, so force truncation of the
* original name by IFNAMSIZ - 4
*/
snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d",
IFNAMSIZ - 4,
pf->vsi[pf->lan_vsi]->netdev->name);
eth_random_addr(mac_addr);
spin_lock_bh(&vsi->mac_filter_hash_lock);
i40e_add_mac_filter(vsi, mac_addr);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
}
/* Add the broadcast filter so that we initially will receive
* broadcast packets. Note that when a new VLAN is first added the
* driver will convert all filters marked I40E_VLAN_ANY into VLAN
* specific filters as part of transitioning into "vlan" operation.
* When more VLANs are added, the driver will copy each existing MAC
* filter and add it for the new VLAN.
*
* Broadcast filters are handled specially by
* i40e_sync_filters_subtask, as the driver must to set the broadcast
* promiscuous bit instead of adding this directly as a MAC/VLAN
* filter. The subtask will update the correct broadcast promiscuous
* bits as VLANs become active or inactive.
*/
eth_broadcast_addr(broadcast);
spin_lock_bh(&vsi->mac_filter_hash_lock);
i40e_add_mac_filter(vsi, broadcast);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
eth_hw_addr_set(netdev, mac_addr);
ether_addr_copy(netdev->perm_addr, mac_addr);
/* i40iw_net_event() reads 16 bytes from neigh->primary_key */
netdev->neigh_priv_len = sizeof(u32) * 4;
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->priv_flags |= IFF_SUPP_NOFCS;
/* Setup netdev TC information */
i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
netdev->netdev_ops = &i40e_netdev_ops;
netdev->watchdog_timeo = 5 * HZ;
i40e_set_ethtool_ops(netdev);
/* MTU range: 68 - 9706 */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
return 0;
}
/**
* i40e_vsi_delete - Delete a VSI from the switch
* @vsi: the VSI being removed
*
* Returns 0 on success, negative value on failure
**/
static void i40e_vsi_delete(struct i40e_vsi *vsi)
{
/* remove default VSI is not allowed */
if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
return;
i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
}
/**
* i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
* @vsi: the VSI being queried
*
* Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
**/
int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
{
struct i40e_veb *veb;
struct i40e_pf *pf = vsi->back;
/* Uplink is not a bridge so default to VEB */
if (vsi->veb_idx >= I40E_MAX_VEB)
return 1;
veb = pf->veb[vsi->veb_idx];
if (!veb) {
dev_info(&pf->pdev->dev,
"There is no veb associated with the bridge\n");
return -ENOENT;
}
/* Uplink is a bridge in VEPA mode */
if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
return 0;
} else {
/* Uplink is a bridge in VEB mode */
return 1;
}
/* VEPA is now default bridge, so return 0 */
return 0;
}
/**
* i40e_add_vsi - Add a VSI to the switch
* @vsi: the VSI being configured
*
* This initializes a VSI context depending on the VSI type to be added and
* passes it down to the add_vsi aq command.
**/
static int i40e_add_vsi(struct i40e_vsi *vsi)
{
int ret = -ENODEV;
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi_context ctxt;
struct i40e_mac_filter *f;
struct hlist_node *h;
int bkt;
u8 enabled_tc = 0x1; /* TC0 enabled */
int f_count = 0;
memset(&ctxt, 0, sizeof(ctxt));
switch (vsi->type) {
case I40E_VSI_MAIN:
/* The PF's main VSI is already setup as part of the
* device initialization, so we'll not bother with
* the add_vsi call, but we will retrieve the current
* VSI context.
*/
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = pf->hw.pf_id;
ctxt.vf_num = 0;
ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get PF vsi config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
return -ENOENT;
}
vsi->info = ctxt.info;
vsi->info.valid_sections = 0;
vsi->seid = ctxt.seid;
vsi->id = ctxt.vsi_number;
enabled_tc = i40e_pf_get_tc_map(pf);
/* Source pruning is enabled by default, so the flag is
* negative logic - if it's set, we need to fiddle with
* the VSI to disable source pruning.
*/
if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) {
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = pf->hw.pf_id;
ctxt.vf_num = 0;
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"update vsi failed, err %d aq_err %s\n",
ret,
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
ret = -ENOENT;
goto err;
}
}
/* MFP mode setup queue map and update VSI */
if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
!(pf->hw.func_caps.iscsi)) { /* NIC type PF */
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = pf->hw.pf_id;
ctxt.vf_num = 0;
i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"update vsi failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
ret = -ENOENT;
goto err;
}
/* update the local VSI info queue map */
i40e_vsi_update_queue_map(vsi, &ctxt);
vsi->info.valid_sections = 0;
} else {
/* Default/Main VSI is only enabled for TC0
* reconfigure it to enable all TCs that are
* available on the port in SFP mode.
* For MFP case the iSCSI PF would use this
* flow to enable LAN+iSCSI TC.
*/
ret = i40e_vsi_config_tc(vsi, enabled_tc);
if (ret) {
/* Single TC condition is not fatal,
* message and continue
*/
dev_info(&pf->pdev->dev,
"failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n",
enabled_tc,
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
}
}
break;
case I40E_VSI_FDIR:
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) &&
(i40e_is_vsi_uplink_mode_veb(vsi))) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
break;
case I40E_VSI_VMDQ2:
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
/* This VSI is connected to VEB so the switch_id
* should be set to zero by default.
*/
if (i40e_is_vsi_uplink_mode_veb(vsi)) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
/* Setup the VSI tx/rx queue map for TC0 only for now */
i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
break;
case I40E_VSI_SRIOV:
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
ctxt.flags = I40E_AQ_VSI_TYPE_VF;
/* This VSI is connected to VEB so the switch_id
* should be set to zero by default.
*/
if (i40e_is_vsi_uplink_mode_veb(vsi)) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
ctxt.info.queueing_opt_flags |=
(I40E_AQ_VSI_QUE_OPT_TCP_ENA |
I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
}
ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
if (pf->vf[vsi->vf_id].spoofchk) {
ctxt.info.valid_sections |=
cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
ctxt.info.sec_flags |=
(I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
}
/* Setup the VSI tx/rx queue map for TC0 only for now */
i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
break;
case I40E_VSI_IWARP:
/* send down message to iWARP */
break;
default:
return -ENODEV;
}
if (vsi->type != I40E_VSI_MAIN) {
ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
if (ret) {
dev_info(&vsi->back->pdev->dev,
"add vsi failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
ret = -ENOENT;
goto err;
}
vsi->info = ctxt.info;
vsi->info.valid_sections = 0;
vsi->seid = ctxt.seid;
vsi->id = ctxt.vsi_number;
}
spin_lock_bh(&vsi->mac_filter_hash_lock);
vsi->active_filters = 0;
/* If macvlan filters already exist, force them to get loaded */
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
f->state = I40E_FILTER_NEW;
f_count++;
}
spin_unlock_bh(&vsi->mac_filter_hash_lock);
clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
if (f_count) {
vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
}
/* Update VSI BW information */
ret = i40e_vsi_get_bw_info(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get vsi bw info, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* VSI is already added so not tearing that up */
ret = 0;
}
err:
return ret;
}
/**
* i40e_vsi_release - Delete a VSI and free its resources
* @vsi: the VSI being removed
*
* Returns 0 on success or < 0 on error
**/
int i40e_vsi_release(struct i40e_vsi *vsi)
{
struct i40e_mac_filter *f;
struct hlist_node *h;
struct i40e_veb *veb;
struct i40e_pf *pf;
u16 uplink_seid;
int i, n, bkt;
pf = vsi->back;
/* release of a VEB-owner or last VSI is not allowed */
if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
vsi->seid, vsi->uplink_seid);
return -ENODEV;
}
if (vsi == pf->vsi[pf->lan_vsi] &&
!test_bit(__I40E_DOWN, pf->state)) {
dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
return -ENODEV;
}
set_bit(__I40E_VSI_RELEASING, vsi->state);
uplink_seid = vsi->uplink_seid;
if (vsi->type != I40E_VSI_SRIOV) {
if (vsi->netdev_registered) {
vsi->netdev_registered = false;
if (vsi->netdev) {
/* results in a call to i40e_close() */
unregister_netdev(vsi->netdev);
}
} else {
i40e_vsi_close(vsi);
}
i40e_vsi_disable_irq(vsi);
}
if (vsi->type == I40E_VSI_MAIN)
i40e_devlink_destroy_port(pf);
spin_lock_bh(&vsi->mac_filter_hash_lock);
/* clear the sync flag on all filters */
if (vsi->netdev) {
__dev_uc_unsync(vsi->netdev, NULL);
__dev_mc_unsync(vsi->netdev, NULL);
}
/* make sure any remaining filters are marked for deletion */
hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
__i40e_del_filter(vsi, f);
spin_unlock_bh(&vsi->mac_filter_hash_lock);
i40e_sync_vsi_filters(vsi);
i40e_vsi_delete(vsi);
i40e_vsi_free_q_vectors(vsi);
if (vsi->netdev) {
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
i40e_vsi_clear_rings(vsi);
i40e_vsi_clear(vsi);
/* If this was the last thing on the VEB, except for the
* controlling VSI, remove the VEB, which puts the controlling
* VSI onto the uplink port.
*
* Well, okay, there's one more exception here: don't remove
* the floating VEBs yet. We'll wait for an explicit remove request
* from up the network stack.
*/
veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
if (veb && veb->uplink_seid) {
n = 0;
/* Count non-controlling VSIs present on the VEB */
i40e_pf_for_each_vsi(pf, i, vsi)
if (vsi->uplink_seid == uplink_seid &&
(vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
n++;
/* If there is no VSI except the control one then release
* the VEB and put the control VSI onto VEB uplink.
*/
if (!n)
i40e_veb_release(veb);
}
return 0;
}
/**
* i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
* @vsi: ptr to the VSI
*
* This should only be called after i40e_vsi_mem_alloc() which allocates the
* corresponding SW VSI structure and initializes num_queue_pairs for the
* newly allocated VSI.
*
* Returns 0 on success or negative on failure
**/
static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
{
int ret = -ENOENT;
struct i40e_pf *pf = vsi->back;
if (vsi->q_vectors[0]) {
dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
vsi->seid);
return -EEXIST;
}
if (vsi->base_vector) {
dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
vsi->seid, vsi->base_vector);
return -EEXIST;
}
ret = i40e_vsi_alloc_q_vectors(vsi);
if (ret) {
dev_info(&pf->pdev->dev,
"failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->seid, ret);
vsi->num_q_vectors = 0;
goto vector_setup_out;
}
/* In Legacy mode, we do not have to get any other vector since we
* piggyback on the misc/ICR0 for queue interrupts.
*/
if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
return ret;
if (vsi->num_q_vectors)
vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
vsi->num_q_vectors, vsi->idx);
if (vsi->base_vector < 0) {
dev_info(&pf->pdev->dev,
"failed to get tracking for %d vectors for VSI %d, err=%d\n",
vsi->num_q_vectors, vsi->seid, vsi->base_vector);
i40e_vsi_free_q_vectors(vsi);
ret = -ENOENT;
goto vector_setup_out;
}
vector_setup_out:
return ret;
}
/**
* i40e_vsi_reinit_setup - return and reallocate resources for a VSI
* @vsi: pointer to the vsi.
*
* This re-allocates a vsi's queue resources.
*
* Returns pointer to the successfully allocated and configured VSI sw struct
* on success, otherwise returns NULL on failure.
**/
static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
{
u16 alloc_queue_pairs;
struct i40e_pf *pf;
u8 enabled_tc;
int ret;
if (!vsi)
return NULL;
pf = vsi->back;
i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
i40e_vsi_clear_rings(vsi);
i40e_vsi_free_arrays(vsi, false);
i40e_set_num_rings_in_vsi(vsi);
ret = i40e_vsi_alloc_arrays(vsi, false);
if (ret)
goto err_vsi;
alloc_queue_pairs = vsi->alloc_queue_pairs *
(i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
if (ret < 0) {
dev_info(&pf->pdev->dev,
"failed to get tracking for %d queues for VSI %d err %d\n",
alloc_queue_pairs, vsi->seid, ret);
goto err_vsi;
}
vsi->base_queue = ret;
/* Update the FW view of the VSI. Force a reset of TC and queue
* layout configurations.
*/
enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
if (vsi->type == I40E_VSI_MAIN)
i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
/* assign it some queues */
ret = i40e_alloc_rings(vsi);
if (ret)
goto err_rings;
/* map all of the rings to the q_vectors */
i40e_vsi_map_rings_to_vectors(vsi);
return vsi;
err_rings:
i40e_vsi_free_q_vectors(vsi);
if (vsi->netdev_registered) {
vsi->netdev_registered = false;
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
if (vsi->type == I40E_VSI_MAIN)
i40e_devlink_destroy_port(pf);
i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
err_vsi:
i40e_vsi_clear(vsi);
return NULL;
}
/**
* i40e_vsi_setup - Set up a VSI by a given type
* @pf: board private structure
* @type: VSI type
* @uplink_seid: the switch element to link to
* @param1: usage depends upon VSI type. For VF types, indicates VF id
*
* This allocates the sw VSI structure and its queue resources, then add a VSI
* to the identified VEB.
*
* Returns pointer to the successfully allocated and configure VSI sw struct on
* success, otherwise returns NULL on failure.
**/
struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
u16 uplink_seid, u32 param1)
{
struct i40e_vsi *vsi = NULL;
struct i40e_veb *veb = NULL;
u16 alloc_queue_pairs;
int v_idx;
int ret;
/* The requested uplink_seid must be either
* - the PF's port seid
* no VEB is needed because this is the PF
* or this is a Flow Director special case VSI
* - seid of an existing VEB
* - seid of a VSI that owns an existing VEB
* - seid of a VSI that doesn't own a VEB
* a new VEB is created and the VSI becomes the owner
* - seid of the PF VSI, which is what creates the first VEB
* this is a special case of the previous
*
* Find which uplink_seid we were given and create a new VEB if needed
*/
veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
if (!veb && uplink_seid != pf->mac_seid) {
vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid);
if (!vsi) {
dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
uplink_seid);
return NULL;
}
if (vsi->uplink_seid == pf->mac_seid)
veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid,
vsi->tc_config.enabled_tc);
else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
vsi->tc_config.enabled_tc);
if (veb) {
if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) {
dev_info(&vsi->back->pdev->dev,
"New VSI creation error, uplink seid of LAN VSI expected.\n");
return NULL;
}
/* We come up by default in VEPA mode if SRIOV is not
* already enabled, in which case we can't force VEPA
* mode.
*/
if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
veb->bridge_mode = BRIDGE_MODE_VEPA;
clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
}
i40e_config_bridge_mode(veb);
}
veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
if (!veb) {
dev_info(&pf->pdev->dev, "couldn't add VEB\n");
return NULL;
}
vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
uplink_seid = veb->seid;
}
/* get vsi sw struct */
v_idx = i40e_vsi_mem_alloc(pf, type);
if (v_idx < 0)
goto err_alloc;
vsi = pf->vsi[v_idx];
if (!vsi)
goto err_alloc;
vsi->type = type;
vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
if (type == I40E_VSI_MAIN)
pf->lan_vsi = v_idx;
else if (type == I40E_VSI_SRIOV)
vsi->vf_id = param1;
/* assign it some queues */
alloc_queue_pairs = vsi->alloc_queue_pairs *
(i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
if (ret < 0) {
dev_info(&pf->pdev->dev,
"failed to get tracking for %d queues for VSI %d err=%d\n",
alloc_queue_pairs, vsi->seid, ret);
goto err_vsi;
}
vsi->base_queue = ret;
/* get a VSI from the hardware */
vsi->uplink_seid = uplink_seid;
ret = i40e_add_vsi(vsi);
if (ret)
goto err_vsi;
switch (vsi->type) {
/* setup the netdev if needed */
case I40E_VSI_MAIN:
case I40E_VSI_VMDQ2:
ret = i40e_config_netdev(vsi);
if (ret)
goto err_netdev;
ret = i40e_netif_set_realnum_tx_rx_queues(vsi);
if (ret)
goto err_netdev;
if (vsi->type == I40E_VSI_MAIN) {
ret = i40e_devlink_create_port(pf);
if (ret)
goto err_netdev;
SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
}
ret = register_netdev(vsi->netdev);
if (ret)
goto err_dl_port;
vsi->netdev_registered = true;
netif_carrier_off(vsi->netdev);
#ifdef CONFIG_I40E_DCB
/* Setup DCB netlink interface */
i40e_dcbnl_setup(vsi);
#endif /* CONFIG_I40E_DCB */
fallthrough;
case I40E_VSI_FDIR:
/* set up vectors and rings if needed */
ret = i40e_vsi_setup_vectors(vsi);
if (ret)
goto err_msix;
ret = i40e_alloc_rings(vsi);
if (ret)
goto err_rings;
/* map all of the rings to the q_vectors */
i40e_vsi_map_rings_to_vectors(vsi);
i40e_vsi_reset_stats(vsi);
break;
default:
/* no netdev or rings for the other VSI types */
break;
}
if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) &&
vsi->type == I40E_VSI_VMDQ2) {
ret = i40e_vsi_config_rss(vsi);
if (ret)
goto err_config;
}
return vsi;
err_config:
i40e_vsi_clear_rings(vsi);
err_rings:
i40e_vsi_free_q_vectors(vsi);
err_msix:
if (vsi->netdev_registered) {
vsi->netdev_registered = false;
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
err_dl_port:
if (vsi->type == I40E_VSI_MAIN)
i40e_devlink_destroy_port(pf);
err_netdev:
i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
err_vsi:
i40e_vsi_clear(vsi);
err_alloc:
return NULL;
}
/**
* i40e_veb_get_bw_info - Query VEB BW information
* @veb: the veb to query
*
* Query the Tx scheduler BW configuration data for given VEB
**/
static int i40e_veb_get_bw_info(struct i40e_veb *veb)
{
struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
struct i40e_pf *pf = veb->pf;
struct i40e_hw *hw = &pf->hw;
u32 tc_bw_max;
int ret = 0;
int i;
ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
&bw_data, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"query veb bw config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
goto out;
}
ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
&ets_data, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"query veb bw ets config failed, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
goto out;
}
veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
veb->bw_max_quanta = ets_data.tc_bw_max;
veb->is_abs_credits = bw_data.absolute_credits_enable;
veb->enabled_tc = ets_data.tc_valid_bits;
tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
(le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
veb->bw_tc_limit_credits[i] =
le16_to_cpu(bw_data.tc_bw_limits[i]);
veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
}
out:
return ret;
}
/**
* i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
* @pf: board private structure
*
* On error: returns error code (negative)
* On success: returns vsi index in PF (positive)
**/
static int i40e_veb_mem_alloc(struct i40e_pf *pf)
{
int ret = -ENOENT;
struct i40e_veb *veb;
int i;
/* Need to protect the allocation of switch elements at the PF level */
mutex_lock(&pf->switch_mutex);
/* VEB list may be fragmented if VEB creation/destruction has
* been happening. We can afford to do a quick scan to look
* for any free slots in the list.
*
* find next empty veb slot, looping back around if necessary
*/
i = 0;
while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
i++;
if (i >= I40E_MAX_VEB) {
ret = -ENOMEM;
goto err_alloc_veb; /* out of VEB slots! */
}
veb = kzalloc(sizeof(*veb), GFP_KERNEL);
if (!veb) {
ret = -ENOMEM;
goto err_alloc_veb;
}
veb->pf = pf;
veb->idx = i;
veb->enabled_tc = 1;
pf->veb[i] = veb;
ret = i;
err_alloc_veb:
mutex_unlock(&pf->switch_mutex);
return ret;
}
/**
* i40e_switch_branch_release - Delete a branch of the switch tree
* @branch: where to start deleting
*
* This uses recursion to find the tips of the branch to be
* removed, deleting until we get back to and can delete this VEB.
**/
static void i40e_switch_branch_release(struct i40e_veb *branch)
{
struct i40e_pf *pf = branch->pf;
u16 branch_seid = branch->seid;
u16 veb_idx = branch->idx;
struct i40e_vsi *vsi;
struct i40e_veb *veb;
int i;
/* release any VEBs on this VEB - RECURSION */
i40e_pf_for_each_veb(pf, i, veb)
if (veb->uplink_seid == branch->seid)
i40e_switch_branch_release(veb);
/* Release the VSIs on this VEB, but not the owner VSI.
*
* NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
* the VEB itself, so don't use (*branch) after this loop.
*/
i40e_pf_for_each_vsi(pf, i, vsi)
if (vsi->uplink_seid == branch_seid &&
(vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
i40e_vsi_release(vsi);
/* There's one corner case where the VEB might not have been
* removed, so double check it here and remove it if needed.
* This case happens if the veb was created from the debugfs
* commands and no VSIs were added to it.
*/
if (pf->veb[veb_idx])
i40e_veb_release(pf->veb[veb_idx]);
}
/**
* i40e_veb_clear - remove veb struct
* @veb: the veb to remove
**/
static void i40e_veb_clear(struct i40e_veb *veb)
{
if (!veb)
return;
if (veb->pf) {
struct i40e_pf *pf = veb->pf;
mutex_lock(&pf->switch_mutex);
if (pf->veb[veb->idx] == veb)
pf->veb[veb->idx] = NULL;
mutex_unlock(&pf->switch_mutex);
}
kfree(veb);
}
/**
* i40e_veb_release - Delete a VEB and free its resources
* @veb: the VEB being removed
**/
void i40e_veb_release(struct i40e_veb *veb)
{
struct i40e_vsi *vsi, *vsi_it;
struct i40e_pf *pf;
int i, n = 0;
pf = veb->pf;
/* find the remaining VSI and check for extras */
i40e_pf_for_each_vsi(pf, i, vsi_it)
if (vsi_it->uplink_seid == veb->seid) {
if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER)
vsi = vsi_it;
n++;
}
/* Floating VEB has to be empty and regular one must have
* single owner VSI.
*/
if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) {
dev_info(&pf->pdev->dev,
"can't remove VEB %d with %d VSIs left\n",
veb->seid, n);
return;
}
/* For regular VEB move the owner VSI to uplink port */
if (veb->uplink_seid) {
vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
vsi->uplink_seid = veb->uplink_seid;
vsi->veb_idx = I40E_NO_VEB;
}
i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
i40e_veb_clear(veb);
}
/**
* i40e_add_veb - create the VEB in the switch
* @veb: the VEB to be instantiated
* @vsi: the controlling VSI
**/
static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
{
struct i40e_pf *pf = veb->pf;
bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
int ret;
ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0,
veb->enabled_tc, vsi ? false : true,
&veb->seid, enable_stats, NULL);
/* get a VEB from the hardware */
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't add VEB, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return -EPERM;
}
/* get statistics counter */
ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
&veb->stats_idx, NULL, NULL, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get VEB statistics idx, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return -EPERM;
}
ret = i40e_veb_get_bw_info(veb);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't get VEB bw info, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
return -ENOENT;
}
if (vsi) {
vsi->uplink_seid = veb->seid;
vsi->veb_idx = veb->idx;
vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
}
return 0;
}
/**
* i40e_veb_setup - Set up a VEB
* @pf: board private structure
* @flags: VEB setup flags
* @uplink_seid: the switch element to link to
* @vsi_seid: the initial VSI seid
* @enabled_tc: Enabled TC bit-map
*
* This allocates the sw VEB structure and links it into the switch
* It is possible and legal for this to be a duplicate of an already
* existing VEB. It is also possible for both uplink and vsi seids
* to be zero, in order to create a floating VEB.
*
* Returns pointer to the successfully allocated VEB sw struct on
* success, otherwise returns NULL on failure.
**/
struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags,
u16 uplink_seid, u16 vsi_seid,
u8 enabled_tc)
{
struct i40e_vsi *vsi = NULL;
struct i40e_veb *veb;
int veb_idx;
int ret;
/* if one seid is 0, the other must be 0 to create a floating relay */
if ((uplink_seid == 0 || vsi_seid == 0) &&
(uplink_seid + vsi_seid != 0)) {
dev_info(&pf->pdev->dev,
"one, not both seid's are 0: uplink=%d vsi=%d\n",
uplink_seid, vsi_seid);
return NULL;
}
/* make sure there is such a vsi and uplink */
if (vsi_seid) {
vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid);
if (!vsi) {
dev_err(&pf->pdev->dev, "vsi seid %d not found\n",
vsi_seid);
return NULL;
}
}
/* get veb sw struct */
veb_idx = i40e_veb_mem_alloc(pf);
if (veb_idx < 0)
goto err_alloc;
veb = pf->veb[veb_idx];
veb->flags = flags;
veb->uplink_seid = uplink_seid;
veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
/* create the VEB in the switch */
ret = i40e_add_veb(veb, vsi);
if (ret)
goto err_veb;
if (vsi && vsi->idx == pf->lan_vsi)
pf->lan_veb = veb->idx;
return veb;
err_veb:
i40e_veb_clear(veb);
err_alloc:
return NULL;
}
/**
* i40e_setup_pf_switch_element - set PF vars based on switch type
* @pf: board private structure
* @ele: element we are building info from
* @num_reported: total number of elements
* @printconfig: should we print the contents
*
* helper function to assist in extracting a few useful SEID values.
**/
static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
struct i40e_aqc_switch_config_element_resp *ele,
u16 num_reported, bool printconfig)
{
u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
u8 element_type = ele->element_type;
u16 seid = le16_to_cpu(ele->seid);
struct i40e_veb *veb;
if (printconfig)
dev_info(&pf->pdev->dev,
"type=%d seid=%d uplink=%d downlink=%d\n",
element_type, seid, uplink_seid, downlink_seid);
switch (element_type) {
case I40E_SWITCH_ELEMENT_TYPE_MAC:
pf->mac_seid = seid;
break;
case I40E_SWITCH_ELEMENT_TYPE_VEB:
/* Main VEB? */
if (uplink_seid != pf->mac_seid)
break;
if (pf->lan_veb >= I40E_MAX_VEB) {
int v;
/* find existing or else empty VEB */
veb = i40e_pf_get_veb_by_seid(pf, seid);
if (veb) {
pf->lan_veb = veb->idx;
} else {
v = i40e_veb_mem_alloc(pf);
if (v < 0)
break;
pf->lan_veb = v;
}
}
if (pf->lan_veb >= I40E_MAX_VEB)
break;
pf->veb[pf->lan_veb]->seid = seid;
pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid;
pf->veb[pf->lan_veb]->pf = pf;
break;
case I40E_SWITCH_ELEMENT_TYPE_VSI:
if (num_reported != 1)
break;
/* This is immediately after a reset so we can assume this is
* the PF's VSI
*/
pf->mac_seid = uplink_seid;
pf->main_vsi_seid = seid;
if (printconfig)
dev_info(&pf->pdev->dev,
"pf_seid=%d main_vsi_seid=%d\n",
downlink_seid, pf->main_vsi_seid);
break;
case I40E_SWITCH_ELEMENT_TYPE_PF:
case I40E_SWITCH_ELEMENT_TYPE_VF:
case I40E_SWITCH_ELEMENT_TYPE_EMP:
case I40E_SWITCH_ELEMENT_TYPE_BMC:
case I40E_SWITCH_ELEMENT_TYPE_PE:
case I40E_SWITCH_ELEMENT_TYPE_PA:
/* ignore these for now */
break;
default:
dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
element_type, seid);
break;
}
}
/**
* i40e_fetch_switch_configuration - Get switch config from firmware
* @pf: board private structure
* @printconfig: should we print the contents
*
* Get the current switch configuration from the device and
* extract a few useful SEID values.
**/
int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
{
struct i40e_aqc_get_switch_config_resp *sw_config;
u16 next_seid = 0;
int ret = 0;
u8 *aq_buf;
int i;
aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
if (!aq_buf)
return -ENOMEM;
sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
do {
u16 num_reported, num_total;
ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
I40E_AQ_LARGE_BUF,
&next_seid, NULL);
if (ret) {
dev_info(&pf->pdev->dev,
"get switch config failed err %d aq_err %s\n",
ret,
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
kfree(aq_buf);
return -ENOENT;
}
num_reported = le16_to_cpu(sw_config->header.num_reported);
num_total = le16_to_cpu(sw_config->header.num_total);
if (printconfig)
dev_info(&pf->pdev->dev,
"header: %d reported %d total\n",
num_reported, num_total);
for (i = 0; i < num_reported; i++) {
struct i40e_aqc_switch_config_element_resp *ele =
&sw_config->element[i];
i40e_setup_pf_switch_element(pf, ele, num_reported,
printconfig);
}
} while (next_seid != 0);
kfree(aq_buf);
return ret;
}
/**
* i40e_setup_pf_switch - Setup the HW switch on startup or after reset
* @pf: board private structure
* @reinit: if the Main VSI needs to re-initialized.
* @lock_acquired: indicates whether or not the lock has been acquired
*
* Returns 0 on success, negative value on failure
**/
static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired)
{
u16 flags = 0;
int ret;
/* find out what's out there already */
ret = i40e_fetch_switch_configuration(pf, false);
if (ret) {
dev_info(&pf->pdev->dev,
"couldn't fetch switch config, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
return ret;
}
i40e_pf_reset_stats(pf);
/* set the switch config bit for the whole device to
* support limited promisc or true promisc
* when user requests promisc. The default is limited
* promisc.
*/
if ((pf->hw.pf_id == 0) &&
!test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) {
flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
pf->last_sw_conf_flags = flags;
}
if (pf->hw.pf_id == 0) {
u16 valid_flags;
valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0,
NULL);
if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) {
dev_info(&pf->pdev->dev,
"couldn't set switch config bits, err %pe aq_err %s\n",
ERR_PTR(ret),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
/* not a fatal problem, just keep going */
}
pf->last_sw_conf_valid_flags = valid_flags;
}
/* first time setup */
if (pf->lan_vsi == I40E_NO_VSI || reinit) {
struct i40e_vsi *vsi = NULL;
u16 uplink_seid;
/* Set up the PF VSI associated with the PF's main VSI
* that is already in the HW switch
*/
if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb])
uplink_seid = pf->veb[pf->lan_veb]->seid;
else
uplink_seid = pf->mac_seid;
if (pf->lan_vsi == I40E_NO_VSI)
vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0);
else if (reinit)
vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]);
if (!vsi) {
dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
i40e_cloud_filter_exit(pf);
i40e_fdir_teardown(pf);
return -EAGAIN;
}
} else {
/* force a reset of TC and queue layout configurations */
u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
}
i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]);
i40e_fdir_sb_setup(pf);
/* Setup static PF queue filter control settings */
ret = i40e_setup_pf_filter_control(pf);
if (ret) {
dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
ret);
/* Failure here should not stop continuing other steps */
}
/* enable RSS in the HW, even for only one queue, as the stack can use
* the hash
*/
if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
i40e_pf_config_rss(pf);
/* fill in link information and enable LSE reporting */
i40e_link_event(pf);
i40e_ptp_init(pf);
if (!lock_acquired)
rtnl_lock();
/* repopulate tunnel port filters */
udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev);
if (!lock_acquired)
rtnl_unlock();
return ret;
}
/**
* i40e_determine_queue_usage - Work out queue distribution
* @pf: board private structure
**/
static void i40e_determine_queue_usage(struct i40e_pf *pf)
{
int queues_left;
int q_max;
pf->num_lan_qps = 0;
/* Find the max queues to be put into basic use. We'll always be
* using TC0, whether or not DCB is running, and TC0 will get the
* big RSS set.
*/
queues_left = pf->hw.func_caps.num_tx_qp;
if ((queues_left == 1) ||
!test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
/* one qp for PF, no queues for anything else */
queues_left = 0;
pf->alloc_rss_size = pf->num_lan_qps = 1;
/* make sure all the fancies are disabled */
clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
} else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) &&
!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) {
/* one qp for PF */
pf->alloc_rss_size = pf->num_lan_qps = 1;
queues_left -= pf->num_lan_qps;
clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
} else {
/* Not enough queues for all TCs */
if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) &&
queues_left < I40E_MAX_TRAFFIC_CLASS) {
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
}
/* limit lan qps to the smaller of qps, cpus or msix */
q_max = max_t(int, pf->rss_size_max, num_online_cpus());
q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp);
q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors);
pf->num_lan_qps = q_max;
queues_left -= pf->num_lan_qps;
}
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
if (queues_left > 1) {
queues_left -= 1; /* save 1 queue for FD */
} else {
clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
}
}
if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
pf->num_vf_qps && pf->num_req_vfs && queues_left) {
pf->num_req_vfs = min_t(int, pf->num_req_vfs,
(queues_left / pf->num_vf_qps));
queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
}
if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) &&
pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
(queues_left / pf->num_vmdq_qps));
queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
}
pf->queues_left = queues_left;
dev_dbg(&pf->pdev->dev,
"qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
pf->hw.func_caps.num_tx_qp,
!!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags),
pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
queues_left);
}
/**
* i40e_setup_pf_filter_control - Setup PF static filter control
* @pf: PF to be setup
*
* i40e_setup_pf_filter_control sets up a PF's initial filter control
* settings. If PE/FCoE are enabled then it will also set the per PF
* based filter sizes required for them. It also enables Flow director,
* ethertype and macvlan type filter settings for the pf.
*
* Returns 0 on success, negative on failure
**/
static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
{
struct i40e_filter_control_settings *settings = &pf->filter_settings;
settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
/* Flow Director is enabled */
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) ||
test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
settings->enable_fdir = true;
/* Ethtype and MACVLAN filters enabled for PF */
settings->enable_ethtype = true;
settings->enable_macvlan = true;
if (i40e_set_filter_control(&pf->hw, settings))
return -ENOENT;
return 0;
}
#define INFO_STRING_LEN 255
#define REMAIN(__x) (INFO_STRING_LEN - (__x))
static void i40e_print_features(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
char *buf;
int i;
buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
if (!buf)
return;
i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
#ifdef CONFIG_PCI_IOV
i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
#endif
i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
pf->hw.func_caps.num_vsis,
pf->vsi[pf->lan_vsi]->num_queue_pairs);
if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
i += scnprintf(&buf[i], REMAIN(i), " RSS");
if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
i += scnprintf(&buf[i], REMAIN(i), " FD_ATR");
if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
i += scnprintf(&buf[i], REMAIN(i), " FD_SB");
i += scnprintf(&buf[i], REMAIN(i), " NTUPLE");
}
if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
i += scnprintf(&buf[i], REMAIN(i), " DCB");
i += scnprintf(&buf[i], REMAIN(i), " VxLAN");
i += scnprintf(&buf[i], REMAIN(i), " Geneve");
if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
i += scnprintf(&buf[i], REMAIN(i), " PTP");
if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
i += scnprintf(&buf[i], REMAIN(i), " VEB");
else
i += scnprintf(&buf[i], REMAIN(i), " VEPA");
dev_info(&pf->pdev->dev, "%s\n", buf);
kfree(buf);
WARN_ON(i > INFO_STRING_LEN);
}
/**
* i40e_get_platform_mac_addr - get platform-specific MAC address
* @pdev: PCI device information struct
* @pf: board private structure
*
* Look up the MAC address for the device. First we'll try
* eth_platform_get_mac_address, which will check Open Firmware, or arch
* specific fallback. Otherwise, we'll default to the stored value in
* firmware.
**/
static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
{
if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
}
/**
* i40e_set_fec_in_flags - helper function for setting FEC options in flags
* @fec_cfg: FEC option to set in flags
* @flags: ptr to flags in which we set FEC option
**/
void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags)
{
if (fec_cfg & I40E_AQ_SET_FEC_AUTO) {
set_bit(I40E_FLAG_RS_FEC, flags);
set_bit(I40E_FLAG_BASE_R_FEC, flags);
}
if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) ||
(fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) {
set_bit(I40E_FLAG_RS_FEC, flags);
clear_bit(I40E_FLAG_BASE_R_FEC, flags);
}
if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) ||
(fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) {
set_bit(I40E_FLAG_BASE_R_FEC, flags);
clear_bit(I40E_FLAG_RS_FEC, flags);
}
if (fec_cfg == 0) {
clear_bit(I40E_FLAG_RS_FEC, flags);
clear_bit(I40E_FLAG_BASE_R_FEC, flags);
}
}
/**
* i40e_check_recovery_mode - check if we are running transition firmware
* @pf: board private structure
*
* Check registers indicating the firmware runs in recovery mode. Sets the
* appropriate driver state.
*
* Returns true if the recovery mode was detected, false otherwise
**/
static bool i40e_check_recovery_mode(struct i40e_pf *pf)
{
u32 val = rd32(&pf->hw, I40E_GL_FWSTS);
if (val & I40E_GL_FWSTS_FWS1B_MASK) {
dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n");
dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n");
set_bit(__I40E_RECOVERY_MODE, pf->state);
return true;
}
if (test_bit(__I40E_RECOVERY_MODE, pf->state))
dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n");
return false;
}
/**
* i40e_pf_loop_reset - perform reset in a loop.
* @pf: board private structure
*
* This function is useful when a NIC is about to enter recovery mode.
* When a NIC's internal data structures are corrupted the NIC's
* firmware is going to enter recovery mode.
* Right after a POR it takes about 7 minutes for firmware to enter
* recovery mode. Until that time a NIC is in some kind of intermediate
* state. After that time period the NIC almost surely enters
* recovery mode. The only way for a driver to detect intermediate
* state is to issue a series of pf-resets and check a return value.
* If a PF reset returns success then the firmware could be in recovery
* mode so the caller of this code needs to check for recovery mode
* if this function returns success. There is a little chance that
* firmware will hang in intermediate state forever.
* Since waiting 7 minutes is quite a lot of time this function waits
* 10 seconds and then gives up by returning an error.
*
* Return 0 on success, negative on failure.
**/
static int i40e_pf_loop_reset(struct i40e_pf *pf)
{
/* wait max 10 seconds for PF reset to succeed */
const unsigned long time_end = jiffies + 10 * HZ;
struct i40e_hw *hw = &pf->hw;
int ret;
ret = i40e_pf_reset(hw);
while (ret != 0 && time_before(jiffies, time_end)) {
usleep_range(10000, 20000);
ret = i40e_pf_reset(hw);
}
if (ret == 0)
pf->pfr_count++;
else
dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret);
return ret;
}
/**
* i40e_check_fw_empr - check if FW issued unexpected EMP Reset
* @pf: board private structure
*
* Check FW registers to determine if FW issued unexpected EMP Reset.
* Every time when unexpected EMP Reset occurs the FW increments
* a counter of unexpected EMP Resets. When the counter reaches 10
* the FW should enter the Recovery mode
*
* Returns true if FW issued unexpected EMP Reset
**/
static bool i40e_check_fw_empr(struct i40e_pf *pf)
{
const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) &
I40E_GL_FWSTS_FWS1B_MASK;
return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) &&
(fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10);
}
/**
* i40e_handle_resets - handle EMP resets and PF resets
* @pf: board private structure
*
* Handle both EMP resets and PF resets and conclude whether there are
* any issues regarding these resets. If there are any issues then
* generate log entry.
*
* Return 0 if NIC is healthy or negative value when there are issues
* with resets
**/
static int i40e_handle_resets(struct i40e_pf *pf)
{
const int pfr = i40e_pf_loop_reset(pf);
const bool is_empr = i40e_check_fw_empr(pf);
if (is_empr || pfr != 0)
dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n");
return is_empr ? -EIO : pfr;
}
/**
* i40e_init_recovery_mode - initialize subsystems needed in recovery mode
* @pf: board private structure
* @hw: ptr to the hardware info
*
* This function does a minimal setup of all subsystems needed for running
* recovery mode.
*
* Returns 0 on success, negative on failure
**/
static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw)
{
struct i40e_vsi *vsi;
int err;
int v_idx;
pci_set_drvdata(pf->pdev, pf);
pci_save_state(pf->pdev);
/* set up periodic task facility */
timer_setup(&pf->service_timer, i40e_service_timer, 0);
pf->service_timer_period = HZ;
INIT_WORK(&pf->service_task, i40e_service_task);
clear_bit(__I40E_SERVICE_SCHED, pf->state);
err = i40e_init_interrupt_scheme(pf);
if (err)
goto err_switch_setup;
/* The number of VSIs reported by the FW is the minimum guaranteed
* to us; HW supports far more and we share the remaining pool with
* the other PFs. We allocate space for more than the guarantee with
* the understanding that we might not get them all later.
*/
if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
else
pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
/* Set up the vsi struct and our local tracking of the MAIN PF vsi. */
pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
GFP_KERNEL);
if (!pf->vsi) {
err = -ENOMEM;
goto err_switch_setup;
}
/* We allocate one VSI which is needed as absolute minimum
* in order to register the netdev
*/
v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN);
if (v_idx < 0) {
err = v_idx;
goto err_switch_setup;
}
pf->lan_vsi = v_idx;
vsi = pf->vsi[v_idx];
if (!vsi) {
err = -EFAULT;
goto err_switch_setup;
}
vsi->alloc_queue_pairs = 1;
err = i40e_config_netdev(vsi);
if (err)
goto err_switch_setup;
err = register_netdev(vsi->netdev);
if (err)
goto err_switch_setup;
vsi->netdev_registered = true;
i40e_dbg_pf_init(pf);
err = i40e_setup_misc_vector_for_recovery_mode(pf);
if (err)
goto err_switch_setup;
/* tell the firmware that we're starting */
i40e_send_version(pf);
/* since everything's happy, start the service_task timer */
mod_timer(&pf->service_timer,
round_jiffies(jiffies + pf->service_timer_period));
return 0;
err_switch_setup:
i40e_reset_interrupt_capability(pf);
timer_shutdown_sync(&pf->service_timer);
i40e_shutdown_adminq(hw);
iounmap(hw->hw_addr);
pci_release_mem_regions(pf->pdev);
pci_disable_device(pf->pdev);
i40e_free_pf(pf);
return err;
}
/**
* i40e_set_subsystem_device_id - set subsystem device id
* @hw: pointer to the hardware info
*
* Set PCI subsystem device id either from a pci_dev structure or
* a specific FW register.
**/
static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw)
{
struct i40e_pf *pf = i40e_hw_to_pf(hw);
hw->subsystem_device_id = pf->pdev->subsystem_device ?
pf->pdev->subsystem_device :
(ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX);
}
/**
* i40e_probe - Device initialization routine
* @pdev: PCI device information struct
* @ent: entry in i40e_pci_tbl
*
* i40e_probe initializes a PF identified by a pci_dev structure.
* The OS initialization, configuring of the PF private structure,
* and a hardware reset occur.
*
* Returns 0 on success, negative on failure
**/
static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct i40e_aq_get_phy_abilities_resp abilities;
#ifdef CONFIG_I40E_DCB
enum i40e_get_fw_lldp_status_resp lldp_status;
#endif /* CONFIG_I40E_DCB */
struct i40e_vsi *vsi;
struct i40e_pf *pf;
struct i40e_hw *hw;
u16 wol_nvm_bits;
char nvm_ver[32];
u16 link_status;
#ifdef CONFIG_I40E_DCB
int status;
#endif /* CONFIG_I40E_DCB */
int err;
u32 val;
err = pci_enable_device_mem(pdev);
if (err)
return err;
/* set up for high or low dma */
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: 0x%x\n", err);
goto err_dma;
}
/* set up pci connections */
err = pci_request_mem_regions(pdev, i40e_driver_name);
if (err) {
dev_info(&pdev->dev,
"pci_request_selected_regions failed %d\n", err);
goto err_pci_reg;
}
pci_set_master(pdev);
/* Now that we have a PCI connection, we need to do the
* low level device setup. This is primarily setting up
* the Admin Queue structures and then querying for the
* device's current profile information.
*/
pf = i40e_alloc_pf(&pdev->dev);
if (!pf) {
err = -ENOMEM;
goto err_pf_alloc;
}
pf->next_vsi = 0;
pf->pdev = pdev;
set_bit(__I40E_DOWN, pf->state);
hw = &pf->hw;
pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
I40E_MAX_CSR_SPACE);
/* We believe that the highest register to read is
* I40E_GLGEN_STAT_CLEAR, so we check if the BAR size
* is not less than that before mapping to prevent a
* kernel panic.
*/
if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) {
dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n",
pf->ioremap_len);
err = -ENOMEM;
goto err_ioremap;
}
hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
if (!hw->hw_addr) {
err = -EIO;
dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
(unsigned int)pci_resource_start(pdev, 0),
pf->ioremap_len, err);
goto err_ioremap;
}
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->subsystem_vendor_id = pdev->subsystem_vendor;
i40e_set_subsystem_device_id(hw);
hw->bus.device = PCI_SLOT(pdev->devfn);
hw->bus.func = PCI_FUNC(pdev->devfn);
hw->bus.bus_id = pdev->bus->number;
/* Select something other than the 802.1ad ethertype for the
* switch to use internally and drop on ingress.
*/
hw->switch_tag = 0xffff;
hw->first_tag = ETH_P_8021AD;
hw->second_tag = ETH_P_8021Q;
INIT_LIST_HEAD(&pf->l3_flex_pit_list);
INIT_LIST_HEAD(&pf->l4_flex_pit_list);
INIT_LIST_HEAD(&pf->ddp_old_prof);
/* set up the locks for the AQ, do this only once in probe
* and destroy them only once in remove
*/
mutex_init(&hw->aq.asq_mutex);
mutex_init(&hw->aq.arq_mutex);
pf->msg_enable = netif_msg_init(debug,
NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK);
if (debug < -1)
pf->hw.debug_mask = debug;
/* do a special CORER for clearing PXE mode once at init */
if (hw->revision_id == 0 &&
(rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
i40e_flush(hw);
msleep(200);
pf->corer_count++;
i40e_clear_pxe_mode(hw);
}
/* Reset here to make sure all is clean and to define PF 'n' */
i40e_clear_hw(hw);
err = i40e_set_mac_type(hw);
if (err) {
dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
err);
goto err_pf_reset;
}
err = i40e_handle_resets(pf);
if (err)
goto err_pf_reset;
i40e_check_recovery_mode(pf);
if (is_kdump_kernel()) {
hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN;
hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN;
} else {
hw->aq.num_arq_entries = I40E_AQ_LEN;
hw->aq.num_asq_entries = I40E_AQ_LEN;
}
hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
snprintf(pf->int_name, sizeof(pf->int_name) - 1,
"%s-%s:misc",
dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
err = i40e_init_shared_code(hw);
if (err) {
dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
err);
goto err_pf_reset;
}
/* set up a default setting for link flow control */
pf->hw.fc.requested_mode = I40E_FC_NONE;
err = i40e_init_adminq(hw);
if (err) {
if (err == -EIO)
dev_info(&pdev->dev,
"The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n",
hw->aq.api_maj_ver,
hw->aq.api_min_ver,
I40E_FW_API_VERSION_MAJOR,
I40E_FW_MINOR_VERSION(hw));
else
dev_info(&pdev->dev,
"The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
goto err_pf_reset;
}
i40e_get_oem_version(hw);
i40e_get_pba_string(hw);
/* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */
i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver));
dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n",
hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver,
hw->vendor_id, hw->device_id, hw->subsystem_vendor_id,
hw->subsystem_device_id);
if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR,
I40E_FW_MINOR_VERSION(hw) + 1))
dev_dbg(&pdev->dev,
"The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n",
hw->aq.api_maj_ver,
hw->aq.api_min_ver,
I40E_FW_API_VERSION_MAJOR,
I40E_FW_MINOR_VERSION(hw));
else if (i40e_is_aq_api_ver_lt(hw, 1, 4))
dev_info(&pdev->dev,
"The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n",
hw->aq.api_maj_ver,
hw->aq.api_min_ver,
I40E_FW_API_VERSION_MAJOR,
I40E_FW_MINOR_VERSION(hw));
i40e_verify_eeprom(pf);
/* Rev 0 hardware was never productized */
if (hw->revision_id < 1)
dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
i40e_clear_pxe_mode(hw);
err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
if (err)
goto err_adminq_setup;
err = i40e_sw_init(pf);
if (err) {
dev_info(&pdev->dev, "sw_init failed: %d\n", err);
goto err_sw_init;
}
if (test_bit(__I40E_RECOVERY_MODE, pf->state))
return i40e_init_recovery_mode(pf, hw);
err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
hw->func_caps.num_rx_qp, 0, 0);
if (err) {
dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
goto err_init_lan_hmc;
}
err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
if (err) {
dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
err = -ENOENT;
goto err_configure_lan_hmc;
}
/* Disable LLDP for NICs that have firmware versions lower than v4.3.
* Ignore error return codes because if it was already disabled via
* hardware settings this will fail
*/
if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) {
dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
i40e_aq_stop_lldp(hw, true, false, NULL);
}
/* allow a platform config to override the HW addr */
i40e_get_platform_mac_addr(pdev, pf);
if (!is_valid_ether_addr(hw->mac.addr)) {
dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
err = -EIO;
goto err_mac_addr;
}
dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
i40e_get_port_mac_addr(hw, hw->mac.port_addr);
if (is_valid_ether_addr(hw->mac.port_addr))
set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps);
i40e_ptp_alloc_pins(pf);
pci_set_drvdata(pdev, pf);
pci_save_state(pdev);
#ifdef CONFIG_I40E_DCB
status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status);
(!status &&
lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ?
(clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) :
(set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags));
dev_info(&pdev->dev,
test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
"FW LLDP is disabled\n" :
"FW LLDP is enabled\n");
/* Enable FW to write default DCB config on link-up */
i40e_aq_set_dcb_parameters(hw, true, NULL);
err = i40e_init_pf_dcb(pf);
if (err) {
dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
/* Continue without DCB enabled */
}
#endif /* CONFIG_I40E_DCB */
/* set up periodic task facility */
timer_setup(&pf->service_timer, i40e_service_timer, 0);
pf->service_timer_period = HZ;
INIT_WORK(&pf->service_task, i40e_service_task);
clear_bit(__I40E_SERVICE_SCHED, pf->state);
/* NVM bit on means WoL disabled for the port */
i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
pf->wol_en = false;
else
pf->wol_en = true;
device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
/* set up the main switch operations */
i40e_determine_queue_usage(pf);
err = i40e_init_interrupt_scheme(pf);
if (err)
goto err_switch_setup;
/* Reduce Tx and Rx pairs for kdump
* When MSI-X is enabled, it's not allowed to use more TC queue
* pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus
* vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1.
*/
if (is_kdump_kernel())
pf->num_lan_msix = 1;
pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port;
pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port;
pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared;
pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS;
pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
UDP_TUNNEL_TYPE_GENEVE;
/* The number of VSIs reported by the FW is the minimum guaranteed
* to us; HW supports far more and we share the remaining pool with
* the other PFs. We allocate space for more than the guarantee with
* the understanding that we might not get them all later.
*/
if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
else
pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
dev_warn(&pf->pdev->dev,
"limiting the VSI count due to UDP tunnel limitation %d > %d\n",
pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
}
/* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
GFP_KERNEL);
if (!pf->vsi) {
err = -ENOMEM;
goto err_switch_setup;
}
#ifdef CONFIG_PCI_IOV
/* prep for VF support */
if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
!test_bit(__I40E_BAD_EEPROM, pf->state)) {
if (pci_num_vf(pdev))
set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
}
#endif
err = i40e_setup_pf_switch(pf, false, false);
if (err) {
dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
goto err_vsis;
}
INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list);
/* if FDIR VSI was set up, start it now */
vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
if (vsi)
i40e_vsi_open(vsi);
/* The driver only wants link up/down and module qualification
* reports from firmware. Note the negative logic.
*/
err = i40e_aq_set_phy_int_mask(&pf->hw,
~(I40E_AQ_EVENT_LINK_UPDOWN |
I40E_AQ_EVENT_MEDIA_NA |
I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
if (err)
dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* Reconfigure hardware for allowing smaller MSS in the case
* of TSO, so that we avoid the MDD being fired and causing
* a reset in the case of small MSS+TSO.
*/
val = rd32(hw, I40E_REG_MSS);
if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
val &= ~I40E_REG_MSS_MIN_MASK;
val |= I40E_64BYTE_MSS;
wr32(hw, I40E_REG_MSS, val);
}
if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
msleep(75);
err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
if (err)
dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw,
pf->hw.aq.asq_last_status));
}
/* The main driver is (mostly) up and happy. We need to set this state
* before setting up the misc vector or we get a race and the vector
* ends up disabled forever.
*/
clear_bit(__I40E_DOWN, pf->state);
/* In case of MSIX we are going to setup the misc vector right here
* to handle admin queue events etc. In case of legacy and MSI
* the misc functionality and queue processing is combined in
* the same vector and that gets setup at open.
*/
if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
err = i40e_setup_misc_vector(pf);
if (err) {
dev_info(&pdev->dev,
"setup of misc vector failed: %d\n", err);
i40e_cloud_filter_exit(pf);
i40e_fdir_teardown(pf);
goto err_vsis;
}
}
#ifdef CONFIG_PCI_IOV
/* prep for VF support */
if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
!test_bit(__I40E_BAD_EEPROM, pf->state)) {
/* disable link interrupts for VFs */
val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
i40e_flush(hw);
if (pci_num_vf(pdev)) {
dev_info(&pdev->dev,
"Active VFs found, allocating resources.\n");
err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
if (err)
dev_info(&pdev->dev,
"Error %d allocating resources for existing VFs\n",
err);
}
}
#endif /* CONFIG_PCI_IOV */
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
pf->num_iwarp_msix,
I40E_IWARP_IRQ_PILE_ID);
if (pf->iwarp_base_vector < 0) {
dev_info(&pdev->dev,
"failed to get tracking for %d vectors for IWARP err=%d\n",
pf->num_iwarp_msix, pf->iwarp_base_vector);
clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
}
}
i40e_dbg_pf_init(pf);
/* tell the firmware that we're starting */
i40e_send_version(pf);
/* since everything's happy, start the service_task timer */
mod_timer(&pf->service_timer,
round_jiffies(jiffies + pf->service_timer_period));
/* add this PF to client device list and launch a client service task */
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
err = i40e_lan_add_device(pf);
if (err)
dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
err);
}
#define PCI_SPEED_SIZE 8
#define PCI_WIDTH_SIZE 8
/* Devices on the IOSF bus do not have this information
* and will report PCI Gen 1 x 1 by default so don't bother
* checking them.
*/
if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) {
char speed[PCI_SPEED_SIZE] = "Unknown";
char width[PCI_WIDTH_SIZE] = "Unknown";
/* Get the negotiated link width and speed from PCI config
* space
*/
pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
&link_status);
i40e_set_pci_config_data(hw, link_status);
switch (hw->bus.speed) {
case i40e_bus_speed_8000:
strscpy(speed, "8.0", PCI_SPEED_SIZE); break;
case i40e_bus_speed_5000:
strscpy(speed, "5.0", PCI_SPEED_SIZE); break;
case i40e_bus_speed_2500:
strscpy(speed, "2.5", PCI_SPEED_SIZE); break;
default:
break;
}
switch (hw->bus.width) {
case i40e_bus_width_pcie_x8:
strscpy(width, "8", PCI_WIDTH_SIZE); break;
case i40e_bus_width_pcie_x4:
strscpy(width, "4", PCI_WIDTH_SIZE); break;
case i40e_bus_width_pcie_x2:
strscpy(width, "2", PCI_WIDTH_SIZE); break;
case i40e_bus_width_pcie_x1:
strscpy(width, "1", PCI_WIDTH_SIZE); break;
default:
break;
}
dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
speed, width);
if (hw->bus.width < i40e_bus_width_pcie_x8 ||
hw->bus.speed < i40e_bus_speed_8000) {
dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
}
}
/* get the requested speeds from the fw */
err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
if (err)
dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
/* set the FEC config due to the board capabilities */
i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags);
/* get the supported phy types from the fw */
err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
if (err)
dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n",
ERR_PTR(err),
i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
/* make sure the MFS hasn't been set lower than the default */
#define MAX_FRAME_SIZE_DEFAULT 0x2600
val = FIELD_GET(I40E_PRTGL_SAH_MFS_MASK,
rd32(&pf->hw, I40E_PRTGL_SAH));
if (val < MAX_FRAME_SIZE_DEFAULT)
dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n",
pf->hw.port, val);
/* Add a filter to drop all Flow control frames from any VSI from being
* transmitted. By doing so we stop a malicious VF from sending out
* PAUSE or PFC frames and potentially controlling traffic for other
* PF/VF VSIs.
* The FW can still send Flow control frames if enabled.
*/
i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
pf->main_vsi_seid);
if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
(pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps);
if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps);
/* print a string summarizing features */
i40e_print_features(pf);
i40e_devlink_register(pf);
return 0;
/* Unwind what we've done if something failed in the setup */
err_vsis:
set_bit(__I40E_DOWN, pf->state);
i40e_clear_interrupt_scheme(pf);
kfree(pf->vsi);
err_switch_setup:
i40e_reset_interrupt_capability(pf);
timer_shutdown_sync(&pf->service_timer);
err_mac_addr:
err_configure_lan_hmc:
(void)i40e_shutdown_lan_hmc(hw);
err_init_lan_hmc:
kfree(pf->qp_pile);
err_sw_init:
err_adminq_setup:
err_pf_reset:
iounmap(hw->hw_addr);
err_ioremap:
i40e_free_pf(pf);
err_pf_alloc:
pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* i40e_remove - Device removal routine
* @pdev: PCI device information struct
*
* i40e_remove is called by the PCI subsystem to alert the driver
* that is should release a PCI device. This could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void i40e_remove(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
struct i40e_hw *hw = &pf->hw;
struct i40e_vsi *vsi;
struct i40e_veb *veb;
int ret_code;
int i;
i40e_devlink_unregister(pf);
i40e_dbg_pf_exit(pf);
i40e_ptp_stop(pf);
/* Disable RSS in hw */
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
/* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE
* flags, once they are set, i40e_rebuild should not be called as
* i40e_prep_for_reset always returns early.
*/
while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
usleep_range(1000, 2000);
set_bit(__I40E_IN_REMOVE, pf->state);
if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) {
set_bit(__I40E_VF_RESETS_DISABLED, pf->state);
i40e_free_vfs(pf);
clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
}
/* no more scheduling of any task */
set_bit(__I40E_SUSPENDED, pf->state);
set_bit(__I40E_DOWN, pf->state);
if (pf->service_timer.function)
timer_shutdown_sync(&pf->service_timer);
if (pf->service_task.func)
cancel_work_sync(&pf->service_task);
if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
struct i40e_vsi *vsi = pf->vsi[0];
/* We know that we have allocated only one vsi for this PF,
* it was just for registering netdevice, so the interface
* could be visible in the 'ifconfig' output
*/
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
goto unmap;
}
/* Client close must be called explicitly here because the timer
* has been stopped.
*/
i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
i40e_fdir_teardown(pf);
/* If there is a switch structure or any orphans, remove them.
* This will leave only the PF's VSI remaining.
*/
i40e_pf_for_each_veb(pf, i, veb)
if (veb->uplink_seid == pf->mac_seid ||
veb->uplink_seid == 0)
i40e_switch_branch_release(veb);
/* Now we can shutdown the PF's VSIs, just before we kill
* adminq and hmc.
*/
i40e_pf_for_each_vsi(pf, i, vsi) {
i40e_vsi_close(vsi);
i40e_vsi_release(vsi);
pf->vsi[i] = NULL;
}
i40e_cloud_filter_exit(pf);
/* remove attached clients */
if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
ret_code = i40e_lan_del_device(pf);
if (ret_code)
dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
ret_code);
}
/* shutdown and destroy the HMC */
if (hw->hmc.hmc_obj) {
ret_code = i40e_shutdown_lan_hmc(hw);
if (ret_code)
dev_warn(&pdev->dev,
"Failed to destroy the HMC resources: %d\n",
ret_code);
}
unmap:
/* Free MSI/legacy interrupt 0 when in recovery mode. */
if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
free_irq(pf->pdev->irq, pf);
/* shutdown the adminq */
i40e_shutdown_adminq(hw);
/* destroy the locks only once, here */
mutex_destroy(&hw->aq.arq_mutex);
mutex_destroy(&hw->aq.asq_mutex);
/* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
rtnl_lock();
i40e_clear_interrupt_scheme(pf);
i40e_pf_for_each_vsi(pf, i, vsi) {
if (!test_bit(__I40E_RECOVERY_MODE, pf->state))
i40e_vsi_clear_rings(vsi);
i40e_vsi_clear(vsi);
pf->vsi[i] = NULL;
}
rtnl_unlock();
i40e_pf_for_each_veb(pf, i, veb) {
kfree(veb);
pf->veb[i] = NULL;
}
kfree(pf->qp_pile);
kfree(pf->vsi);
iounmap(hw->hw_addr);
i40e_free_pf(pf);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
/**
* i40e_pci_error_detected - warning that something funky happened in PCI land
* @pdev: PCI device information struct
* @error: the type of PCI error
*
* Called to warn that something happened and the error handling steps
* are in progress. Allows the driver to quiesce things, be ready for
* remediation.
**/
static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t error)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
if (!pf) {
dev_info(&pdev->dev,
"Cannot recover - error happened during device probe\n");
return PCI_ERS_RESULT_DISCONNECT;
}
/* shutdown all operations */
if (!test_bit(__I40E_SUSPENDED, pf->state))
i40e_prep_for_reset(pf);
/* Request a slot reset */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* i40e_pci_error_slot_reset - a PCI slot reset just happened
* @pdev: PCI device information struct
*
* Called to find if the driver can work with the device now that
* the pci slot has been reset. If a basic connection seems good
* (registers are readable and have sane content) then return a
* happy little PCI_ERS_RESULT_xxx.
**/
static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
pci_ers_result_t result;
u32 reg;
dev_dbg(&pdev->dev, "%s\n", __func__);
if (pci_enable_device_mem(pdev)) {
dev_info(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
pci_wake_from_d3(pdev, false);
reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
if (reg == 0)
result = PCI_ERS_RESULT_RECOVERED;
else
result = PCI_ERS_RESULT_DISCONNECT;
}
return result;
}
/**
* i40e_pci_error_reset_prepare - prepare device driver for pci reset
* @pdev: PCI device information struct
*/
static void i40e_pci_error_reset_prepare(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
i40e_prep_for_reset(pf);
}
/**
* i40e_pci_error_reset_done - pci reset done, device driver reset can begin
* @pdev: PCI device information struct
*/
static void i40e_pci_error_reset_done(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
if (test_bit(__I40E_IN_REMOVE, pf->state))
return;
i40e_reset_and_rebuild(pf, false, false);
#ifdef CONFIG_PCI_IOV
i40e_restore_all_vfs_msi_state(pdev);
#endif /* CONFIG_PCI_IOV */
}
/**
* i40e_pci_error_resume - restart operations after PCI error recovery
* @pdev: PCI device information struct
*
* Called to allow the driver to bring things back up after PCI error
* and/or reset recovery has finished.
**/
static void i40e_pci_error_resume(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s\n", __func__);
if (test_bit(__I40E_SUSPENDED, pf->state))
return;
i40e_handle_reset_warning(pf, false);
}
/**
* i40e_enable_mc_magic_wake - enable multicast magic packet wake up
* using the mac_address_write admin q function
* @pf: pointer to i40e_pf struct
**/
static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
{
struct i40e_hw *hw = &pf->hw;
u8 mac_addr[6];
u16 flags = 0;
int ret;
/* Get current MAC address in case it's an LAA */
if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) {
ether_addr_copy(mac_addr,
pf->vsi[pf->lan_vsi]->netdev->dev_addr);
} else {
dev_err(&pf->pdev->dev,
"Failed to retrieve MAC address; using default\n");
ether_addr_copy(mac_addr, hw->mac.addr);
}
/* The FW expects the mac address write cmd to first be called with
* one of these flags before calling it again with the multicast
* enable flags.
*/
flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
if (hw->func_caps.flex10_enable && hw->partition_id != 1)
flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
if (ret) {
dev_err(&pf->pdev->dev,
"Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
return;
}
flags = I40E_AQC_MC_MAG_EN
| I40E_AQC_WOL_PRESERVE_ON_PFR
| I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
if (ret)
dev_err(&pf->pdev->dev,
"Failed to enable Multicast Magic Packet wake up\n");
}
/**
* i40e_shutdown - PCI callback for shutting down
* @pdev: PCI device information struct
**/
static void i40e_shutdown(struct pci_dev *pdev)
{
struct i40e_pf *pf = pci_get_drvdata(pdev);
struct i40e_hw *hw = &pf->hw;
set_bit(__I40E_SUSPENDED, pf->state);
set_bit(__I40E_DOWN, pf->state);
del_timer_sync(&pf->service_timer);
cancel_work_sync(&pf->service_task);
i40e_cloud_filter_exit(pf);
i40e_fdir_teardown(pf);
/* Client close must be called explicitly here because the timer
* has been stopped.
*/
i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
pf->wol_en)
i40e_enable_mc_magic_wake(pf);
i40e_prep_for_reset(pf);
wr32(hw, I40E_PFPM_APM,
(pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
wr32(hw, I40E_PFPM_WUFC,
(pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
/* Free MSI/legacy interrupt 0 when in recovery mode. */
if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
free_irq(pf->pdev->irq, pf);
/* Since we're going to destroy queues during the
* i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
* whole section
*/
rtnl_lock();
i40e_clear_interrupt_scheme(pf);
rtnl_unlock();
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, pf->wol_en);
pci_set_power_state(pdev, PCI_D3hot);
}
}
/**
* i40e_suspend - PM callback for moving to D3
* @dev: generic device information structure
**/
static int __maybe_unused i40e_suspend(struct device *dev)
{
struct i40e_pf *pf = dev_get_drvdata(dev);
struct i40e_hw *hw = &pf->hw;
/* If we're already suspended, then there is nothing to do */
if (test_and_set_bit(__I40E_SUSPENDED, pf->state))
return 0;
set_bit(__I40E_DOWN, pf->state);
/* Ensure service task will not be running */
del_timer_sync(&pf->service_timer);
cancel_work_sync(&pf->service_task);
/* Client close must be called explicitly here because the timer
* has been stopped.
*/
i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
pf->wol_en)
i40e_enable_mc_magic_wake(pf);
/* Since we're going to destroy queues during the
* i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
* whole section
*/
rtnl_lock();
i40e_prep_for_reset(pf);
wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
/* Clear the interrupt scheme and release our IRQs so that the system
* can safely hibernate even when there are a large number of CPUs.
* Otherwise hibernation might fail when mapping all the vectors back
* to CPU0.
*/
i40e_clear_interrupt_scheme(pf);
rtnl_unlock();
return 0;
}
/**
* i40e_resume - PM callback for waking up from D3
* @dev: generic device information structure
**/
static int __maybe_unused i40e_resume(struct device *dev)
{
struct i40e_pf *pf = dev_get_drvdata(dev);
int err;
/* If we're not suspended, then there is nothing to do */
if (!test_bit(__I40E_SUSPENDED, pf->state))
return 0;
/* We need to hold the RTNL lock prior to restoring interrupt schemes,
* since we're going to be restoring queues
*/
rtnl_lock();
/* We cleared the interrupt scheme when we suspended, so we need to
* restore it now to resume device functionality.
*/
err = i40e_restore_interrupt_scheme(pf);
if (err) {
dev_err(dev, "Cannot restore interrupt scheme: %d\n",
err);
}
clear_bit(__I40E_DOWN, pf->state);
i40e_reset_and_rebuild(pf, false, true);
rtnl_unlock();
/* Clear suspended state last after everything is recovered */
clear_bit(__I40E_SUSPENDED, pf->state);
/* Restart the service task */
mod_timer(&pf->service_timer,
round_jiffies(jiffies + pf->service_timer_period));
return 0;
}
static const struct pci_error_handlers i40e_err_handler = {
.error_detected = i40e_pci_error_detected,
.slot_reset = i40e_pci_error_slot_reset,
.reset_prepare = i40e_pci_error_reset_prepare,
.reset_done = i40e_pci_error_reset_done,
.resume = i40e_pci_error_resume,
};
static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume);
static struct pci_driver i40e_driver = {
.name = i40e_driver_name,
.id_table = i40e_pci_tbl,
.probe = i40e_probe,
.remove = i40e_remove,
.driver = {
.pm = &i40e_pm_ops,
},
.shutdown = i40e_shutdown,
.err_handler = &i40e_err_handler,
.sriov_configure = i40e_pci_sriov_configure,
};
/**
* i40e_init_module - Driver registration routine
*
* i40e_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init i40e_init_module(void)
{
int err;
pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string);
pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
/* There is no need to throttle the number of active tasks because
* each device limits its own task using a state bit for scheduling
* the service task, and the device tasks do not interfere with each
* other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
* since we need to be able to guarantee forward progress even under
* memory pressure.
*/
i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name);
if (!i40e_wq) {
pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
return -ENOMEM;
}
i40e_dbg_init();
err = pci_register_driver(&i40e_driver);
if (err) {
destroy_workqueue(i40e_wq);
i40e_dbg_exit();
return err;
}
return 0;
}
module_init(i40e_init_module);
/**
* i40e_exit_module - Driver exit cleanup routine
*
* i40e_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit i40e_exit_module(void)
{
pci_unregister_driver(&i40e_driver);
destroy_workqueue(i40e_wq);
ida_destroy(&i40e_client_ida);
i40e_dbg_exit();
}
module_exit(i40e_exit_module);