| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| |
| #include "tonga_processpptables.h" |
| #include "ppatomctrl.h" |
| #include "atombios.h" |
| #include "pp_debug.h" |
| #include "hwmgr.h" |
| #include "cgs_common.h" |
| #include "tonga_pptable.h" |
| |
| /** |
| * Private Function used during initialization. |
| * @param hwmgr Pointer to the hardware manager. |
| * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE). |
| * @param cap Which capability to set/reset. |
| */ |
| static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap) |
| { |
| if (setIt) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); |
| else |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); |
| } |
| |
| |
| /** |
| * Private Function used during initialization. |
| * @param hwmgr Pointer to the hardware manager. |
| * @param powerplay_caps the bit array (from BIOS) of capability bits. |
| * @exception the current implementation always returns 1. |
| */ |
| static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) |
| { |
| PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____), |
| "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue); |
| PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____), |
| "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue); |
| PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____), |
| "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue); |
| PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____), |
| "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue); |
| PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____), |
| "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY), |
| PHM_PlatformCaps_PowerPlaySupport |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), |
| PHM_PlatformCaps_BiosPowerSourceControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC), |
| PHM_PlatformCaps_AutomaticDCTransition |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL), |
| PHM_PlatformCaps_EnableMVDDControl |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL), |
| PHM_PlatformCaps_ControlVDDCI |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL), |
| PHM_PlatformCaps_ControlVDDGFX |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO), |
| PHM_PlatformCaps_BACO |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND), |
| PHM_PlatformCaps_DisableVoltageIsland |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), |
| PHM_PlatformCaps_CombinePCCWithThermalSignal |
| ); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), |
| PHM_PlatformCaps_LoadPostProductionFirmware |
| ); |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function to get the PowerPlay Table Address. |
| */ |
| const void *get_powerplay_table(struct pp_hwmgr *hwmgr) |
| { |
| int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); |
| |
| u16 size; |
| u8 frev, crev; |
| void *table_address = (void *)hwmgr->soft_pp_table; |
| |
| if (!table_address) { |
| table_address = (ATOM_Tonga_POWERPLAYTABLE *) |
| cgs_atom_get_data_table(hwmgr->device, |
| index, &size, &frev, &crev); |
| hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ |
| hwmgr->soft_pp_table_size = size; |
| } |
| |
| return table_address; |
| } |
| |
| static int get_vddc_lookup_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table **lookup_table, |
| const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables, |
| uint32_t max_levels |
| ) |
| { |
| uint32_t table_size, i; |
| phm_ppt_v1_voltage_lookup_table *table; |
| |
| PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries), |
| "Invalid CAC Leakage PowerPlay Table!", return 1); |
| |
| table_size = sizeof(uint32_t) + |
| sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels; |
| |
| table = (phm_ppt_v1_voltage_lookup_table *) |
| kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| memset(table, 0x00, table_size); |
| |
| table->count = vddc_lookup_pp_tables->ucNumEntries; |
| |
| for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) { |
| table->entries[i].us_calculated = 0; |
| table->entries[i].us_vdd = |
| vddc_lookup_pp_tables->entries[i].usVdd; |
| table->entries[i].us_cac_low = |
| vddc_lookup_pp_tables->entries[i].usCACLow; |
| table->entries[i].us_cac_mid = |
| vddc_lookup_pp_tables->entries[i].usCACMid; |
| table->entries[i].us_cac_high = |
| vddc_lookup_pp_tables->entries[i].usCACHigh; |
| } |
| |
| *lookup_table = table; |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function used during initialization. |
| * Initialize Platform Power Management Parameter table |
| * @param hwmgr Pointer to the hardware manager. |
| * @param atom_ppm_table Pointer to PPM table in VBIOS |
| */ |
| static int get_platform_power_management_table( |
| struct pp_hwmgr *hwmgr, |
| ATOM_Tonga_PPM_Table *atom_ppm_table) |
| { |
| struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL); |
| struct phm_ppt_v1_information *pp_table_information = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (NULL == ptr) |
| return -ENOMEM; |
| |
| ptr->ppm_design |
| = atom_ppm_table->ucPpmDesign; |
| ptr->cpu_core_number |
| = atom_ppm_table->usCpuCoreNumber; |
| ptr->platform_tdp |
| = atom_ppm_table->ulPlatformTDP; |
| ptr->small_ac_platform_tdp |
| = atom_ppm_table->ulSmallACPlatformTDP; |
| ptr->platform_tdc |
| = atom_ppm_table->ulPlatformTDC; |
| ptr->small_ac_platform_tdc |
| = atom_ppm_table->ulSmallACPlatformTDC; |
| ptr->apu_tdp |
| = atom_ppm_table->ulApuTDP; |
| ptr->dgpu_tdp |
| = atom_ppm_table->ulDGpuTDP; |
| ptr->dgpu_ulv_power |
| = atom_ppm_table->ulDGpuUlvPower; |
| ptr->tj_max |
| = atom_ppm_table->ulTjmax; |
| |
| pp_table_information->ppm_parameter_table = ptr; |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function used during initialization. |
| * Initialize TDP limits for DPM2 |
| * @param hwmgr Pointer to the hardware manager. |
| * @param powerplay_table Pointer to the PowerPlay Table. |
| */ |
| static int init_dpm_2_parameters( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table |
| ) |
| { |
| int result = 0; |
| struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| ATOM_Tonga_PPM_Table *atom_ppm_table; |
| uint32_t disable_ppm = 0; |
| uint32_t disable_power_control = 0; |
| |
| pp_table_information->us_ulv_voltage_offset = |
| le16_to_cpu(powerplay_table->usUlvVoltageOffset); |
| |
| pp_table_information->ppm_parameter_table = NULL; |
| pp_table_information->vddc_lookup_table = NULL; |
| pp_table_information->vddgfx_lookup_table = NULL; |
| /* TDP limits */ |
| hwmgr->platform_descriptor.TDPODLimit = |
| le16_to_cpu(powerplay_table->usPowerControlLimit); |
| hwmgr->platform_descriptor.TDPAdjustment = 0; |
| hwmgr->platform_descriptor.VidAdjustment = 0; |
| hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; |
| hwmgr->platform_descriptor.VidMinLimit = 0; |
| hwmgr->platform_descriptor.VidMaxLimit = 1500000; |
| hwmgr->platform_descriptor.VidStep = 6250; |
| |
| disable_power_control = 0; |
| if (0 == disable_power_control) { |
| /* enable TDP overdrive (PowerControl) feature as well if supported */ |
| if (hwmgr->platform_descriptor.TDPODLimit != 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerControl); |
| } |
| |
| if (0 != powerplay_table->usVddcLookupTableOffset) { |
| const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable = |
| (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usVddcLookupTableOffset)); |
| |
| result = get_vddc_lookup_table(hwmgr, |
| &pp_table_information->vddc_lookup_table, pVddcCACTable, 16); |
| } |
| |
| if (0 != powerplay_table->usVddgfxLookupTableOffset) { |
| const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable = |
| (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset)); |
| |
| result = get_vddc_lookup_table(hwmgr, |
| &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16); |
| } |
| |
| disable_ppm = 0; |
| if (0 == disable_ppm) { |
| atom_ppm_table = (ATOM_Tonga_PPM_Table *) |
| (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset)); |
| |
| if (0 != powerplay_table->usPPMTableOffset) { |
| if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnablePlatformPowerManagement); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static int get_valid_clk( |
| struct pp_hwmgr *hwmgr, |
| struct phm_clock_array **clk_table, |
| const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table |
| ) |
| { |
| uint32_t table_size, i; |
| struct phm_clock_array *table; |
| |
| PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count), |
| "Invalid PowerPlay Table!", return -1); |
| |
| table_size = sizeof(uint32_t) + |
| sizeof(uint32_t) * clk_volt_pp_table->count; |
| |
| table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == table) |
| return -ENOMEM; |
| |
| memset(table, 0x00, table_size); |
| |
| table->count = (uint32_t)clk_volt_pp_table->count; |
| |
| for (i = 0; i < table->count; i++) |
| table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk; |
| |
| *clk_table = table; |
| |
| return 0; |
| } |
| |
| static int get_hard_limits( |
| struct pp_hwmgr *hwmgr, |
| struct phm_clock_and_voltage_limits *limits, |
| const ATOM_Tonga_Hard_Limit_Table * limitable |
| ) |
| { |
| PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1); |
| |
| /* currently we always take entries[0] parameters */ |
| limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit; |
| limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit; |
| limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit; |
| limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit; |
| limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit; |
| |
| return 0; |
| } |
| |
| static int get_mclk_voltage_dependency_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table, |
| const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table |
| ) |
| { |
| uint32_t table_size, i; |
| phm_ppt_v1_clock_voltage_dependency_table *mclk_table; |
| |
| PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries), |
| "Invalid PowerPlay Table!", return -1); |
| |
| table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) |
| * mclk_dep_table->ucNumEntries; |
| |
| mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) |
| kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == mclk_table) |
| return -ENOMEM; |
| |
| memset(mclk_table, 0x00, table_size); |
| |
| mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries; |
| |
| for (i = 0; i < mclk_dep_table->ucNumEntries; i++) { |
| mclk_table->entries[i].vddInd = |
| mclk_dep_table->entries[i].ucVddcInd; |
| mclk_table->entries[i].vdd_offset = |
| mclk_dep_table->entries[i].usVddgfxOffset; |
| mclk_table->entries[i].vddci = |
| mclk_dep_table->entries[i].usVddci; |
| mclk_table->entries[i].mvdd = |
| mclk_dep_table->entries[i].usMvdd; |
| mclk_table->entries[i].clk = |
| mclk_dep_table->entries[i].ulMclk; |
| } |
| |
| *pp_tonga_mclk_dep_table = mclk_table; |
| |
| return 0; |
| } |
| |
| static int get_sclk_voltage_dependency_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table, |
| const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table |
| ) |
| { |
| uint32_t table_size, i; |
| phm_ppt_v1_clock_voltage_dependency_table *sclk_table; |
| |
| PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries), |
| "Invalid PowerPlay Table!", return -1); |
| |
| table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) |
| * sclk_dep_table->ucNumEntries; |
| |
| sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) |
| kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == sclk_table) |
| return -ENOMEM; |
| |
| memset(sclk_table, 0x00, table_size); |
| |
| sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries; |
| |
| for (i = 0; i < sclk_dep_table->ucNumEntries; i++) { |
| sclk_table->entries[i].vddInd = |
| sclk_dep_table->entries[i].ucVddInd; |
| sclk_table->entries[i].vdd_offset = |
| sclk_dep_table->entries[i].usVddcOffset; |
| sclk_table->entries[i].clk = |
| sclk_dep_table->entries[i].ulSclk; |
| sclk_table->entries[i].cks_enable = |
| (((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; |
| sclk_table->entries[i].cks_voffset = |
| (sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F); |
| } |
| |
| *pp_tonga_sclk_dep_table = sclk_table; |
| |
| return 0; |
| } |
| |
| static int get_pcie_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_pcie_table **pp_tonga_pcie_table, |
| const PPTable_Generic_SubTable_Header * pTable |
| ) |
| { |
| uint32_t table_size, i, pcie_count; |
| phm_ppt_v1_pcie_table *pcie_table; |
| struct phm_ppt_v1_information *pp_table_information = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (pTable->ucRevId < 1) { |
| const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)pTable; |
| PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), |
| "Invalid PowerPlay Table!", return -1); |
| |
| table_size = sizeof(uint32_t) + |
| sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries; |
| |
| pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL); |
| |
| if (pcie_table == NULL) |
| return -ENOMEM; |
| |
| memset(pcie_table, 0x00, table_size); |
| |
| /* |
| * Make sure the number of pcie entries are less than or equal to sclk dpm levels. |
| * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. |
| */ |
| pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; |
| if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) |
| pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; |
| else |
| printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \ |
| Disregarding the excess entries... \n"); |
| |
| pcie_table->count = pcie_count; |
| |
| for (i = 0; i < pcie_count; i++) { |
| pcie_table->entries[i].gen_speed = |
| atom_pcie_table->entries[i].ucPCIEGenSpeed; |
| pcie_table->entries[i].lane_width = |
| atom_pcie_table->entries[i].usPCIELaneWidth; |
| } |
| |
| *pp_tonga_pcie_table = pcie_table; |
| } else { |
| /* Polaris10/Polaris11 and newer. */ |
| const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)pTable; |
| PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), |
| "Invalid PowerPlay Table!", return -1); |
| |
| table_size = sizeof(uint32_t) + |
| sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries; |
| |
| pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL); |
| |
| if (pcie_table == NULL) |
| return -ENOMEM; |
| |
| memset(pcie_table, 0x00, table_size); |
| |
| /* |
| * Make sure the number of pcie entries are less than or equal to sclk dpm levels. |
| * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. |
| */ |
| pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; |
| if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) |
| pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; |
| else |
| printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \ |
| Disregarding the excess entries... \n"); |
| |
| pcie_table->count = pcie_count; |
| |
| for (i = 0; i < pcie_count; i++) { |
| pcie_table->entries[i].gen_speed = |
| atom_pcie_table->entries[i].ucPCIEGenSpeed; |
| pcie_table->entries[i].lane_width = |
| atom_pcie_table->entries[i].usPCIELaneWidth; |
| pcie_table->entries[i].pcie_sclk = |
| atom_pcie_table->entries[i].ulPCIE_Sclk; |
| } |
| |
| *pp_tonga_pcie_table = pcie_table; |
| } |
| |
| return 0; |
| } |
| |
| static int get_cac_tdp_table( |
| struct pp_hwmgr *hwmgr, |
| struct phm_cac_tdp_table **cac_tdp_table, |
| const PPTable_Generic_SubTable_Header * table |
| ) |
| { |
| uint32_t table_size; |
| struct phm_cac_tdp_table *tdp_table; |
| |
| table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table); |
| tdp_table = kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == tdp_table) |
| return -ENOMEM; |
| |
| memset(tdp_table, 0x00, table_size); |
| |
| hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == hwmgr->dyn_state.cac_dtp_table) { |
| kfree(tdp_table); |
| return -ENOMEM; |
| } |
| |
| memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size); |
| |
| if (table->ucRevId < 3) { |
| const ATOM_Tonga_PowerTune_Table *tonga_table = |
| (ATOM_Tonga_PowerTune_Table *)table; |
| tdp_table->usTDP = tonga_table->usTDP; |
| tdp_table->usConfigurableTDP = |
| tonga_table->usConfigurableTDP; |
| tdp_table->usTDC = tonga_table->usTDC; |
| tdp_table->usBatteryPowerLimit = |
| tonga_table->usBatteryPowerLimit; |
| tdp_table->usSmallPowerLimit = |
| tonga_table->usSmallPowerLimit; |
| tdp_table->usLowCACLeakage = |
| tonga_table->usLowCACLeakage; |
| tdp_table->usHighCACLeakage = |
| tonga_table->usHighCACLeakage; |
| tdp_table->usMaximumPowerDeliveryLimit = |
| tonga_table->usMaximumPowerDeliveryLimit; |
| tdp_table->usDefaultTargetOperatingTemp = |
| tonga_table->usTjMax; |
| tdp_table->usTargetOperatingTemp = |
| tonga_table->usTjMax; /*Set the initial temp to the same as default */ |
| tdp_table->usPowerTuneDataSetID = |
| tonga_table->usPowerTuneDataSetID; |
| tdp_table->usSoftwareShutdownTemp = |
| tonga_table->usSoftwareShutdownTemp; |
| tdp_table->usClockStretchAmount = |
| tonga_table->usClockStretchAmount; |
| } else { /* Fiji and newer */ |
| const ATOM_Fiji_PowerTune_Table *fijitable = |
| (ATOM_Fiji_PowerTune_Table *)table; |
| tdp_table->usTDP = fijitable->usTDP; |
| tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP; |
| tdp_table->usTDC = fijitable->usTDC; |
| tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit; |
| tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit; |
| tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage; |
| tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage; |
| tdp_table->usMaximumPowerDeliveryLimit = |
| fijitable->usMaximumPowerDeliveryLimit; |
| tdp_table->usDefaultTargetOperatingTemp = |
| fijitable->usTjMax; |
| tdp_table->usTargetOperatingTemp = |
| fijitable->usTjMax; /*Set the initial temp to the same as default */ |
| tdp_table->usPowerTuneDataSetID = |
| fijitable->usPowerTuneDataSetID; |
| tdp_table->usSoftwareShutdownTemp = |
| fijitable->usSoftwareShutdownTemp; |
| tdp_table->usClockStretchAmount = |
| fijitable->usClockStretchAmount; |
| tdp_table->usTemperatureLimitHotspot = |
| fijitable->usTemperatureLimitHotspot; |
| tdp_table->usTemperatureLimitLiquid1 = |
| fijitable->usTemperatureLimitLiquid1; |
| tdp_table->usTemperatureLimitLiquid2 = |
| fijitable->usTemperatureLimitLiquid2; |
| tdp_table->usTemperatureLimitVrVddc = |
| fijitable->usTemperatureLimitVrVddc; |
| tdp_table->usTemperatureLimitVrMvdd = |
| fijitable->usTemperatureLimitVrMvdd; |
| tdp_table->usTemperatureLimitPlx = |
| fijitable->usTemperatureLimitPlx; |
| tdp_table->ucLiquid1_I2C_address = |
| fijitable->ucLiquid1_I2C_address; |
| tdp_table->ucLiquid2_I2C_address = |
| fijitable->ucLiquid2_I2C_address; |
| tdp_table->ucLiquid_I2C_Line = |
| fijitable->ucLiquid_I2C_Line; |
| tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address; |
| tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line; |
| tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address; |
| tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line; |
| } |
| |
| *cac_tdp_table = tdp_table; |
| |
| return 0; |
| } |
| |
| static int get_mm_clock_voltage_table( |
| struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table, |
| const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table |
| ) |
| { |
| uint32_t table_size, i; |
| const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record; |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table; |
| |
| PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries), |
| "Invalid PowerPlay Table!", return -1); |
| table_size = sizeof(uint32_t) + |
| sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record) |
| * mm_dependency_table->ucNumEntries; |
| mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *) |
| kzalloc(table_size, GFP_KERNEL); |
| |
| if (NULL == mm_table) |
| return -ENOMEM; |
| |
| memset(mm_table, 0x00, table_size); |
| |
| mm_table->count = mm_dependency_table->ucNumEntries; |
| |
| for (i = 0; i < mm_dependency_table->ucNumEntries; i++) { |
| mm_dependency_record = &mm_dependency_table->entries[i]; |
| mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd; |
| mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset; |
| mm_table->entries[i].aclk = mm_dependency_record->ulAClk; |
| mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk; |
| mm_table->entries[i].eclk = mm_dependency_record->ulEClk; |
| mm_table->entries[i].vclk = mm_dependency_record->ulVClk; |
| mm_table->entries[i].dclk = mm_dependency_record->ulDClk; |
| } |
| |
| *tonga_mm_table = mm_table; |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function used during initialization. |
| * Initialize clock voltage dependency |
| * @param hwmgr Pointer to the hardware manager. |
| * @param powerplay_table Pointer to the PowerPlay Table. |
| */ |
| static int init_clock_voltage_dependency( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table |
| ) |
| { |
| int result = 0; |
| struct phm_ppt_v1_information *pp_table_information = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table = |
| (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usMMDependencyTableOffset)); |
| const PPTable_Generic_SubTable_Header *pPowerTuneTable = |
| (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usPowerTuneTableOffset)); |
| const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = |
| (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table = |
| (const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); |
| const ATOM_Tonga_Hard_Limit_Table *pHardLimits = |
| (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usHardLimitTableOffset)); |
| const PPTable_Generic_SubTable_Header *pcie_table = |
| (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + |
| le16_to_cpu(powerplay_table->usPCIETableOffset)); |
| |
| pp_table_information->vdd_dep_on_sclk = NULL; |
| pp_table_information->vdd_dep_on_mclk = NULL; |
| pp_table_information->mm_dep_table = NULL; |
| pp_table_information->pcie_table = NULL; |
| |
| if (powerplay_table->usMMDependencyTableOffset != 0) |
| result = get_mm_clock_voltage_table(hwmgr, |
| &pp_table_information->mm_dep_table, mm_dependency_table); |
| |
| if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0) |
| result = get_cac_tdp_table(hwmgr, |
| &pp_table_information->cac_dtp_table, pPowerTuneTable); |
| |
| if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0) |
| result = get_sclk_voltage_dependency_table(hwmgr, |
| &pp_table_information->vdd_dep_on_sclk, sclk_dep_table); |
| |
| if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0) |
| result = get_mclk_voltage_dependency_table(hwmgr, |
| &pp_table_information->vdd_dep_on_mclk, mclk_dep_table); |
| |
| if (result == 0 && powerplay_table->usPCIETableOffset != 0) |
| result = get_pcie_table(hwmgr, |
| &pp_table_information->pcie_table, pcie_table); |
| |
| if (result == 0 && powerplay_table->usHardLimitTableOffset != 0) |
| result = get_hard_limits(hwmgr, |
| &pp_table_information->max_clock_voltage_on_dc, pHardLimits); |
| |
| hwmgr->dyn_state.max_clock_voltage_on_dc.sclk = |
| pp_table_information->max_clock_voltage_on_dc.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_dc.mclk = |
| pp_table_information->max_clock_voltage_on_dc.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = |
| pp_table_information->max_clock_voltage_on_dc.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddci = |
| pp_table_information->max_clock_voltage_on_dc.vddci; |
| |
| if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk) |
| && (0 != pp_table_information->vdd_dep_on_mclk->count)) |
| result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values, |
| pp_table_information->vdd_dep_on_mclk); |
| |
| if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk) |
| && (0 != pp_table_information->vdd_dep_on_sclk->count)) |
| result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values, |
| pp_table_information->vdd_dep_on_sclk); |
| |
| return result; |
| } |
| |
| /** Retrieves the (signed) Overdrive limits from VBIOS. |
| * The max engine clock, memory clock and max temperature come from the firmware info table. |
| * |
| * The information is placed into the platform descriptor. |
| * |
| * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated. |
| * @param powerplay_table the address of the PowerPlay table. |
| * |
| * @return 1 as long as the firmware info table was present and of a supported version. |
| */ |
| static int init_over_drive_limits( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table) |
| { |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = |
| le16_to_cpu(powerplay_table->ulMaxODEngineClock); |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = |
| le16_to_cpu(powerplay_table->ulMaxODMemoryClock); |
| |
| hwmgr->platform_descriptor.minOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.maxOverdriveVDDC = 0; |
| hwmgr->platform_descriptor.overdriveVDDCStep = 0; |
| |
| if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \ |
| && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ACOverdriveSupport); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function used during initialization. |
| * Inspect the PowerPlay table for obvious signs of corruption. |
| * @param hwmgr Pointer to the hardware manager. |
| * @param powerplay_table Pointer to the PowerPlay Table. |
| * @exception This implementation always returns 1. |
| */ |
| static int init_thermal_controller( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table |
| ) |
| { |
| const PPTable_Generic_SubTable_Header *fan_table; |
| ATOM_Tonga_Thermal_Controller *thermal_controller; |
| |
| thermal_controller = (ATOM_Tonga_Thermal_Controller *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usThermalControllerOffset)); |
| PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset), |
| "Thermal controller table not set!", return -1); |
| |
| hwmgr->thermal_controller.ucType = thermal_controller->ucType; |
| hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine; |
| hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress; |
| |
| hwmgr->thermal_controller.fanInfo.bNoFan = |
| (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN)); |
| |
| hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = |
| thermal_controller->ucFanParameters & |
| ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; |
| |
| hwmgr->thermal_controller.fanInfo.ulMinRPM |
| = thermal_controller->ucFanMinRPM * 100UL; |
| hwmgr->thermal_controller.fanInfo.ulMaxRPM |
| = thermal_controller->ucFanMaxRPM * 100UL; |
| |
| set_hw_cap( |
| hwmgr, |
| ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, |
| PHM_PlatformCaps_ThermalController |
| ); |
| |
| if (0 == powerplay_table->usFanTableOffset) |
| return 0; |
| |
| fan_table = (const PPTable_Generic_SubTable_Header *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usFanTableOffset)); |
| |
| PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset), |
| "Fan table not set!", return -1); |
| PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId), |
| "Unsupported fan table format!", return -1); |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay |
| = 100000; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| |
| if (fan_table->ucRevId < 8) { |
| const ATOM_Tonga_Fan_Table *tonga_fan_table = |
| (ATOM_Tonga_Fan_Table *)fan_table; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst |
| = tonga_fan_table->ucTHyst; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMin |
| = tonga_fan_table->usTMin; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMed |
| = tonga_fan_table->usTMed; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTHigh |
| = tonga_fan_table->usTHigh; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin |
| = tonga_fan_table->usPWMMin; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed |
| = tonga_fan_table->usPWMMed; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh |
| = tonga_fan_table->usPWMHigh; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax |
| = 10900; /* hard coded */ |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax |
| = tonga_fan_table->usTMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode |
| = tonga_fan_table->ucFanControlMode; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM |
| = tonga_fan_table->usFanPWMMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity |
| = 4836; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity |
| = tonga_fan_table->usFanOutputSensitivity; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM |
| = tonga_fan_table->usFanRPMMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit |
| = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ |
| hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature |
| = tonga_fan_table->ucTargetTemperature; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit |
| = tonga_fan_table->ucMinimumPWMLimit; |
| } else { |
| const ATOM_Fiji_Fan_Table *fiji_fan_table = |
| (ATOM_Fiji_Fan_Table *)fan_table; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst |
| = fiji_fan_table->ucTHyst; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMin |
| = fiji_fan_table->usTMin; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMed |
| = fiji_fan_table->usTMed; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTHigh |
| = fiji_fan_table->usTHigh; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin |
| = fiji_fan_table->usPWMMin; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed |
| = fiji_fan_table->usPWMMed; |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh |
| = fiji_fan_table->usPWMHigh; |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMax |
| = fiji_fan_table->usTMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode |
| = fiji_fan_table->ucFanControlMode; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM |
| = fiji_fan_table->usFanPWMMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity |
| = 4836; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity |
| = fiji_fan_table->usFanOutputSensitivity; |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM |
| = fiji_fan_table->usFanRPMMax; |
| hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit |
| = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ |
| hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature |
| = fiji_fan_table->ucTargetTemperature; |
| hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit |
| = fiji_fan_table->ucMinimumPWMLimit; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge |
| = fiji_fan_table->usFanGainEdge; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot |
| = fiji_fan_table->usFanGainHotspot; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid |
| = fiji_fan_table->usFanGainLiquid; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc |
| = fiji_fan_table->usFanGainVrVddc; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd |
| = fiji_fan_table->usFanGainVrMvdd; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx |
| = fiji_fan_table->usFanGainPlx; |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm |
| = fiji_fan_table->usFanGainHbm; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Private Function used during initialization. |
| * Inspect the PowerPlay table for obvious signs of corruption. |
| * @param hwmgr Pointer to the hardware manager. |
| * @param powerplay_table Pointer to the PowerPlay Table. |
| * @exception 2 if the powerplay table is incorrect. |
| */ |
| static int check_powerplay_tables( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table |
| ) |
| { |
| const ATOM_Tonga_State_Array *state_arrays; |
| |
| state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usStateArrayOffset)); |
| |
| PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <= |
| powerplay_table->sHeader.ucTableFormatRevision), |
| "Unsupported PPTable format!", return -1); |
| PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset), |
| "State table is not set!", return -1); |
| PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize), |
| "Invalid PowerPlay Table!", return -1); |
| PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), |
| "Invalid PowerPlay Table!", return -1); |
| |
| return 0; |
| } |
| |
| int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| const ATOM_Tonga_POWERPLAYTABLE *powerplay_table; |
| |
| hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL); |
| |
| PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable), |
| "Failed to allocate hwmgr->pptable!", return -ENOMEM); |
| |
| memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information)); |
| |
| powerplay_table = get_powerplay_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((NULL != powerplay_table), |
| "Missing PowerPlay Table!", return -1); |
| |
| result = check_powerplay_tables(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "check_powerplay_tables failed", return result); |
| |
| result = set_platform_caps(hwmgr, |
| le32_to_cpu(powerplay_table->ulPlatformCaps)); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "set_platform_caps failed", return result); |
| |
| result = init_thermal_controller(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_thermal_controller failed", return result); |
| |
| result = init_over_drive_limits(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_over_drive_limits failed", return result); |
| |
| result = init_clock_voltage_dependency(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_clock_voltage_dependency failed", return result); |
| |
| result = init_dpm_2_parameters(hwmgr, powerplay_table); |
| |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_dpm_2_parameters failed", return result); |
| |
| return result; |
| } |
| |
| int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| struct phm_ppt_v1_information *pp_table_information = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (NULL != hwmgr->soft_pp_table) { |
| kfree(hwmgr->soft_pp_table); |
| hwmgr->soft_pp_table = NULL; |
| } |
| |
| if (NULL != pp_table_information->vdd_dep_on_sclk) |
| pp_table_information->vdd_dep_on_sclk = NULL; |
| |
| if (NULL != pp_table_information->vdd_dep_on_mclk) |
| pp_table_information->vdd_dep_on_mclk = NULL; |
| |
| if (NULL != pp_table_information->valid_mclk_values) |
| pp_table_information->valid_mclk_values = NULL; |
| |
| if (NULL != pp_table_information->valid_sclk_values) |
| pp_table_information->valid_sclk_values = NULL; |
| |
| if (NULL != pp_table_information->vddc_lookup_table) |
| pp_table_information->vddc_lookup_table = NULL; |
| |
| if (NULL != pp_table_information->vddgfx_lookup_table) |
| pp_table_information->vddgfx_lookup_table = NULL; |
| |
| if (NULL != pp_table_information->mm_dep_table) |
| pp_table_information->mm_dep_table = NULL; |
| |
| if (NULL != pp_table_information->cac_dtp_table) |
| pp_table_information->cac_dtp_table = NULL; |
| |
| if (NULL != hwmgr->dyn_state.cac_dtp_table) |
| hwmgr->dyn_state.cac_dtp_table = NULL; |
| |
| if (NULL != pp_table_information->ppm_parameter_table) |
| pp_table_information->ppm_parameter_table = NULL; |
| |
| if (NULL != pp_table_information->pcie_table) |
| pp_table_information->pcie_table = NULL; |
| |
| if (NULL != hwmgr->pptable) { |
| kfree(hwmgr->pptable); |
| hwmgr->pptable = NULL; |
| } |
| |
| return result; |
| } |
| |
| const struct pp_table_func tonga_pptable_funcs = { |
| .pptable_init = tonga_pp_tables_initialize, |
| .pptable_fini = tonga_pp_tables_uninitialize, |
| }; |
| |
| int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) |
| { |
| const ATOM_Tonga_State_Array * state_arrays; |
| const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((NULL != pp_table), |
| "Missing PowerPlay Table!", return -1); |
| PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >= |
| ATOM_Tonga_TABLE_REVISION_TONGA), |
| "Incorrect PowerPlay table revision!", return -1); |
| |
| state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + |
| le16_to_cpu(pp_table->usStateArrayOffset)); |
| |
| return (uint32_t)(state_arrays->ucNumEntries); |
| } |
| |
| /** |
| * Private function to convert flags stored in the BIOS to software flags in PowerPlay. |
| */ |
| static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, |
| uint16_t classification, uint16_t classification2) |
| { |
| uint32_t result = 0; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) |
| result |= PP_StateClassificationFlag_Boot; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| result |= PP_StateClassificationFlag_Thermal; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) |
| result |= PP_StateClassificationFlag_LimitedPowerSource; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_REST) |
| result |= PP_StateClassificationFlag_Rest; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) |
| result |= PP_StateClassificationFlag_Forced; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) |
| result |= PP_StateClassificationFlag_ACPI; |
| |
| if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) |
| result |= PP_StateClassificationFlag_LimitedPowerSource_2; |
| |
| return result; |
| } |
| |
| /** |
| * Create a Power State out of an entry in the PowerPlay table. |
| * This function is called by the hardware back-end. |
| * @param hwmgr Pointer to the hardware manager. |
| * @param entry_index The index of the entry to be extracted from the table. |
| * @param power_state The address of the PowerState instance being created. |
| * @return -1 if the entry cannot be retrieved. |
| */ |
| int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, |
| uint32_t entry_index, struct pp_power_state *power_state, |
| int (*call_back_func)(struct pp_hwmgr *, void *, |
| struct pp_power_state *, void *, uint32_t)) |
| { |
| int result = 0; |
| const ATOM_Tonga_State_Array * state_arrays; |
| const ATOM_Tonga_State *state_entry; |
| const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;); |
| power_state->classification.bios_index = entry_index; |
| |
| if (pp_table->sHeader.ucTableFormatRevision >= |
| ATOM_Tonga_TABLE_REVISION_TONGA) { |
| state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + |
| le16_to_cpu(pp_table->usStateArrayOffset)); |
| |
| PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset), |
| "Invalid PowerPlay Table State Array Offset.", return -1); |
| PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), |
| "Invalid PowerPlay Table State Array.", return -1); |
| PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), |
| "Invalid PowerPlay Table State Array Entry.", return -1); |
| |
| state_entry = &(state_arrays->states[entry_index]); |
| |
| result = call_back_func(hwmgr, (void *)state_entry, power_state, |
| (void *)pp_table, |
| make_classification_flags(hwmgr, |
| le16_to_cpu(state_entry->usClassification), |
| le16_to_cpu(state_entry->usClassification2))); |
| } |
| |
| if (!result && (power_state->classification.flags & |
| PP_StateClassificationFlag_Boot)) |
| result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); |
| |
| return result; |
| } |