| /* | 
 |  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix | 
 |  * Copyright (C) 2006 Andrey Volkov, Varma Electronics | 
 |  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the version 2 of the GNU General Public License | 
 |  * as published by the Free Software Foundation | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/can.h> | 
 | #include <linux/can/dev.h> | 
 | #include <linux/can/netlink.h> | 
 | #include <net/rtnetlink.h> | 
 |  | 
 | #define MOD_DESC "CAN device driver interface" | 
 |  | 
 | MODULE_DESCRIPTION(MOD_DESC); | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); | 
 |  | 
 | #ifdef CONFIG_CAN_CALC_BITTIMING | 
 | #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ | 
 |  | 
 | /* | 
 |  * Bit-timing calculation derived from: | 
 |  * | 
 |  * Code based on LinCAN sources and H8S2638 project | 
 |  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz | 
 |  * Copyright 2005      Stanislav Marek | 
 |  * email: pisa@cmp.felk.cvut.cz | 
 |  * | 
 |  * Calculates proper bit-timing parameters for a specified bit-rate | 
 |  * and sample-point, which can then be used to set the bit-timing | 
 |  * registers of the CAN controller. You can find more information | 
 |  * in the header file linux/can/netlink.h. | 
 |  */ | 
 | static int can_update_spt(const struct can_bittiming_const *btc, | 
 | 			  int sampl_pt, int tseg, int *tseg1, int *tseg2) | 
 | { | 
 | 	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; | 
 | 	if (*tseg2 < btc->tseg2_min) | 
 | 		*tseg2 = btc->tseg2_min; | 
 | 	if (*tseg2 > btc->tseg2_max) | 
 | 		*tseg2 = btc->tseg2_max; | 
 | 	*tseg1 = tseg - *tseg2; | 
 | 	if (*tseg1 > btc->tseg1_max) { | 
 | 		*tseg1 = btc->tseg1_max; | 
 | 		*tseg2 = tseg - *tseg1; | 
 | 	} | 
 | 	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); | 
 | } | 
 |  | 
 | static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	const struct can_bittiming_const *btc = priv->bittiming_const; | 
 | 	long rate, best_rate = 0; | 
 | 	long best_error = 1000000000, error = 0; | 
 | 	int best_tseg = 0, best_brp = 0, brp = 0; | 
 | 	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; | 
 | 	int spt_error = 1000, spt = 0, sampl_pt; | 
 | 	u64 v64; | 
 |  | 
 | 	if (!priv->bittiming_const) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	/* Use CIA recommended sample points */ | 
 | 	if (bt->sample_point) { | 
 | 		sampl_pt = bt->sample_point; | 
 | 	} else { | 
 | 		if (bt->bitrate > 800000) | 
 | 			sampl_pt = 750; | 
 | 		else if (bt->bitrate > 500000) | 
 | 			sampl_pt = 800; | 
 | 		else | 
 | 			sampl_pt = 875; | 
 | 	} | 
 |  | 
 | 	/* tseg even = round down, odd = round up */ | 
 | 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; | 
 | 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { | 
 | 		tsegall = 1 + tseg / 2; | 
 | 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */ | 
 | 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; | 
 | 		/* chose brp step which is possible in system */ | 
 | 		brp = (brp / btc->brp_inc) * btc->brp_inc; | 
 | 		if ((brp < btc->brp_min) || (brp > btc->brp_max)) | 
 | 			continue; | 
 | 		rate = priv->clock.freq / (brp * tsegall); | 
 | 		error = bt->bitrate - rate; | 
 | 		/* tseg brp biterror */ | 
 | 		if (error < 0) | 
 | 			error = -error; | 
 | 		if (error > best_error) | 
 | 			continue; | 
 | 		best_error = error; | 
 | 		if (error == 0) { | 
 | 			spt = can_update_spt(btc, sampl_pt, tseg / 2, | 
 | 					     &tseg1, &tseg2); | 
 | 			error = sampl_pt - spt; | 
 | 			if (error < 0) | 
 | 				error = -error; | 
 | 			if (error > spt_error) | 
 | 				continue; | 
 | 			spt_error = error; | 
 | 		} | 
 | 		best_tseg = tseg / 2; | 
 | 		best_brp = brp; | 
 | 		best_rate = rate; | 
 | 		if (error == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (best_error) { | 
 | 		/* Error in one-tenth of a percent */ | 
 | 		error = (best_error * 1000) / bt->bitrate; | 
 | 		if (error > CAN_CALC_MAX_ERROR) { | 
 | 			dev_err(dev->dev.parent, | 
 | 				"bitrate error %ld.%ld%% too high\n", | 
 | 				error / 10, error % 10); | 
 | 			return -EDOM; | 
 | 		} else { | 
 | 			dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n", | 
 | 				 error / 10, error % 10); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* real sample point */ | 
 | 	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, | 
 | 					  &tseg1, &tseg2); | 
 |  | 
 | 	v64 = (u64)best_brp * 1000000000UL; | 
 | 	do_div(v64, priv->clock.freq); | 
 | 	bt->tq = (u32)v64; | 
 | 	bt->prop_seg = tseg1 / 2; | 
 | 	bt->phase_seg1 = tseg1 - bt->prop_seg; | 
 | 	bt->phase_seg2 = tseg2; | 
 | 	bt->sjw = 1; | 
 | 	bt->brp = best_brp; | 
 | 	/* real bit-rate */ | 
 | 	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else /* !CONFIG_CAN_CALC_BITTIMING */ | 
 | static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
 | { | 
 | 	dev_err(dev->dev.parent, "bit-timing calculation not available\n"); | 
 | 	return -EINVAL; | 
 | } | 
 | #endif /* CONFIG_CAN_CALC_BITTIMING */ | 
 |  | 
 | /* | 
 |  * Checks the validity of the specified bit-timing parameters prop_seg, | 
 |  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate | 
 |  * prescaler value brp. You can find more information in the header | 
 |  * file linux/can/netlink.h. | 
 |  */ | 
 | static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	const struct can_bittiming_const *btc = priv->bittiming_const; | 
 | 	int tseg1, alltseg; | 
 | 	u64 brp64; | 
 |  | 
 | 	if (!priv->bittiming_const) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	tseg1 = bt->prop_seg + bt->phase_seg1; | 
 | 	if (!bt->sjw) | 
 | 		bt->sjw = 1; | 
 | 	if (bt->sjw > btc->sjw_max || | 
 | 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || | 
 | 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) | 
 | 		return -ERANGE; | 
 |  | 
 | 	brp64 = (u64)priv->clock.freq * (u64)bt->tq; | 
 | 	if (btc->brp_inc > 1) | 
 | 		do_div(brp64, btc->brp_inc); | 
 | 	brp64 += 500000000UL - 1; | 
 | 	do_div(brp64, 1000000000UL); /* the practicable BRP */ | 
 | 	if (btc->brp_inc > 1) | 
 | 		brp64 *= btc->brp_inc; | 
 | 	bt->brp = (u32)brp64; | 
 |  | 
 | 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) | 
 | 		return -EINVAL; | 
 |  | 
 | 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; | 
 | 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg); | 
 | 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	/* Check if the CAN device has bit-timing parameters */ | 
 | 	if (priv->bittiming_const) { | 
 |  | 
 | 		/* Non-expert mode? Check if the bitrate has been pre-defined */ | 
 | 		if (!bt->tq) | 
 | 			/* Determine bit-timing parameters */ | 
 | 			err = can_calc_bittiming(dev, bt); | 
 | 		else | 
 | 			/* Check bit-timing params and calculate proper brp */ | 
 | 			err = can_fixup_bittiming(dev, bt); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Local echo of CAN messages | 
 |  * | 
 |  * CAN network devices *should* support a local echo functionality | 
 |  * (see Documentation/networking/can.txt). To test the handling of CAN | 
 |  * interfaces that do not support the local echo both driver types are | 
 |  * implemented. In the case that the driver does not support the echo | 
 |  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core | 
 |  * to perform the echo as a fallback solution. | 
 |  */ | 
 | static void can_flush_echo_skb(struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	struct net_device_stats *stats = &dev->stats; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < priv->echo_skb_max; i++) { | 
 | 		if (priv->echo_skb[i]) { | 
 | 			kfree_skb(priv->echo_skb[i]); | 
 | 			priv->echo_skb[i] = NULL; | 
 | 			stats->tx_dropped++; | 
 | 			stats->tx_aborted_errors++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Put the skb on the stack to be looped backed locally lateron | 
 |  * | 
 |  * The function is typically called in the start_xmit function | 
 |  * of the device driver. The driver must protect access to | 
 |  * priv->echo_skb, if necessary. | 
 |  */ | 
 | void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, | 
 | 		      unsigned int idx) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	BUG_ON(idx >= priv->echo_skb_max); | 
 |  | 
 | 	/* check flag whether this packet has to be looped back */ | 
 | 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) { | 
 | 		kfree_skb(skb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!priv->echo_skb[idx]) { | 
 | 		struct sock *srcsk = skb->sk; | 
 |  | 
 | 		if (atomic_read(&skb->users) != 1) { | 
 | 			struct sk_buff *old_skb = skb; | 
 |  | 
 | 			skb = skb_clone(old_skb, GFP_ATOMIC); | 
 | 			kfree_skb(old_skb); | 
 | 			if (!skb) | 
 | 				return; | 
 | 		} else | 
 | 			skb_orphan(skb); | 
 |  | 
 | 		skb->sk = srcsk; | 
 |  | 
 | 		/* make settings for echo to reduce code in irq context */ | 
 | 		skb->protocol = htons(ETH_P_CAN); | 
 | 		skb->pkt_type = PACKET_BROADCAST; | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 		skb->dev = dev; | 
 |  | 
 | 		/* save this skb for tx interrupt echo handling */ | 
 | 		priv->echo_skb[idx] = skb; | 
 | 	} else { | 
 | 		/* locking problem with netif_stop_queue() ?? */ | 
 | 		dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n", | 
 | 			__func__); | 
 | 		kfree_skb(skb); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(can_put_echo_skb); | 
 |  | 
 | /* | 
 |  * Get the skb from the stack and loop it back locally | 
 |  * | 
 |  * The function is typically called when the TX done interrupt | 
 |  * is handled in the device driver. The driver must protect | 
 |  * access to priv->echo_skb, if necessary. | 
 |  */ | 
 | void can_get_echo_skb(struct net_device *dev, unsigned int idx) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	BUG_ON(idx >= priv->echo_skb_max); | 
 |  | 
 | 	if (priv->echo_skb[idx]) { | 
 | 		netif_rx(priv->echo_skb[idx]); | 
 | 		priv->echo_skb[idx] = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(can_get_echo_skb); | 
 |  | 
 | /* | 
 |   * Remove the skb from the stack and free it. | 
 |   * | 
 |   * The function is typically called when TX failed. | 
 |   */ | 
 | void can_free_echo_skb(struct net_device *dev, unsigned int idx) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	BUG_ON(idx >= priv->echo_skb_max); | 
 |  | 
 | 	if (priv->echo_skb[idx]) { | 
 | 		kfree_skb(priv->echo_skb[idx]); | 
 | 		priv->echo_skb[idx] = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(can_free_echo_skb); | 
 |  | 
 | /* | 
 |  * CAN device restart for bus-off recovery | 
 |  */ | 
 | void can_restart(unsigned long data) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)data; | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	struct net_device_stats *stats = &dev->stats; | 
 | 	struct sk_buff *skb; | 
 | 	struct can_frame *cf; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(netif_carrier_ok(dev)); | 
 |  | 
 | 	/* | 
 | 	 * No synchronization needed because the device is bus-off and | 
 | 	 * no messages can come in or go out. | 
 | 	 */ | 
 | 	can_flush_echo_skb(dev); | 
 |  | 
 | 	/* send restart message upstream */ | 
 | 	skb = alloc_can_err_skb(dev, &cf); | 
 | 	if (skb == NULL) { | 
 | 		err = -ENOMEM; | 
 | 		goto restart; | 
 | 	} | 
 | 	cf->can_id |= CAN_ERR_RESTARTED; | 
 |  | 
 | 	netif_rx(skb); | 
 |  | 
 | 	stats->rx_packets++; | 
 | 	stats->rx_bytes += cf->can_dlc; | 
 |  | 
 | restart: | 
 | 	dev_dbg(dev->dev.parent, "restarted\n"); | 
 | 	priv->can_stats.restarts++; | 
 |  | 
 | 	/* Now restart the device */ | 
 | 	err = priv->do_set_mode(dev, CAN_MODE_START); | 
 |  | 
 | 	netif_carrier_on(dev); | 
 | 	if (err) | 
 | 		dev_err(dev->dev.parent, "Error %d during restart", err); | 
 | } | 
 |  | 
 | int can_restart_now(struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	/* | 
 | 	 * A manual restart is only permitted if automatic restart is | 
 | 	 * disabled and the device is in the bus-off state | 
 | 	 */ | 
 | 	if (priv->restart_ms) | 
 | 		return -EINVAL; | 
 | 	if (priv->state != CAN_STATE_BUS_OFF) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Runs as soon as possible in the timer context */ | 
 | 	mod_timer(&priv->restart_timer, jiffies); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * CAN bus-off | 
 |  * | 
 |  * This functions should be called when the device goes bus-off to | 
 |  * tell the netif layer that no more packets can be sent or received. | 
 |  * If enabled, a timer is started to trigger bus-off recovery. | 
 |  */ | 
 | void can_bus_off(struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	dev_dbg(dev->dev.parent, "bus-off\n"); | 
 |  | 
 | 	netif_carrier_off(dev); | 
 | 	priv->can_stats.bus_off++; | 
 |  | 
 | 	if (priv->restart_ms) | 
 | 		mod_timer(&priv->restart_timer, | 
 | 			  jiffies + (priv->restart_ms * HZ) / 1000); | 
 | } | 
 | EXPORT_SYMBOL_GPL(can_bus_off); | 
 |  | 
 | static void can_setup(struct net_device *dev) | 
 | { | 
 | 	dev->type = ARPHRD_CAN; | 
 | 	dev->mtu = sizeof(struct can_frame); | 
 | 	dev->hard_header_len = 0; | 
 | 	dev->addr_len = 0; | 
 | 	dev->tx_queue_len = 10; | 
 |  | 
 | 	/* New-style flags. */ | 
 | 	dev->flags = IFF_NOARP; | 
 | 	dev->features = NETIF_F_NO_CSUM; | 
 | } | 
 |  | 
 | struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = netdev_alloc_skb(dev, sizeof(struct can_frame)); | 
 | 	if (unlikely(!skb)) | 
 | 		return NULL; | 
 |  | 
 | 	skb->protocol = htons(ETH_P_CAN); | 
 | 	skb->pkt_type = PACKET_BROADCAST; | 
 | 	skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); | 
 | 	memset(*cf, 0, sizeof(struct can_frame)); | 
 |  | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_can_skb); | 
 |  | 
 | struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = alloc_can_skb(dev, cf); | 
 | 	if (unlikely(!skb)) | 
 | 		return NULL; | 
 |  | 
 | 	(*cf)->can_id = CAN_ERR_FLAG; | 
 | 	(*cf)->can_dlc = CAN_ERR_DLC; | 
 |  | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_can_err_skb); | 
 |  | 
 | /* | 
 |  * Allocate and setup space for the CAN network device | 
 |  */ | 
 | struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) | 
 | { | 
 | 	struct net_device *dev; | 
 | 	struct can_priv *priv; | 
 | 	int size; | 
 |  | 
 | 	if (echo_skb_max) | 
 | 		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + | 
 | 			echo_skb_max * sizeof(struct sk_buff *); | 
 | 	else | 
 | 		size = sizeof_priv; | 
 |  | 
 | 	dev = alloc_netdev(size, "can%d", can_setup); | 
 | 	if (!dev) | 
 | 		return NULL; | 
 |  | 
 | 	priv = netdev_priv(dev); | 
 |  | 
 | 	if (echo_skb_max) { | 
 | 		priv->echo_skb_max = echo_skb_max; | 
 | 		priv->echo_skb = (void *)priv + | 
 | 			ALIGN(sizeof_priv, sizeof(struct sk_buff *)); | 
 | 	} | 
 |  | 
 | 	priv->state = CAN_STATE_STOPPED; | 
 |  | 
 | 	init_timer(&priv->restart_timer); | 
 |  | 
 | 	return dev; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_candev); | 
 |  | 
 | /* | 
 |  * Free space of the CAN network device | 
 |  */ | 
 | void free_candev(struct net_device *dev) | 
 | { | 
 | 	free_netdev(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_candev); | 
 |  | 
 | /* | 
 |  * Common open function when the device gets opened. | 
 |  * | 
 |  * This function should be called in the open function of the device | 
 |  * driver. | 
 |  */ | 
 | int open_candev(struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	if (!priv->bittiming.tq && !priv->bittiming.bitrate) { | 
 | 		dev_err(dev->dev.parent, "bit-timing not yet defined\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Switch carrier on if device was stopped while in bus-off state */ | 
 | 	if (!netif_carrier_ok(dev)) | 
 | 		netif_carrier_on(dev); | 
 |  | 
 | 	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(open_candev); | 
 |  | 
 | /* | 
 |  * Common close function for cleanup before the device gets closed. | 
 |  * | 
 |  * This function should be called in the close function of the device | 
 |  * driver. | 
 |  */ | 
 | void close_candev(struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	if (del_timer_sync(&priv->restart_timer)) | 
 | 		dev_put(dev); | 
 | 	can_flush_echo_skb(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(close_candev); | 
 |  | 
 | /* | 
 |  * CAN netlink interface | 
 |  */ | 
 | static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { | 
 | 	[IFLA_CAN_STATE]	= { .type = NLA_U32 }, | 
 | 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) }, | 
 | 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 }, | 
 | 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 }, | 
 | 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) }, | 
 | 	[IFLA_CAN_BITTIMING_CONST] | 
 | 				= { .len = sizeof(struct can_bittiming_const) }, | 
 | 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) }, | 
 | 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) }, | 
 | }; | 
 |  | 
 | static int can_changelink(struct net_device *dev, | 
 | 			  struct nlattr *tb[], struct nlattr *data[]) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	/* We need synchronization with dev->stop() */ | 
 | 	ASSERT_RTNL(); | 
 |  | 
 | 	if (data[IFLA_CAN_CTRLMODE]) { | 
 | 		struct can_ctrlmode *cm; | 
 |  | 
 | 		/* Do not allow changing controller mode while running */ | 
 | 		if (dev->flags & IFF_UP) | 
 | 			return -EBUSY; | 
 | 		cm = nla_data(data[IFLA_CAN_CTRLMODE]); | 
 | 		if (cm->flags & ~priv->ctrlmode_supported) | 
 | 			return -EOPNOTSUPP; | 
 | 		priv->ctrlmode &= ~cm->mask; | 
 | 		priv->ctrlmode |= cm->flags; | 
 | 	} | 
 |  | 
 | 	if (data[IFLA_CAN_BITTIMING]) { | 
 | 		struct can_bittiming bt; | 
 |  | 
 | 		/* Do not allow changing bittiming while running */ | 
 | 		if (dev->flags & IFF_UP) | 
 | 			return -EBUSY; | 
 | 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); | 
 | 		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq)) | 
 | 			return -EINVAL; | 
 | 		err = can_get_bittiming(dev, &bt); | 
 | 		if (err) | 
 | 			return err; | 
 | 		memcpy(&priv->bittiming, &bt, sizeof(bt)); | 
 |  | 
 | 		if (priv->do_set_bittiming) { | 
 | 			/* Finally, set the bit-timing registers */ | 
 | 			err = priv->do_set_bittiming(dev); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (data[IFLA_CAN_RESTART_MS]) { | 
 | 		/* Do not allow changing restart delay while running */ | 
 | 		if (dev->flags & IFF_UP) | 
 | 			return -EBUSY; | 
 | 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); | 
 | 	} | 
 |  | 
 | 	if (data[IFLA_CAN_RESTART]) { | 
 | 		/* Do not allow a restart while not running */ | 
 | 		if (!(dev->flags & IFF_UP)) | 
 | 			return -EINVAL; | 
 | 		err = can_restart_now(dev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static size_t can_get_size(const struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	size_t size; | 
 |  | 
 | 	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */ | 
 | 	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */ | 
 | 	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */ | 
 | 	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */ | 
 | 	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */ | 
 | 	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */ | 
 | 		size += sizeof(struct can_berr_counter); | 
 | 	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */ | 
 | 		size += sizeof(struct can_bittiming_const); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 | 	struct can_ctrlmode cm = {.flags = priv->ctrlmode}; | 
 | 	struct can_berr_counter bec; | 
 | 	enum can_state state = priv->state; | 
 |  | 
 | 	if (priv->do_get_state) | 
 | 		priv->do_get_state(dev, &state); | 
 | 	NLA_PUT_U32(skb, IFLA_CAN_STATE, state); | 
 | 	NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm); | 
 | 	NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms); | 
 | 	NLA_PUT(skb, IFLA_CAN_BITTIMING, | 
 | 		sizeof(priv->bittiming), &priv->bittiming); | 
 | 	NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock); | 
 | 	if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec)) | 
 | 		NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec); | 
 | 	if (priv->bittiming_const) | 
 | 		NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST, | 
 | 			sizeof(*priv->bittiming_const), priv->bittiming_const); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static size_t can_get_xstats_size(const struct net_device *dev) | 
 | { | 
 | 	return sizeof(struct can_device_stats); | 
 | } | 
 |  | 
 | static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) | 
 | { | 
 | 	struct can_priv *priv = netdev_priv(dev); | 
 |  | 
 | 	NLA_PUT(skb, IFLA_INFO_XSTATS, | 
 | 		sizeof(priv->can_stats), &priv->can_stats); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int can_newlink(struct net *src_net, struct net_device *dev, | 
 | 		       struct nlattr *tb[], struct nlattr *data[]) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static struct rtnl_link_ops can_link_ops __read_mostly = { | 
 | 	.kind		= "can", | 
 | 	.maxtype	= IFLA_CAN_MAX, | 
 | 	.policy		= can_policy, | 
 | 	.setup		= can_setup, | 
 | 	.newlink	= can_newlink, | 
 | 	.changelink	= can_changelink, | 
 | 	.get_size	= can_get_size, | 
 | 	.fill_info	= can_fill_info, | 
 | 	.get_xstats_size = can_get_xstats_size, | 
 | 	.fill_xstats	= can_fill_xstats, | 
 | }; | 
 |  | 
 | /* | 
 |  * Register the CAN network device | 
 |  */ | 
 | int register_candev(struct net_device *dev) | 
 | { | 
 | 	dev->rtnl_link_ops = &can_link_ops; | 
 | 	return register_netdev(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_candev); | 
 |  | 
 | /* | 
 |  * Unregister the CAN network device | 
 |  */ | 
 | void unregister_candev(struct net_device *dev) | 
 | { | 
 | 	unregister_netdev(dev); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_candev); | 
 |  | 
 | static __init int can_dev_init(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = rtnl_link_register(&can_link_ops); | 
 | 	if (!err) | 
 | 		printk(KERN_INFO MOD_DESC "\n"); | 
 |  | 
 | 	return err; | 
 | } | 
 | module_init(can_dev_init); | 
 |  | 
 | static __exit void can_dev_exit(void) | 
 | { | 
 | 	rtnl_link_unregister(&can_link_ops); | 
 | } | 
 | module_exit(can_dev_exit); | 
 |  | 
 | MODULE_ALIAS_RTNL_LINK("can"); |