blob: 26b925b5daced04b2eebb353010220d927f2e239 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
*/
#include "sja1105.h"
#define SJA1105_TAS_CLKSRC_DISABLED 0
#define SJA1105_TAS_CLKSRC_STANDALONE 1
#define SJA1105_TAS_CLKSRC_AS6802 2
#define SJA1105_TAS_CLKSRC_PTP 3
#define SJA1105_TAS_MAX_DELTA BIT(19)
#define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
#define work_to_sja1105_tas(d) \
container_of((d), struct sja1105_tas_data, tas_work)
#define tas_to_sja1105(d) \
container_of((d), struct sja1105_private, tas_data)
/* This is not a preprocessor macro because the "ns" argument may or may not be
* s64 at caller side. This ensures it is properly type-cast before div_s64.
*/
static s64 ns_to_sja1105_delta(s64 ns)
{
return div_s64(ns, 200);
}
static s64 sja1105_delta_to_ns(s64 delta)
{
return delta * 200;
}
/* Calculate the first base_time in the future that satisfies this
* relationship:
*
* future_base_time = base_time + N x cycle_time >= now, or
*
* now - base_time
* N >= ---------------
* cycle_time
*
* Because N is an integer, the ceiling value of the above "a / b" ratio
* is in fact precisely the floor value of "(a + b - 1) / b", which is
* easier to calculate only having integer division tools.
*/
static s64 future_base_time(s64 base_time, s64 cycle_time, s64 now)
{
s64 a, b, n;
if (base_time >= now)
return base_time;
a = now - base_time;
b = cycle_time;
n = div_s64(a + b - 1, b);
return base_time + n * cycle_time;
}
static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct dsa_switch *ds = priv->ds;
s64 earliest_base_time = S64_MAX;
s64 latest_base_time = 0;
s64 its_cycle_time = 0;
s64 max_cycle_time = 0;
int port;
tas_data->enabled = false;
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
const struct tc_taprio_qopt_offload *offload;
offload = tas_data->offload[port];
if (!offload)
continue;
tas_data->enabled = true;
if (max_cycle_time < offload->cycle_time)
max_cycle_time = offload->cycle_time;
if (latest_base_time < offload->base_time)
latest_base_time = offload->base_time;
if (earliest_base_time > offload->base_time) {
earliest_base_time = offload->base_time;
its_cycle_time = offload->cycle_time;
}
}
if (!tas_data->enabled)
return 0;
/* Roll the earliest base time over until it is in a comparable
* time base with the latest, then compare their deltas.
* We want to enforce that all ports' base times are within
* SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
*/
earliest_base_time = future_base_time(earliest_base_time,
its_cycle_time,
latest_base_time);
while (earliest_base_time > latest_base_time)
earliest_base_time -= its_cycle_time;
if (latest_base_time - earliest_base_time >
sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
dev_err(ds->dev,
"Base times too far apart: min %llu max %llu\n",
earliest_base_time, latest_base_time);
return -ERANGE;
}
tas_data->earliest_base_time = earliest_base_time;
tas_data->max_cycle_time = max_cycle_time;
dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
return 0;
}
/* Lo and behold: the egress scheduler from hell.
*
* At the hardware level, the Time-Aware Shaper holds a global linear arrray of
* all schedule entries for all ports. These are the Gate Control List (GCL)
* entries, let's call them "timeslots" for short. This linear array of
* timeslots is held in BLK_IDX_SCHEDULE.
*
* Then there are a maximum of 8 "execution threads" inside the switch, which
* iterate cyclically through the "schedule". Each "cycle" has an entry point
* and an exit point, both being timeslot indices in the schedule table. The
* hardware calls each cycle a "subschedule".
*
* Subschedule (cycle) i starts when
* ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
*
* The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
* k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
* k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
*
* For each schedule entry (timeslot) k, the engine executes the gate control
* list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
*
* +---------+
* | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
* +---------+
* |
* +-----------------+
* | .actsubsch
* BLK_IDX_SCHEDULE_ENTRY_POINTS v
* +-------+-------+
* |cycle 0|cycle 1|
* +-------+-------+
* | | | |
* +----------------+ | | +-------------------------------------+
* | .subschindx | | .subschindx |
* | | +---------------+ |
* | .address | .address | |
* | | | |
* | | | |
* | BLK_IDX_SCHEDULE v v |
* | +-------+-------+-------+-------+-------+------+ |
* | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| |
* | +-------+-------+-------+-------+-------+------+ |
* | ^ ^ ^ ^ |
* | | | | | |
* | +-------------------------+ | | | |
* | | +-------------------------------+ | | |
* | | | +-------------------+ | |
* | | | | | |
* | +---------------------------------------------------------------+ |
* | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
* | +---------------------------------------------------------------+ |
* | ^ ^ BLK_IDX_SCHEDULE_PARAMS |
* | | | |
* +--------+ +-------------------------------------------+
*
* In the above picture there are two subschedules (cycles):
*
* - cycle 0: iterates the schedule table from 0 to 2 (and back)
* - cycle 1: iterates the schedule table from 3 to 5 (and back)
*
* All other possible execution threads must be marked as unused by making
* their "subschedule end index" (subscheind) equal to the last valid
* subschedule's end index (in this case 5).
*/
static int sja1105_init_scheduling(struct sja1105_private *priv)
{
struct sja1105_schedule_entry_points_entry *schedule_entry_points;
struct sja1105_schedule_entry_points_params_entry
*schedule_entry_points_params;
struct sja1105_schedule_params_entry *schedule_params;
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_schedule_entry *schedule;
struct sja1105_table *table;
int schedule_start_idx;
s64 entry_point_delta;
int schedule_end_idx;
int num_entries = 0;
int num_cycles = 0;
int cycle = 0;
int i, k = 0;
int port, rc;
rc = sja1105_tas_set_runtime_params(priv);
if (rc < 0)
return rc;
/* Discard previous Schedule Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Entry Points Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Discard previous Schedule Entry Points Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
if (table->entry_count) {
kfree(table->entries);
table->entry_count = 0;
}
/* Figure out the dimensioning of the problem */
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
if (tas_data->offload[port]) {
num_entries += tas_data->offload[port]->num_entries;
num_cycles++;
}
}
/* Nothing to do */
if (!num_cycles)
return 0;
/* Pre-allocate space in the static config tables */
/* Schedule Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = num_entries;
schedule = table->entries;
/* Schedule Points Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
/* Previously allocated memory will be freed automatically in
* sja1105_static_config_free. This is true for all early
* returns below.
*/
return -ENOMEM;
table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
schedule_entry_points_params = table->entries;
/* Schedule Parameters Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
table->ops->unpacked_entry_size, GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
schedule_params = table->entries;
/* Schedule Entry Points Table */
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
GFP_KERNEL);
if (!table->entries)
return -ENOMEM;
table->entry_count = num_cycles;
schedule_entry_points = table->entries;
/* Finally start populating the static config tables */
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
schedule_entry_points_params->actsubsch = num_cycles - 1;
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
const struct tc_taprio_qopt_offload *offload;
/* Relative base time */
s64 rbt;
offload = tas_data->offload[port];
if (!offload)
continue;
schedule_start_idx = k;
schedule_end_idx = k + offload->num_entries - 1;
/* This is the base time expressed as a number of TAS ticks
* relative to PTPSCHTM, which we'll (perhaps improperly) call
* the operational base time.
*/
rbt = future_base_time(offload->base_time,
offload->cycle_time,
tas_data->earliest_base_time);
rbt -= tas_data->earliest_base_time;
/* UM10944.pdf 4.2.2. Schedule Entry Points table says that
* delta cannot be zero, which is shitty. Advance all relative
* base times by 1 TAS delta, so that even the earliest base
* time becomes 1 in relative terms. Then start the operational
* base time (PTPSCHTM) one TAS delta earlier than planned.
*/
entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
schedule_entry_points[cycle].subschindx = cycle;
schedule_entry_points[cycle].delta = entry_point_delta;
schedule_entry_points[cycle].address = schedule_start_idx;
/* The subschedule end indices need to be
* monotonically increasing.
*/
for (i = cycle; i < 8; i++)
schedule_params->subscheind[i] = schedule_end_idx;
for (i = 0; i < offload->num_entries; i++, k++) {
s64 delta_ns = offload->entries[i].interval;
schedule[k].delta = ns_to_sja1105_delta(delta_ns);
schedule[k].destports = BIT(port);
schedule[k].resmedia_en = true;
schedule[k].resmedia = SJA1105_GATE_MASK &
~offload->entries[i].gate_mask;
}
cycle++;
}
return 0;
}
/* Be there 2 port subschedules, each executing an arbitrary number of gate
* open/close events cyclically.
* None of those gate events must ever occur at the exact same time, otherwise
* the switch is known to act in exotically strange ways.
* However the hardware doesn't bother performing these integrity checks.
* So here we are with the task of validating whether the new @admin offload
* has any conflict with the already established TAS configuration in
* tas_data->offload. We already know the other ports are in harmony with one
* another, otherwise we wouldn't have saved them.
* Each gate event executes periodically, with a period of @cycle_time and a
* phase given by its cycle's @base_time plus its offset within the cycle
* (which in turn is given by the length of the events prior to it).
* There are two aspects to possible collisions:
* - Collisions within one cycle's (actually the longest cycle's) time frame.
* For that, we need to compare the cartesian product of each possible
* occurrence of each event within one cycle time.
* - Collisions in the future. Events may not collide within one cycle time,
* but if two port schedules don't have the same periodicity (aka the cycle
* times aren't multiples of one another), they surely will some time in the
* future (actually they will collide an infinite amount of times).
*/
static bool
sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
const struct tc_taprio_qopt_offload *admin)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
const struct tc_taprio_qopt_offload *offload;
s64 max_cycle_time, min_cycle_time;
s64 delta1, delta2;
s64 rbt1, rbt2;
s64 stop_time;
s64 t1, t2;
int i, j;
s32 rem;
offload = tas_data->offload[port];
if (!offload)
return false;
/* Check if the two cycle times are multiples of one another.
* If they aren't, then they will surely collide.
*/
max_cycle_time = max(offload->cycle_time, admin->cycle_time);
min_cycle_time = min(offload->cycle_time, admin->cycle_time);
div_s64_rem(max_cycle_time, min_cycle_time, &rem);
if (rem)
return true;
/* Calculate the "reduced" base time of each of the two cycles
* (transposed back as close to 0 as possible) by dividing to
* the cycle time.
*/
div_s64_rem(offload->base_time, offload->cycle_time, &rem);
rbt1 = rem;
div_s64_rem(admin->base_time, admin->cycle_time, &rem);
rbt2 = rem;
stop_time = max_cycle_time + max(rbt1, rbt2);
/* delta1 is the relative base time of each GCL entry within
* the established ports' TAS config.
*/
for (i = 0, delta1 = 0;
i < offload->num_entries;
delta1 += offload->entries[i].interval, i++) {
/* delta2 is the relative base time of each GCL entry
* within the newly added TAS config.
*/
for (j = 0, delta2 = 0;
j < admin->num_entries;
delta2 += admin->entries[j].interval, j++) {
/* t1 follows all possible occurrences of the
* established ports' GCL entry i within the
* first cycle time.
*/
for (t1 = rbt1 + delta1;
t1 <= stop_time;
t1 += offload->cycle_time) {
/* t2 follows all possible occurrences
* of the newly added GCL entry j
* within the first cycle time.
*/
for (t2 = rbt2 + delta2;
t2 <= stop_time;
t2 += admin->cycle_time) {
if (t1 == t2) {
dev_warn(priv->ds->dev,
"GCL entry %d collides with entry %d of port %d\n",
j, i, port);
return true;
}
}
}
}
}
return false;
}
int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
struct tc_taprio_qopt_offload *admin)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
int other_port, rc, i;
/* Can't change an already configured port (must delete qdisc first).
* Can't delete the qdisc from an unconfigured port.
*/
if (!!tas_data->offload[port] == admin->enable)
return -EINVAL;
if (!admin->enable) {
taprio_offload_free(tas_data->offload[port]);
tas_data->offload[port] = NULL;
rc = sja1105_init_scheduling(priv);
if (rc < 0)
return rc;
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
}
/* The cycle time extension is the amount of time the last cycle from
* the old OPER needs to be extended in order to phase-align with the
* base time of the ADMIN when that becomes the new OPER.
* But of course our switch needs to be reset to switch-over between
* the ADMIN and the OPER configs - so much for a seamless transition.
* So don't add insult over injury and just say we don't support cycle
* time extension.
*/
if (admin->cycle_time_extension)
return -ENOTSUPP;
if (!ns_to_sja1105_delta(admin->base_time)) {
dev_err(ds->dev, "A base time of zero is not hardware-allowed\n");
return -ERANGE;
}
for (i = 0; i < admin->num_entries; i++) {
s64 delta_ns = admin->entries[i].interval;
s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
bool too_long, too_short;
too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
too_short = (delta_cycles == 0);
if (too_long || too_short) {
dev_err(priv->ds->dev,
"Interval %llu too %s for GCL entry %d\n",
delta_ns, too_long ? "long" : "short", i);
return -ERANGE;
}
}
for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) {
if (other_port == port)
continue;
if (sja1105_tas_check_conflicts(priv, other_port, admin))
return -ERANGE;
}
tas_data->offload[port] = taprio_offload_get(admin);
rc = sja1105_init_scheduling(priv);
if (rc < 0)
return rc;
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
}
static int sja1105_tas_check_running(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct dsa_switch *ds = priv->ds;
struct sja1105_ptp_cmd cmd = {0};
int rc;
rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
if (rc < 0)
return rc;
if (cmd.ptpstrtsch == 1)
/* Schedule successfully started */
tas_data->state = SJA1105_TAS_STATE_RUNNING;
else if (cmd.ptpstopsch == 1)
/* Schedule is stopped */
tas_data->state = SJA1105_TAS_STATE_DISABLED;
else
/* Schedule is probably not configured with PTP clock source */
rc = -EINVAL;
return rc;
}
/* Write to PTPCLKCORP */
static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
u64 correction)
{
const struct sja1105_regs *regs = priv->info->regs;
u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
&ptpclkcorp, NULL);
}
/* Write to PTPSCHTM */
static int sja1105_tas_set_base_time(struct sja1105_private *priv,
u64 base_time)
{
const struct sja1105_regs *regs = priv->info->regs;
u64 ptpschtm = ns_to_sja1105_ticks(base_time);
return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
&ptpschtm, NULL);
}
static int sja1105_tas_start(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
struct dsa_switch *ds = priv->ds;
int rc;
dev_dbg(ds->dev, "Starting the TAS\n");
if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
tas_data->state == SJA1105_TAS_STATE_RUNNING) {
dev_err(ds->dev, "TAS already started\n");
return -EINVAL;
}
cmd->ptpstrtsch = 1;
cmd->ptpstopsch = 0;
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
if (rc < 0)
return rc;
tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
return 0;
}
static int sja1105_tas_stop(struct sja1105_private *priv)
{
struct sja1105_tas_data *tas_data = &priv->tas_data;
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
struct dsa_switch *ds = priv->ds;
int rc;
dev_dbg(ds->dev, "Stopping the TAS\n");
if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
dev_err(ds->dev, "TAS already disabled\n");
return -EINVAL;
}
cmd->ptpstopsch = 1;
cmd->ptpstrtsch = 0;
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
if (rc < 0)
return rc;
tas_data->state = SJA1105_TAS_STATE_DISABLED;
return 0;
}
/* The schedule engine and the PTP clock are driven by the same oscillator, and
* they run in parallel. But whilst the PTP clock can keep an absolute
* time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
* up a delta, which is 200ns), and wrapping around at the end of each cycle.
* The schedule engine is started when the PTP clock reaches the PTPSCHTM time
* (in PTP domain).
* Because the PTP clock can be rate-corrected (accelerated or slowed down) by
* a software servo, and the schedule engine clock runs in parallel to the PTP
* clock, there is logic internal to the switch that periodically keeps the
* schedule engine from drifting away. The frequency with which this internal
* syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
* a value also in the PTP clock domain, and is also rate-corrected.
* To be precise, during a correction period, there is logic to determine by
* how many scheduler clock ticks has the PTP clock drifted. At the end of each
* correction period/beginning of new one, the length of a delta is shrunk or
* expanded with an integer number of ticks, compared with the typical 25.
* So a delta lasts for 200ns (or 25 ticks) only on average.
* Sometimes it is longer, sometimes it is shorter. The internal syntonization
* logic can adjust for at most 5 ticks each 20 ticks.
*
* The first implication is that you should choose your schedule correction
* period to be an integer multiple of the schedule length. Preferably one.
* In case there are schedules of multiple ports active, then the correction
* period needs to be a multiple of them all. Given the restriction that the
* cycle times have to be multiples of one another anyway, this means the
* correction period can simply be the largest cycle time, hence the current
* choice. This way, the updates are always synchronous to the transmission
* cycle, and therefore predictable.
*
* The second implication is that at the beginning of a correction period, the
* first few deltas will be modulated in time, until the schedule engine is
* properly phase-aligned with the PTP clock. For this reason, you should place
* your best-effort traffic at the beginning of a cycle, and your
* time-triggered traffic afterwards.
*
* The third implication is that once the schedule engine is started, it can
* only adjust for so much drift within a correction period. In the servo you
* can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
* want to do the latter, you need to stop and restart the schedule engine,
* which is what the state machine handles.
*/
static void sja1105_tas_state_machine(struct work_struct *work)
{
struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
struct sja1105_private *priv = tas_to_sja1105(tas_data);
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
struct timespec64 base_time_ts, now_ts;
struct dsa_switch *ds = priv->ds;
struct timespec64 diff;
s64 base_time, now;
int rc = 0;
mutex_lock(&ptp_data->lock);
switch (tas_data->state) {
case SJA1105_TAS_STATE_DISABLED:
/* Can't do anything at all if clock is still being stepped */
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
break;
rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
if (rc < 0)
break;
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
if (rc < 0)
break;
/* Plan to start the earliest schedule first. The others
* will be started in hardware, by way of their respective
* entry points delta.
* Try our best to avoid fringe cases (race condition between
* ptpschtm and ptpstrtsch) by pushing the oper_base_time at
* least one second in the future from now. This is not ideal,
* but this only needs to buy us time until the
* sja1105_tas_start command below gets executed.
*/
base_time = future_base_time(tas_data->earliest_base_time,
tas_data->max_cycle_time,
now + 1ull * NSEC_PER_SEC);
base_time -= sja1105_delta_to_ns(1);
rc = sja1105_tas_set_base_time(priv, base_time);
if (rc < 0)
break;
tas_data->oper_base_time = base_time;
rc = sja1105_tas_start(priv);
if (rc < 0)
break;
base_time_ts = ns_to_timespec64(base_time);
now_ts = ns_to_timespec64(now);
dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
base_time_ts.tv_sec, base_time_ts.tv_nsec,
now_ts.tv_sec, now_ts.tv_nsec);
break;
case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
/* Clock was stepped.. bad news for TAS */
sja1105_tas_stop(priv);
break;
}
/* Check if TAS has actually started, by comparing the
* scheduled start time with the SJA1105 PTP clock
*/
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
if (rc < 0)
break;
if (now < tas_data->oper_base_time) {
/* TAS has not started yet */
diff = ns_to_timespec64(tas_data->oper_base_time - now);
dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
diff.tv_sec, diff.tv_nsec);
break;
}
/* Time elapsed, what happened? */
rc = sja1105_tas_check_running(priv);
if (rc < 0)
break;
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
/* TAS has started */
dev_err(ds->dev,
"TAS not started despite time elapsed\n");
break;
case SJA1105_TAS_STATE_RUNNING:
/* Clock was stepped.. bad news for TAS */
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
sja1105_tas_stop(priv);
break;
}
rc = sja1105_tas_check_running(priv);
if (rc < 0)
break;
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
dev_err(ds->dev, "TAS surprisingly stopped\n");
break;
default:
if (net_ratelimit())
dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
}
if (rc && net_ratelimit())
dev_err(ds->dev, "An operation returned %d\n", rc);
mutex_unlock(&ptp_data->lock);
}
void sja1105_tas_clockstep(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
if (!tas_data->enabled)
return;
tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
schedule_work(&tas_data->tas_work);
}
void sja1105_tas_adjfreq(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
if (!tas_data->enabled)
return;
/* No reason to schedule the workqueue, nothing changed */
if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
return;
tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
schedule_work(&tas_data->tas_work);
}
void sja1105_tas_setup(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct sja1105_tas_data *tas_data = &priv->tas_data;
INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
tas_data->state = SJA1105_TAS_STATE_DISABLED;
tas_data->last_op = SJA1105_PTP_NONE;
}
void sja1105_tas_teardown(struct dsa_switch *ds)
{
struct sja1105_private *priv = ds->priv;
struct tc_taprio_qopt_offload *offload;
int port;
cancel_work_sync(&priv->tas_data.tas_work);
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
offload = priv->tas_data.offload[port];
if (!offload)
continue;
taprio_offload_free(offload);
}
}