| /* |
| * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet |
| * driver for Linux. |
| * |
| * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| |
| #include "t4vf_common.h" |
| #include "t4vf_defs.h" |
| |
| #include "../cxgb4/t4_regs.h" |
| #include "../cxgb4/t4_values.h" |
| #include "../cxgb4/t4fw_api.h" |
| |
| /* |
| * Wait for the device to become ready (signified by our "who am I" register |
| * returning a value other than all 1's). Return an error if it doesn't |
| * become ready ... |
| */ |
| int t4vf_wait_dev_ready(struct adapter *adapter) |
| { |
| const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; |
| const u32 notready1 = 0xffffffff; |
| const u32 notready2 = 0xeeeeeeee; |
| u32 val; |
| |
| val = t4_read_reg(adapter, whoami); |
| if (val != notready1 && val != notready2) |
| return 0; |
| msleep(500); |
| val = t4_read_reg(adapter, whoami); |
| if (val != notready1 && val != notready2) |
| return 0; |
| else |
| return -EIO; |
| } |
| |
| /* |
| * Get the reply to a mailbox command and store it in @rpl in big-endian order |
| * (since the firmware data structures are specified in a big-endian layout). |
| */ |
| static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, |
| u32 mbox_data) |
| { |
| for ( ; size; size -= 8, mbox_data += 8) |
| *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); |
| } |
| |
| /** |
| * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log |
| * @adapter: the adapter |
| * @cmd: the Firmware Mailbox Command or Reply |
| * @size: command length in bytes |
| * @access: the time (ms) needed to access the Firmware Mailbox |
| * @execute: the time (ms) the command spent being executed |
| */ |
| static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd, |
| int size, int access, int execute) |
| { |
| struct mbox_cmd_log *log = adapter->mbox_log; |
| struct mbox_cmd *entry; |
| int i; |
| |
| entry = mbox_cmd_log_entry(log, log->cursor++); |
| if (log->cursor == log->size) |
| log->cursor = 0; |
| |
| for (i = 0; i < size / 8; i++) |
| entry->cmd[i] = be64_to_cpu(cmd[i]); |
| while (i < MBOX_LEN / 8) |
| entry->cmd[i++] = 0; |
| entry->timestamp = jiffies; |
| entry->seqno = log->seqno++; |
| entry->access = access; |
| entry->execute = execute; |
| } |
| |
| /** |
| * t4vf_wr_mbox_core - send a command to FW through the mailbox |
| * @adapter: the adapter |
| * @cmd: the command to write |
| * @size: command length in bytes |
| * @rpl: where to optionally store the reply |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sends the given command to FW through the mailbox and waits for the |
| * FW to execute the command. If @rpl is not %NULL it is used to store |
| * the FW's reply to the command. The command and its optional reply |
| * are of the same length. FW can take up to 500 ms to respond. |
| * @sleep_ok determines whether we may sleep while awaiting the response. |
| * If sleeping is allowed we use progressive backoff otherwise we spin. |
| * |
| * The return value is 0 on success or a negative errno on failure. A |
| * failure can happen either because we are not able to execute the |
| * command or FW executes it but signals an error. In the latter case |
| * the return value is the error code indicated by FW (negated). |
| */ |
| int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, |
| void *rpl, bool sleep_ok) |
| { |
| static const int delay[] = { |
| 1, 1, 3, 5, 10, 10, 20, 50, 100 |
| }; |
| |
| u16 access = 0, execute = 0; |
| u32 v, mbox_data; |
| int i, ms, delay_idx, ret; |
| const __be64 *p; |
| u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; |
| u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi)); |
| __be64 cmd_rpl[MBOX_LEN / 8]; |
| struct mbox_list entry; |
| |
| /* In T6, mailbox size is changed to 128 bytes to avoid |
| * invalidating the entire prefetch buffer. |
| */ |
| if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) |
| mbox_data = T4VF_MBDATA_BASE_ADDR; |
| else |
| mbox_data = T6VF_MBDATA_BASE_ADDR; |
| |
| /* |
| * Commands must be multiples of 16 bytes in length and may not be |
| * larger than the size of the Mailbox Data register array. |
| */ |
| if ((size % 16) != 0 || |
| size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) |
| return -EINVAL; |
| |
| /* Queue ourselves onto the mailbox access list. When our entry is at |
| * the front of the list, we have rights to access the mailbox. So we |
| * wait [for a while] till we're at the front [or bail out with an |
| * EBUSY] ... |
| */ |
| spin_lock(&adapter->mbox_lock); |
| list_add_tail(&entry.list, &adapter->mlist.list); |
| spin_unlock(&adapter->mbox_lock); |
| |
| delay_idx = 0; |
| ms = delay[0]; |
| |
| for (i = 0; ; i += ms) { |
| /* If we've waited too long, return a busy indication. This |
| * really ought to be based on our initial position in the |
| * mailbox access list but this is a start. We very rearely |
| * contend on access to the mailbox ... |
| */ |
| if (i > FW_CMD_MAX_TIMEOUT) { |
| spin_lock(&adapter->mbox_lock); |
| list_del(&entry.list); |
| spin_unlock(&adapter->mbox_lock); |
| ret = -EBUSY; |
| t4vf_record_mbox(adapter, cmd, size, access, ret); |
| return ret; |
| } |
| |
| /* If we're at the head, break out and start the mailbox |
| * protocol. |
| */ |
| if (list_first_entry(&adapter->mlist.list, struct mbox_list, |
| list) == &entry) |
| break; |
| |
| /* Delay for a bit before checking again ... */ |
| if (sleep_ok) { |
| ms = delay[delay_idx]; /* last element may repeat */ |
| if (delay_idx < ARRAY_SIZE(delay) - 1) |
| delay_idx++; |
| msleep(ms); |
| } else { |
| mdelay(ms); |
| } |
| } |
| |
| /* |
| * Loop trying to get ownership of the mailbox. Return an error |
| * if we can't gain ownership. |
| */ |
| v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); |
| for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) |
| v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); |
| if (v != MBOX_OWNER_DRV) { |
| spin_lock(&adapter->mbox_lock); |
| list_del(&entry.list); |
| spin_unlock(&adapter->mbox_lock); |
| ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; |
| t4vf_record_mbox(adapter, cmd, size, access, ret); |
| return ret; |
| } |
| |
| /* |
| * Write the command array into the Mailbox Data register array and |
| * transfer ownership of the mailbox to the firmware. |
| * |
| * For the VFs, the Mailbox Data "registers" are actually backed by |
| * T4's "MA" interface rather than PL Registers (as is the case for |
| * the PFs). Because these are in different coherency domains, the |
| * write to the VF's PL-register-backed Mailbox Control can race in |
| * front of the writes to the MA-backed VF Mailbox Data "registers". |
| * So we need to do a read-back on at least one byte of the VF Mailbox |
| * Data registers before doing the write to the VF Mailbox Control |
| * register. |
| */ |
| if (cmd_op != FW_VI_STATS_CMD) |
| t4vf_record_mbox(adapter, cmd, size, access, 0); |
| for (i = 0, p = cmd; i < size; i += 8) |
| t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); |
| t4_read_reg(adapter, mbox_data); /* flush write */ |
| |
| t4_write_reg(adapter, mbox_ctl, |
| MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); |
| t4_read_reg(adapter, mbox_ctl); /* flush write */ |
| |
| /* |
| * Spin waiting for firmware to acknowledge processing our command. |
| */ |
| delay_idx = 0; |
| ms = delay[0]; |
| |
| for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { |
| if (sleep_ok) { |
| ms = delay[delay_idx]; |
| if (delay_idx < ARRAY_SIZE(delay) - 1) |
| delay_idx++; |
| msleep(ms); |
| } else |
| mdelay(ms); |
| |
| /* |
| * If we're the owner, see if this is the reply we wanted. |
| */ |
| v = t4_read_reg(adapter, mbox_ctl); |
| if (MBOWNER_G(v) == MBOX_OWNER_DRV) { |
| /* |
| * If the Message Valid bit isn't on, revoke ownership |
| * of the mailbox and continue waiting for our reply. |
| */ |
| if ((v & MBMSGVALID_F) == 0) { |
| t4_write_reg(adapter, mbox_ctl, |
| MBOWNER_V(MBOX_OWNER_NONE)); |
| continue; |
| } |
| |
| /* |
| * We now have our reply. Extract the command return |
| * value, copy the reply back to our caller's buffer |
| * (if specified) and revoke ownership of the mailbox. |
| * We return the (negated) firmware command return |
| * code (this depends on FW_SUCCESS == 0). |
| */ |
| get_mbox_rpl(adapter, cmd_rpl, size, mbox_data); |
| |
| /* return value in low-order little-endian word */ |
| v = be64_to_cpu(cmd_rpl[0]); |
| |
| if (rpl) { |
| /* request bit in high-order BE word */ |
| WARN_ON((be32_to_cpu(*(const __be32 *)cmd) |
| & FW_CMD_REQUEST_F) == 0); |
| memcpy(rpl, cmd_rpl, size); |
| WARN_ON((be32_to_cpu(*(__be32 *)rpl) |
| & FW_CMD_REQUEST_F) != 0); |
| } |
| t4_write_reg(adapter, mbox_ctl, |
| MBOWNER_V(MBOX_OWNER_NONE)); |
| execute = i + ms; |
| if (cmd_op != FW_VI_STATS_CMD) |
| t4vf_record_mbox(adapter, cmd_rpl, size, access, |
| execute); |
| spin_lock(&adapter->mbox_lock); |
| list_del(&entry.list); |
| spin_unlock(&adapter->mbox_lock); |
| return -FW_CMD_RETVAL_G(v); |
| } |
| } |
| |
| /* We timed out. Return the error ... */ |
| ret = -ETIMEDOUT; |
| t4vf_record_mbox(adapter, cmd, size, access, ret); |
| spin_lock(&adapter->mbox_lock); |
| list_del(&entry.list); |
| spin_unlock(&adapter->mbox_lock); |
| return ret; |
| } |
| |
| /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to |
| * mask out bits in the Advertised Port Capabilities which are managed via |
| * separate controls, like Pause Frames and Forward Error Correction. In the |
| * Virtual Function Common Code, since we never perform L1 Configuration on |
| * the Link, the only things we really need to filter out are things which |
| * we decode and report separately like Speed. |
| */ |
| #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ |
| FW_PORT_CAP32_802_3_PAUSE | \ |
| FW_PORT_CAP32_802_3_ASM_DIR | \ |
| FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \ |
| FW_PORT_CAP32_ANEG) |
| |
| /** |
| * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits |
| * @caps16: a 16-bit Port Capabilities value |
| * |
| * Returns the equivalent 32-bit Port Capabilities value. |
| */ |
| static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) |
| { |
| fw_port_cap32_t caps32 = 0; |
| |
| #define CAP16_TO_CAP32(__cap) \ |
| do { \ |
| if (caps16 & FW_PORT_CAP_##__cap) \ |
| caps32 |= FW_PORT_CAP32_##__cap; \ |
| } while (0) |
| |
| CAP16_TO_CAP32(SPEED_100M); |
| CAP16_TO_CAP32(SPEED_1G); |
| CAP16_TO_CAP32(SPEED_25G); |
| CAP16_TO_CAP32(SPEED_10G); |
| CAP16_TO_CAP32(SPEED_40G); |
| CAP16_TO_CAP32(SPEED_100G); |
| CAP16_TO_CAP32(FC_RX); |
| CAP16_TO_CAP32(FC_TX); |
| CAP16_TO_CAP32(ANEG); |
| CAP16_TO_CAP32(MDIAUTO); |
| CAP16_TO_CAP32(MDISTRAIGHT); |
| CAP16_TO_CAP32(FEC_RS); |
| CAP16_TO_CAP32(FEC_BASER_RS); |
| CAP16_TO_CAP32(802_3_PAUSE); |
| CAP16_TO_CAP32(802_3_ASM_DIR); |
| |
| #undef CAP16_TO_CAP32 |
| |
| return caps32; |
| } |
| |
| /* Translate Firmware Pause specification to Common Code */ |
| static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) |
| { |
| enum cc_pause cc_pause = 0; |
| |
| if (fw_pause & FW_PORT_CAP32_FC_RX) |
| cc_pause |= PAUSE_RX; |
| if (fw_pause & FW_PORT_CAP32_FC_TX) |
| cc_pause |= PAUSE_TX; |
| |
| return cc_pause; |
| } |
| |
| /* Translate Firmware Forward Error Correction specification to Common Code */ |
| static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) |
| { |
| enum cc_fec cc_fec = 0; |
| |
| if (fw_fec & FW_PORT_CAP32_FEC_RS) |
| cc_fec |= FEC_RS; |
| if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) |
| cc_fec |= FEC_BASER_RS; |
| |
| return cc_fec; |
| } |
| |
| /** |
| * Return the highest speed set in the port capabilities, in Mb/s. |
| */ |
| static unsigned int fwcap_to_speed(fw_port_cap32_t caps) |
| { |
| #define TEST_SPEED_RETURN(__caps_speed, __speed) \ |
| do { \ |
| if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ |
| return __speed; \ |
| } while (0) |
| |
| TEST_SPEED_RETURN(400G, 400000); |
| TEST_SPEED_RETURN(200G, 200000); |
| TEST_SPEED_RETURN(100G, 100000); |
| TEST_SPEED_RETURN(50G, 50000); |
| TEST_SPEED_RETURN(40G, 40000); |
| TEST_SPEED_RETURN(25G, 25000); |
| TEST_SPEED_RETURN(10G, 10000); |
| TEST_SPEED_RETURN(1G, 1000); |
| TEST_SPEED_RETURN(100M, 100); |
| |
| #undef TEST_SPEED_RETURN |
| |
| return 0; |
| } |
| |
| /** |
| * fwcap_to_fwspeed - return highest speed in Port Capabilities |
| * @acaps: advertised Port Capabilities |
| * |
| * Get the highest speed for the port from the advertised Port |
| * Capabilities. It will be either the highest speed from the list of |
| * speeds or whatever user has set using ethtool. |
| */ |
| static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) |
| { |
| #define TEST_SPEED_RETURN(__caps_speed) \ |
| do { \ |
| if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ |
| return FW_PORT_CAP32_SPEED_##__caps_speed; \ |
| } while (0) |
| |
| TEST_SPEED_RETURN(400G); |
| TEST_SPEED_RETURN(200G); |
| TEST_SPEED_RETURN(100G); |
| TEST_SPEED_RETURN(50G); |
| TEST_SPEED_RETURN(40G); |
| TEST_SPEED_RETURN(25G); |
| TEST_SPEED_RETURN(10G); |
| TEST_SPEED_RETURN(1G); |
| TEST_SPEED_RETURN(100M); |
| |
| #undef TEST_SPEED_RETURN |
| return 0; |
| } |
| |
| /* |
| * init_link_config - initialize a link's SW state |
| * @lc: structure holding the link state |
| * @pcaps: link Port Capabilities |
| * @acaps: link current Advertised Port Capabilities |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/flow-control/autonegotiation settings. |
| */ |
| static void init_link_config(struct link_config *lc, |
| fw_port_cap32_t pcaps, |
| fw_port_cap32_t acaps) |
| { |
| lc->pcaps = pcaps; |
| lc->lpacaps = 0; |
| lc->speed_caps = 0; |
| lc->speed = 0; |
| lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| |
| /* For Forward Error Control, we default to whatever the Firmware |
| * tells us the Link is currently advertising. |
| */ |
| lc->auto_fec = fwcap_to_cc_fec(acaps); |
| lc->requested_fec = FEC_AUTO; |
| lc->fec = lc->auto_fec; |
| |
| /* If the Port is capable of Auto-Negtotiation, initialize it as |
| * "enabled" and copy over all of the Physical Port Capabilities |
| * to the Advertised Port Capabilities. Otherwise mark it as |
| * Auto-Negotiate disabled and select the highest supported speed |
| * for the link. Note parallel structure in t4_link_l1cfg_core() |
| * and t4_handle_get_port_info(). |
| */ |
| if (lc->pcaps & FW_PORT_CAP32_ANEG) { |
| lc->acaps = acaps & ADVERT_MASK; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->acaps = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| lc->speed_caps = fwcap_to_fwspeed(acaps); |
| } |
| } |
| |
| /** |
| * t4vf_port_init - initialize port hardware/software state |
| * @adapter: the adapter |
| * @pidx: the adapter port index |
| */ |
| int t4vf_port_init(struct adapter *adapter, int pidx) |
| { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| unsigned int fw_caps = adapter->params.fw_caps_support; |
| struct fw_vi_cmd vi_cmd, vi_rpl; |
| struct fw_port_cmd port_cmd, port_rpl; |
| enum fw_port_type port_type; |
| int mdio_addr; |
| fw_port_cap32_t pcaps, acaps; |
| int ret; |
| |
| /* If we haven't yet determined whether we're talking to Firmware |
| * which knows the new 32-bit Port Capabilities, it's time to find |
| * out now. This will also tell new Firmware to send us Port Status |
| * Updates using the new 32-bit Port Capabilities version of the |
| * Port Information message. |
| */ |
| if (fw_caps == FW_CAPS_UNKNOWN) { |
| u32 param, val; |
| |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); |
| val = 1; |
| ret = t4vf_set_params(adapter, 1, ¶m, &val); |
| fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); |
| adapter->params.fw_caps_support = fw_caps; |
| } |
| |
| /* |
| * Execute a VI Read command to get our Virtual Interface information |
| * like MAC address, etc. |
| */ |
| memset(&vi_cmd, 0, sizeof(vi_cmd)); |
| vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); |
| vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); |
| ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); |
| if (ret != FW_SUCCESS) |
| return ret; |
| |
| BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); |
| pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); |
| t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); |
| |
| /* |
| * If we don't have read access to our port information, we're done |
| * now. Otherwise, execute a PORT Read command to get it ... |
| */ |
| if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) |
| return 0; |
| |
| memset(&port_cmd, 0, sizeof(port_cmd)); |
| port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | |
| FW_PORT_CMD_PORTID_V(pi->port_id)); |
| port_cmd.action_to_len16 = cpu_to_be32( |
| FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 |
| ? FW_PORT_ACTION_GET_PORT_INFO |
| : FW_PORT_ACTION_GET_PORT_INFO32) | |
| FW_LEN16(port_cmd)); |
| ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); |
| if (ret != FW_SUCCESS) |
| return ret; |
| |
| /* Extract the various fields from the Port Information message. */ |
| if (fw_caps == FW_CAPS16) { |
| u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); |
| |
| port_type = FW_PORT_CMD_PTYPE_G(lstatus); |
| mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) |
| ? FW_PORT_CMD_MDIOADDR_G(lstatus) |
| : -1); |
| pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap)); |
| acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap)); |
| } else { |
| u32 lstatus32 = |
| be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32); |
| |
| port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); |
| mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) |
| ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) |
| : -1); |
| pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32); |
| acaps = be32_to_cpu(port_rpl.u.info32.acaps32); |
| } |
| |
| pi->port_type = port_type; |
| pi->mdio_addr = mdio_addr; |
| pi->mod_type = FW_PORT_MOD_TYPE_NA; |
| |
| init_link_config(&pi->link_cfg, pcaps, acaps); |
| return 0; |
| } |
| |
| /** |
| * t4vf_fw_reset - issue a reset to FW |
| * @adapter: the adapter |
| * |
| * Issues a reset command to FW. For a Physical Function this would |
| * result in the Firmware resetting all of its state. For a Virtual |
| * Function this just resets the state associated with the VF. |
| */ |
| int t4vf_fw_reset(struct adapter *adapter) |
| { |
| struct fw_reset_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | |
| FW_CMD_WRITE_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_query_params - query FW or device parameters |
| * @adapter: the adapter |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @vals: the parameter values |
| * |
| * Reads the values of firmware or device parameters. Up to 7 parameters |
| * can be queried at once. |
| */ |
| static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, |
| const u32 *params, u32 *vals) |
| { |
| int i, ret; |
| struct fw_params_cmd cmd, rpl; |
| struct fw_params_param *p; |
| size_t len16; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, |
| param[nparams].mnem), 16); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) |
| p->mnem = htonl(*params++); |
| |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (ret == 0) |
| for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) |
| *vals++ = be32_to_cpu(p->val); |
| return ret; |
| } |
| |
| /** |
| * t4vf_set_params - sets FW or device parameters |
| * @adapter: the adapter |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @vals: the parameter values |
| * |
| * Sets the values of firmware or device parameters. Up to 7 parameters |
| * can be specified at once. |
| */ |
| int t4vf_set_params(struct adapter *adapter, unsigned int nparams, |
| const u32 *params, const u32 *vals) |
| { |
| int i; |
| struct fw_params_cmd cmd; |
| struct fw_params_param *p; |
| size_t len16; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F); |
| len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, |
| param[nparams]), 16); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { |
| p->mnem = cpu_to_be32(*params++); |
| p->val = cpu_to_be32(*vals++); |
| } |
| |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_fl_pkt_align - return the fl packet alignment |
| * @adapter: the adapter |
| * |
| * T4 has a single field to specify the packing and padding boundary. |
| * T5 onwards has separate fields for this and hence the alignment for |
| * next packet offset is maximum of these two. And T6 changes the |
| * Ingress Padding Boundary Shift, so it's all a mess and it's best |
| * if we put this in low-level Common Code ... |
| * |
| */ |
| int t4vf_fl_pkt_align(struct adapter *adapter) |
| { |
| u32 sge_control, sge_control2; |
| unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; |
| |
| sge_control = adapter->params.sge.sge_control; |
| |
| /* T4 uses a single control field to specify both the PCIe Padding and |
| * Packing Boundary. T5 introduced the ability to specify these |
| * separately. The actual Ingress Packet Data alignment boundary |
| * within Packed Buffer Mode is the maximum of these two |
| * specifications. (Note that it makes no real practical sense to |
| * have the Pading Boudary be larger than the Packing Boundary but you |
| * could set the chip up that way and, in fact, legacy T4 code would |
| * end doing this because it would initialize the Padding Boundary and |
| * leave the Packing Boundary initialized to 0 (16 bytes).) |
| * Padding Boundary values in T6 starts from 8B, |
| * where as it is 32B for T4 and T5. |
| */ |
| if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) |
| ingpad_shift = INGPADBOUNDARY_SHIFT_X; |
| else |
| ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; |
| |
| ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); |
| |
| fl_align = ingpadboundary; |
| if (!is_t4(adapter->params.chip)) { |
| /* T5 has a different interpretation of one of the PCIe Packing |
| * Boundary values. |
| */ |
| sge_control2 = adapter->params.sge.sge_control2; |
| ingpackboundary = INGPACKBOUNDARY_G(sge_control2); |
| if (ingpackboundary == INGPACKBOUNDARY_16B_X) |
| ingpackboundary = 16; |
| else |
| ingpackboundary = 1 << (ingpackboundary + |
| INGPACKBOUNDARY_SHIFT_X); |
| |
| fl_align = max(ingpadboundary, ingpackboundary); |
| } |
| return fl_align; |
| } |
| |
| /** |
| * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information |
| * @adapter: the adapter |
| * @qid: the Queue ID |
| * @qtype: the Ingress or Egress type for @qid |
| * @pbar2_qoffset: BAR2 Queue Offset |
| * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues |
| * |
| * Returns the BAR2 SGE Queue Registers information associated with the |
| * indicated Absolute Queue ID. These are passed back in return value |
| * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue |
| * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. |
| * |
| * This may return an error which indicates that BAR2 SGE Queue |
| * registers aren't available. If an error is not returned, then the |
| * following values are returned: |
| * |
| * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers |
| * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid |
| * |
| * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which |
| * require the "Inferred Queue ID" ability may be used. E.g. the |
| * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, |
| * then these "Inferred Queue ID" register may not be used. |
| */ |
| int t4vf_bar2_sge_qregs(struct adapter *adapter, |
| unsigned int qid, |
| enum t4_bar2_qtype qtype, |
| u64 *pbar2_qoffset, |
| unsigned int *pbar2_qid) |
| { |
| unsigned int page_shift, page_size, qpp_shift, qpp_mask; |
| u64 bar2_page_offset, bar2_qoffset; |
| unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; |
| |
| /* T4 doesn't support BAR2 SGE Queue registers. |
| */ |
| if (is_t4(adapter->params.chip)) |
| return -EINVAL; |
| |
| /* Get our SGE Page Size parameters. |
| */ |
| page_shift = adapter->params.sge.sge_vf_hps + 10; |
| page_size = 1 << page_shift; |
| |
| /* Get the right Queues per Page parameters for our Queue. |
| */ |
| qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS |
| ? adapter->params.sge.sge_vf_eq_qpp |
| : adapter->params.sge.sge_vf_iq_qpp); |
| qpp_mask = (1 << qpp_shift) - 1; |
| |
| /* Calculate the basics of the BAR2 SGE Queue register area: |
| * o The BAR2 page the Queue registers will be in. |
| * o The BAR2 Queue ID. |
| * o The BAR2 Queue ID Offset into the BAR2 page. |
| */ |
| bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); |
| bar2_qid = qid & qpp_mask; |
| bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; |
| |
| /* If the BAR2 Queue ID Offset is less than the Page Size, then the |
| * hardware will infer the Absolute Queue ID simply from the writes to |
| * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a |
| * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply |
| * write to the first BAR2 SGE Queue Area within the BAR2 Page with |
| * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID |
| * from the BAR2 Page and BAR2 Queue ID. |
| * |
| * One important censequence of this is that some BAR2 SGE registers |
| * have a "Queue ID" field and we can write the BAR2 SGE Queue ID |
| * there. But other registers synthesize the SGE Queue ID purely |
| * from the writes to the registers -- the Write Combined Doorbell |
| * Buffer is a good example. These BAR2 SGE Registers are only |
| * available for those BAR2 SGE Register areas where the SGE Absolute |
| * Queue ID can be inferred from simple writes. |
| */ |
| bar2_qoffset = bar2_page_offset; |
| bar2_qinferred = (bar2_qid_offset < page_size); |
| if (bar2_qinferred) { |
| bar2_qoffset += bar2_qid_offset; |
| bar2_qid = 0; |
| } |
| |
| *pbar2_qoffset = bar2_qoffset; |
| *pbar2_qid = bar2_qid; |
| return 0; |
| } |
| |
| unsigned int t4vf_get_pf_from_vf(struct adapter *adapter) |
| { |
| u32 whoami; |
| |
| whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A); |
| return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? |
| SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami)); |
| } |
| |
| /** |
| * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters |
| * @adapter: the adapter |
| * |
| * Retrieves various core SGE parameters in the form of hardware SGE |
| * register values. The caller is responsible for decoding these as |
| * needed. The SGE parameters are stored in @adapter->params.sge. |
| */ |
| int t4vf_get_sge_params(struct adapter *adapter) |
| { |
| struct sge_params *sge_params = &adapter->params.sge; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A)); |
| params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A)); |
| params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A)); |
| params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A)); |
| params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A)); |
| params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A)); |
| v = t4vf_query_params(adapter, 7, params, vals); |
| if (v) |
| return v; |
| sge_params->sge_control = vals[0]; |
| sge_params->sge_host_page_size = vals[1]; |
| sge_params->sge_fl_buffer_size[0] = vals[2]; |
| sge_params->sge_fl_buffer_size[1] = vals[3]; |
| sge_params->sge_timer_value_0_and_1 = vals[4]; |
| sge_params->sge_timer_value_2_and_3 = vals[5]; |
| sge_params->sge_timer_value_4_and_5 = vals[6]; |
| |
| /* T4 uses a single control field to specify both the PCIe Padding and |
| * Packing Boundary. T5 introduced the ability to specify these |
| * separately with the Padding Boundary in SGE_CONTROL and and Packing |
| * Boundary in SGE_CONTROL2. So for T5 and later we need to grab |
| * SGE_CONTROL in order to determine how ingress packet data will be |
| * laid out in Packed Buffer Mode. Unfortunately, older versions of |
| * the firmware won't let us retrieve SGE_CONTROL2 so if we get a |
| * failure grabbing it we throw an error since we can't figure out the |
| * right value. |
| */ |
| if (!is_t4(adapter->params.chip)) { |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); |
| v = t4vf_query_params(adapter, 1, params, vals); |
| if (v != FW_SUCCESS) { |
| dev_err(adapter->pdev_dev, |
| "Unable to get SGE Control2; " |
| "probably old firmware.\n"); |
| return v; |
| } |
| sge_params->sge_control2 = vals[0]; |
| } |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v) |
| return v; |
| sge_params->sge_ingress_rx_threshold = vals[0]; |
| sge_params->sge_congestion_control = vals[1]; |
| |
| /* For T5 and later we want to use the new BAR2 Doorbells. |
| * Unfortunately, older firmware didn't allow the this register to be |
| * read. |
| */ |
| if (!is_t4(adapter->params.chip)) { |
| unsigned int pf, s_hps, s_qpp; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V( |
| SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | |
| FW_PARAMS_PARAM_XYZ_V( |
| SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v != FW_SUCCESS) { |
| dev_warn(adapter->pdev_dev, |
| "Unable to get VF SGE Queues/Page; " |
| "probably old firmware.\n"); |
| return v; |
| } |
| sge_params->sge_egress_queues_per_page = vals[0]; |
| sge_params->sge_ingress_queues_per_page = vals[1]; |
| |
| /* We need the Queues/Page for our VF. This is based on the |
| * PF from which we're instantiated and is indexed in the |
| * register we just read. Do it once here so other code in |
| * the driver can just use it. |
| */ |
| pf = t4vf_get_pf_from_vf(adapter); |
| s_hps = (HOSTPAGESIZEPF0_S + |
| (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); |
| sge_params->sge_vf_hps = |
| ((sge_params->sge_host_page_size >> s_hps) |
| & HOSTPAGESIZEPF0_M); |
| |
| s_qpp = (QUEUESPERPAGEPF0_S + |
| (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); |
| sge_params->sge_vf_eq_qpp = |
| ((sge_params->sge_egress_queues_per_page >> s_qpp) |
| & QUEUESPERPAGEPF0_M); |
| sge_params->sge_vf_iq_qpp = |
| ((sge_params->sge_ingress_queues_per_page >> s_qpp) |
| & QUEUESPERPAGEPF0_M); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_vpd_params - retrieve device VPD paremeters |
| * @adapter: the adapter |
| * |
| * Retrives various device Vital Product Data parameters. The parameters |
| * are stored in @adapter->params.vpd. |
| */ |
| int t4vf_get_vpd_params(struct adapter *adapter) |
| { |
| struct vpd_params *vpd_params = &adapter->params.vpd; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); |
| v = t4vf_query_params(adapter, 1, params, vals); |
| if (v) |
| return v; |
| vpd_params->cclk = vals[0]; |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_dev_params - retrieve device paremeters |
| * @adapter: the adapter |
| * |
| * Retrives various device parameters. The parameters are stored in |
| * @adapter->params.dev. |
| */ |
| int t4vf_get_dev_params(struct adapter *adapter) |
| { |
| struct dev_params *dev_params = &adapter->params.dev; |
| u32 params[7], vals[7]; |
| int v; |
| |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); |
| params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); |
| v = t4vf_query_params(adapter, 2, params, vals); |
| if (v) |
| return v; |
| dev_params->fwrev = vals[0]; |
| dev_params->tprev = vals[1]; |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration |
| * @adapter: the adapter |
| * |
| * Retrieves global RSS mode and parameters with which we have to live |
| * and stores them in the @adapter's RSS parameters. |
| */ |
| int t4vf_get_rss_glb_config(struct adapter *adapter) |
| { |
| struct rss_params *rss = &adapter->params.rss; |
| struct fw_rss_glb_config_cmd cmd, rpl; |
| int v; |
| |
| /* |
| * Execute an RSS Global Configuration read command to retrieve |
| * our RSS configuration. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| /* |
| * Transate the big-endian RSS Global Configuration into our |
| * cpu-endian format based on the RSS mode. We also do first level |
| * filtering at this point to weed out modes which don't support |
| * VF Drivers ... |
| */ |
| rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( |
| be32_to_cpu(rpl.u.manual.mode_pkd)); |
| switch (rss->mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = be32_to_cpu( |
| rpl.u.basicvirtual.synmapen_to_hashtoeplitz); |
| |
| rss->u.basicvirtual.synmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); |
| rss->u.basicvirtual.syn4tupenipv6 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); |
| rss->u.basicvirtual.syn2tupenipv6 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); |
| rss->u.basicvirtual.syn4tupenipv4 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); |
| rss->u.basicvirtual.syn2tupenipv4 = |
| ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); |
| |
| rss->u.basicvirtual.ofdmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); |
| |
| rss->u.basicvirtual.tnlmapen = |
| ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); |
| rss->u.basicvirtual.tnlalllookup = |
| ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); |
| |
| rss->u.basicvirtual.hashtoeplitz = |
| ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); |
| |
| /* we need at least Tunnel Map Enable to be set */ |
| if (!rss->u.basicvirtual.tnlmapen) |
| return -EINVAL; |
| break; |
| } |
| |
| default: |
| /* all unknown/unsupported RSS modes result in an error */ |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_vfres - retrieve VF resource limits |
| * @adapter: the adapter |
| * |
| * Retrieves configured resource limits and capabilities for a virtual |
| * function. The results are stored in @adapter->vfres. |
| */ |
| int t4vf_get_vfres(struct adapter *adapter) |
| { |
| struct vf_resources *vfres = &adapter->params.vfres; |
| struct fw_pfvf_cmd cmd, rpl; |
| int v; |
| u32 word; |
| |
| /* |
| * Execute PFVF Read command to get VF resource limits; bail out early |
| * with error on command failure. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| /* |
| * Extract VF resource limits and return success. |
| */ |
| word = be32_to_cpu(rpl.niqflint_niq); |
| vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); |
| vfres->niq = FW_PFVF_CMD_NIQ_G(word); |
| |
| word = be32_to_cpu(rpl.type_to_neq); |
| vfres->neq = FW_PFVF_CMD_NEQ_G(word); |
| vfres->pmask = FW_PFVF_CMD_PMASK_G(word); |
| |
| word = be32_to_cpu(rpl.tc_to_nexactf); |
| vfres->tc = FW_PFVF_CMD_TC_G(word); |
| vfres->nvi = FW_PFVF_CMD_NVI_G(word); |
| vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); |
| |
| word = be32_to_cpu(rpl.r_caps_to_nethctrl); |
| vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); |
| vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); |
| vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_read_rss_vi_config - read a VI's RSS configuration |
| * @adapter: the adapter |
| * @viid: Virtual Interface ID |
| * @config: pointer to host-native VI RSS Configuration buffer |
| * |
| * Reads the Virtual Interface's RSS configuration information and |
| * translates it into CPU-native format. |
| */ |
| int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, |
| union rss_vi_config *config) |
| { |
| struct fw_rss_vi_config_cmd cmd, rpl; |
| int v; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | |
| FW_RSS_VI_CONFIG_CMD_VIID(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| switch (adapter->params.rss.mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); |
| |
| config->basicvirtual.ip6fourtupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); |
| config->basicvirtual.ip6twotupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); |
| config->basicvirtual.ip4fourtupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); |
| config->basicvirtual.ip4twotupen = |
| ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); |
| config->basicvirtual.udpen = |
| ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); |
| config->basicvirtual.defaultq = |
| FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_write_rss_vi_config - write a VI's RSS configuration |
| * @adapter: the adapter |
| * @viid: Virtual Interface ID |
| * @config: pointer to host-native VI RSS Configuration buffer |
| * |
| * Write the Virtual Interface's RSS configuration information |
| * (translating it into firmware-native format before writing). |
| */ |
| int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, |
| union rss_vi_config *config) |
| { |
| struct fw_rss_vi_config_cmd cmd, rpl; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_RSS_VI_CONFIG_CMD_VIID(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| switch (adapter->params.rss.mode) { |
| case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { |
| u32 word = 0; |
| |
| if (config->basicvirtual.ip6fourtupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; |
| if (config->basicvirtual.ip6twotupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; |
| if (config->basicvirtual.ip4fourtupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; |
| if (config->basicvirtual.ip4twotupen) |
| word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; |
| if (config->basicvirtual.udpen) |
| word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; |
| word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( |
| config->basicvirtual.defaultq); |
| cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| } |
| |
| /** |
| * t4vf_config_rss_range - configure a portion of the RSS mapping table |
| * @adapter: the adapter |
| * @viid: Virtual Interface of RSS Table Slice |
| * @start: starting entry in the table to write |
| * @n: how many table entries to write |
| * @rspq: values for the "Response Queue" (Ingress Queue) lookup table |
| * @nrspq: number of values in @rspq |
| * |
| * Programs the selected part of the VI's RSS mapping table with the |
| * provided values. If @nrspq < @n the supplied values are used repeatedly |
| * until the full table range is populated. |
| * |
| * The caller must ensure the values in @rspq are in the range 0..1023. |
| */ |
| int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, |
| int start, int n, const u16 *rspq, int nrspq) |
| { |
| const u16 *rsp = rspq; |
| const u16 *rsp_end = rspq+nrspq; |
| struct fw_rss_ind_tbl_cmd cmd; |
| |
| /* |
| * Initialize firmware command template to write the RSS table. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_RSS_IND_TBL_CMD_VIID_V(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| |
| /* |
| * Each firmware RSS command can accommodate up to 32 RSS Ingress |
| * Queue Identifiers. These Ingress Queue IDs are packed three to |
| * a 32-bit word as 10-bit values with the upper remaining 2 bits |
| * reserved. |
| */ |
| while (n > 0) { |
| __be32 *qp = &cmd.iq0_to_iq2; |
| int nq = min(n, 32); |
| int ret; |
| |
| /* |
| * Set up the firmware RSS command header to send the next |
| * "nq" Ingress Queue IDs to the firmware. |
| */ |
| cmd.niqid = cpu_to_be16(nq); |
| cmd.startidx = cpu_to_be16(start); |
| |
| /* |
| * "nq" more done for the start of the next loop. |
| */ |
| start += nq; |
| n -= nq; |
| |
| /* |
| * While there are still Ingress Queue IDs to stuff into the |
| * current firmware RSS command, retrieve them from the |
| * Ingress Queue ID array and insert them into the command. |
| */ |
| while (nq > 0) { |
| /* |
| * Grab up to the next 3 Ingress Queue IDs (wrapping |
| * around the Ingress Queue ID array if necessary) and |
| * insert them into the firmware RSS command at the |
| * current 3-tuple position within the commad. |
| */ |
| u16 qbuf[3]; |
| u16 *qbp = qbuf; |
| int nqbuf = min(3, nq); |
| |
| nq -= nqbuf; |
| qbuf[0] = qbuf[1] = qbuf[2] = 0; |
| while (nqbuf) { |
| nqbuf--; |
| *qbp++ = *rsp++; |
| if (rsp >= rsp_end) |
| rsp = rspq; |
| } |
| *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | |
| FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | |
| FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); |
| } |
| |
| /* |
| * Send this portion of the RRS table update to the firmware; |
| * bail out on any errors. |
| */ |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4vf_alloc_vi - allocate a virtual interface on a port |
| * @adapter: the adapter |
| * @port_id: physical port associated with the VI |
| * |
| * Allocate a new Virtual Interface and bind it to the indicated |
| * physical port. Return the new Virtual Interface Identifier on |
| * success, or a [negative] error number on failure. |
| */ |
| int t4vf_alloc_vi(struct adapter *adapter, int port_id) |
| { |
| struct fw_vi_cmd cmd, rpl; |
| int v; |
| |
| /* |
| * Execute a VI command to allocate Virtual Interface and return its |
| * VIID. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | |
| FW_VI_CMD_ALLOC_F); |
| cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); |
| v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (v) |
| return v; |
| |
| return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); |
| } |
| |
| /** |
| * t4vf_free_vi -- free a virtual interface |
| * @adapter: the adapter |
| * @viid: the virtual interface identifier |
| * |
| * Free a previously allocated Virtual Interface. Return an error on |
| * failure. |
| */ |
| int t4vf_free_vi(struct adapter *adapter, int viid) |
| { |
| struct fw_vi_cmd cmd; |
| |
| /* |
| * Execute a VI command to free the Virtual Interface. |
| */ |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | |
| FW_VI_CMD_FREE_F); |
| cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_enable_vi - enable/disable a virtual interface |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * |
| * Enables/disables a virtual interface. |
| */ |
| int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, |
| bool rx_en, bool tx_en) |
| { |
| struct fw_vi_enable_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | |
| FW_VI_ENABLE_CMD_EEN_V(tx_en) | |
| FW_LEN16(cmd)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_enable_pi - enable/disable a Port's virtual interface |
| * @adapter: the adapter |
| * @pi: the Port Information structure |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * |
| * Enables/disables a Port's virtual interface. If the Virtual |
| * Interface enable/disable operation is successful, we notify the |
| * OS-specific code of a potential Link Status change via the OS Contract |
| * API t4vf_os_link_changed(). |
| */ |
| int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi, |
| bool rx_en, bool tx_en) |
| { |
| int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en); |
| |
| if (ret) |
| return ret; |
| t4vf_os_link_changed(adapter, pi->pidx, |
| rx_en && tx_en && pi->link_cfg.link_ok); |
| return 0; |
| } |
| |
| /** |
| * t4vf_identify_port - identify a VI's port by blinking its LED |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @nblinks: how many times to blink LED at 2.5 Hz |
| * |
| * Identifies a VI's port by blinking its LED. |
| */ |
| int t4vf_identify_port(struct adapter *adapter, unsigned int viid, |
| unsigned int nblinks) |
| { |
| struct fw_vi_enable_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | |
| FW_LEN16(cmd)); |
| cmd.blinkdur = cpu_to_be16(nblinks); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_set_rxmode - set Rx properties of a virtual interface |
| * @adapter: the adapter |
| * @viid: the VI id |
| * @mtu: the new MTU or -1 for no change |
| * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change |
| * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change |
| * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change |
| * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, |
| * -1 no change |
| * |
| * Sets Rx properties of a virtual interface. |
| */ |
| int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, |
| int mtu, int promisc, int all_multi, int bcast, int vlanex, |
| bool sleep_ok) |
| { |
| struct fw_vi_rxmode_cmd cmd; |
| |
| /* convert to FW values */ |
| if (mtu < 0) |
| mtu = FW_VI_RXMODE_CMD_MTU_M; |
| if (promisc < 0) |
| promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; |
| if (all_multi < 0) |
| all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; |
| if (bcast < 0) |
| bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; |
| if (vlanex < 0) |
| vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_RXMODE_CMD_VIID_V(viid)); |
| cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); |
| cmd.mtu_to_vlanexen = |
| cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | |
| FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | |
| FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | |
| FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | |
| FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); |
| return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses |
| * @adapter: the adapter |
| * @viid: the Virtual Interface Identifier |
| * @free: if true any existing filters for this VI id are first removed |
| * @naddr: the number of MAC addresses to allocate filters for (up to 7) |
| * @addr: the MAC address(es) |
| * @idx: where to store the index of each allocated filter |
| * @hash: pointer to hash address filter bitmap |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Allocates an exact-match filter for each of the supplied addresses and |
| * sets it to the corresponding address. If @idx is not %NULL it should |
| * have at least @naddr entries, each of which will be set to the index of |
| * the filter allocated for the corresponding MAC address. If a filter |
| * could not be allocated for an address its index is set to 0xffff. |
| * If @hash is not %NULL addresses that fail to allocate an exact filter |
| * are hashed and update the hash filter bitmap pointed at by @hash. |
| * |
| * Returns a negative error number or the number of filters allocated. |
| */ |
| int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, |
| unsigned int naddr, const u8 **addr, u16 *idx, |
| u64 *hash, bool sleep_ok) |
| { |
| int offset, ret = 0; |
| unsigned nfilters = 0; |
| unsigned int rem = naddr; |
| struct fw_vi_mac_cmd cmd, rpl; |
| unsigned int max_naddr = adapter->params.arch.mps_tcam_size; |
| |
| if (naddr > max_naddr) |
| return -EINVAL; |
| |
| for (offset = 0; offset < naddr; /**/) { |
| unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) |
| ? rem |
| : ARRAY_SIZE(cmd.u.exact)); |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[fw_naddr]), 16); |
| struct fw_vi_mac_exact *p; |
| int i; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| (free ? FW_CMD_EXEC_F : 0) | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = |
| cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | |
| FW_CMD_LEN16_V(len16)); |
| |
| for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { |
| p->valid_to_idx = cpu_to_be16( |
| FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); |
| memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); |
| } |
| |
| |
| ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, |
| sleep_ok); |
| if (ret && ret != -ENOMEM) |
| break; |
| |
| for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { |
| u16 index = FW_VI_MAC_CMD_IDX_G( |
| be16_to_cpu(p->valid_to_idx)); |
| |
| if (idx) |
| idx[offset+i] = |
| (index >= max_naddr |
| ? 0xffff |
| : index); |
| if (index < max_naddr) |
| nfilters++; |
| else if (hash) |
| *hash |= (1ULL << hash_mac_addr(addr[offset+i])); |
| } |
| |
| free = false; |
| offset += fw_naddr; |
| rem -= fw_naddr; |
| } |
| |
| /* |
| * If there were no errors or we merely ran out of room in our MAC |
| * address arena, return the number of filters actually written. |
| */ |
| if (ret == 0 || ret == -ENOMEM) |
| ret = nfilters; |
| return ret; |
| } |
| |
| /** |
| * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses |
| * @adapter: the adapter |
| * @viid: the VI id |
| * @naddr: the number of MAC addresses to allocate filters for (up to 7) |
| * @addr: the MAC address(es) |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Frees the exact-match filter for each of the supplied addresses |
| * |
| * Returns a negative error number or the number of filters freed. |
| */ |
| int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid, |
| unsigned int naddr, const u8 **addr, bool sleep_ok) |
| { |
| int offset, ret = 0; |
| struct fw_vi_mac_cmd cmd; |
| unsigned int nfilters = 0; |
| unsigned int max_naddr = adapter->params.arch.mps_tcam_size; |
| unsigned int rem = naddr; |
| |
| if (naddr > max_naddr) |
| return -EINVAL; |
| |
| for (offset = 0; offset < (int)naddr ; /**/) { |
| unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ? |
| rem : ARRAY_SIZE(cmd.u.exact)); |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[fw_naddr]), 16); |
| struct fw_vi_mac_exact *p; |
| int i; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_CMD_EXEC_V(0) | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = |
| cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | |
| FW_CMD_LEN16_V(len16)); |
| |
| for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) { |
| p->valid_to_idx = cpu_to_be16( |
| FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); |
| memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); |
| } |
| |
| ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd, |
| sleep_ok); |
| if (ret) |
| break; |
| |
| for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { |
| u16 index = FW_VI_MAC_CMD_IDX_G( |
| be16_to_cpu(p->valid_to_idx)); |
| |
| if (index < max_naddr) |
| nfilters++; |
| } |
| |
| offset += fw_naddr; |
| rem -= fw_naddr; |
| } |
| |
| if (ret == 0) |
| ret = nfilters; |
| return ret; |
| } |
| |
| /** |
| * t4vf_change_mac - modifies the exact-match filter for a MAC address |
| * @adapter: the adapter |
| * @viid: the Virtual Interface ID |
| * @idx: index of existing filter for old value of MAC address, or -1 |
| * @addr: the new MAC address value |
| * @persist: if idx < 0, the new MAC allocation should be persistent |
| * |
| * Modifies an exact-match filter and sets it to the new MAC address. |
| * Note that in general it is not possible to modify the value of a given |
| * filter so the generic way to modify an address filter is to free the |
| * one being used by the old address value and allocate a new filter for |
| * the new address value. @idx can be -1 if the address is a new |
| * addition. |
| * |
| * Returns a negative error number or the index of the filter with the new |
| * MAC value. |
| */ |
| int t4vf_change_mac(struct adapter *adapter, unsigned int viid, |
| int idx, const u8 *addr, bool persist) |
| { |
| int ret; |
| struct fw_vi_mac_cmd cmd, rpl; |
| struct fw_vi_mac_exact *p = &cmd.u.exact[0]; |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[1]), 16); |
| unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size; |
| |
| /* |
| * If this is a new allocation, determine whether it should be |
| * persistent (across a "freemacs" operation) or not. |
| */ |
| if (idx < 0) |
| idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_MAC_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | |
| FW_VI_MAC_CMD_IDX_V(idx)); |
| memcpy(p->macaddr, addr, sizeof(p->macaddr)); |
| |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); |
| if (ret == 0) { |
| p = &rpl.u.exact[0]; |
| ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); |
| if (ret >= max_mac_addr) |
| ret = -ENOMEM; |
| } |
| return ret; |
| } |
| |
| /** |
| * t4vf_set_addr_hash - program the MAC inexact-match hash filter |
| * @adapter: the adapter |
| * @viid: the Virtual Interface Identifier |
| * @ucast: whether the hash filter should also match unicast addresses |
| * @vec: the value to be written to the hash filter |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Sets the 64-bit inexact-match hash filter for a virtual interface. |
| */ |
| int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, |
| bool ucast, u64 vec, bool sleep_ok) |
| { |
| struct fw_vi_mac_cmd cmd; |
| size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, |
| u.exact[0]), 16); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | |
| FW_VI_ENABLE_CMD_VIID_V(viid)); |
| cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | |
| FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | |
| FW_CMD_LEN16_V(len16)); |
| cmd.u.hash.hashvec = cpu_to_be64(vec); |
| return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4vf_get_port_stats - collect "port" statistics |
| * @adapter: the adapter |
| * @pidx: the port index |
| * @s: the stats structure to fill |
| * |
| * Collect statistics for the "port"'s Virtual Interface. |
| */ |
| int t4vf_get_port_stats(struct adapter *adapter, int pidx, |
| struct t4vf_port_stats *s) |
| { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| struct fw_vi_stats_vf fwstats; |
| unsigned int rem = VI_VF_NUM_STATS; |
| __be64 *fwsp = (__be64 *)&fwstats; |
| |
| /* |
| * Grab the Virtual Interface statistics a chunk at a time via mailbox |
| * commands. We could use a Work Request and get all of them at once |
| * but that's an asynchronous interface which is awkward to use. |
| */ |
| while (rem) { |
| unsigned int ix = VI_VF_NUM_STATS - rem; |
| unsigned int nstats = min(6U, rem); |
| struct fw_vi_stats_cmd cmd, rpl; |
| size_t len = (offsetof(struct fw_vi_stats_cmd, u) + |
| sizeof(struct fw_vi_stats_ctl)); |
| size_t len16 = DIV_ROUND_UP(len, 16); |
| int ret; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | |
| FW_VI_STATS_CMD_VIID_V(pi->viid) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); |
| cmd.u.ctl.nstats_ix = |
| cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | |
| FW_VI_STATS_CMD_NSTATS_V(nstats)); |
| ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); |
| if (ret) |
| return ret; |
| |
| memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); |
| |
| rem -= nstats; |
| fwsp += nstats; |
| } |
| |
| /* |
| * Translate firmware statistics into host native statistics. |
| */ |
| s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); |
| s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); |
| s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); |
| s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); |
| s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); |
| s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); |
| s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); |
| s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); |
| s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); |
| |
| s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); |
| s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); |
| s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); |
| s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); |
| s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); |
| s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); |
| |
| s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_iq_free - free an ingress queue and its free lists |
| * @adapter: the adapter |
| * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) |
| * @iqid: ingress queue ID |
| * @fl0id: FL0 queue ID or 0xffff if no attached FL0 |
| * @fl1id: FL1 queue ID or 0xffff if no attached FL1 |
| * |
| * Frees an ingress queue and its associated free lists, if any. |
| */ |
| int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, |
| unsigned int iqid, unsigned int fl0id, unsigned int fl1id) |
| { |
| struct fw_iq_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | |
| FW_LEN16(cmd)); |
| cmd.type_to_iqandstindex = |
| cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); |
| |
| cmd.iqid = cpu_to_be16(iqid); |
| cmd.fl0id = cpu_to_be16(fl0id); |
| cmd.fl1id = cpu_to_be16(fl1id); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_eth_eq_free - free an Ethernet egress queue |
| * @adapter: the adapter |
| * @eqid: egress queue ID |
| * |
| * Frees an Ethernet egress queue. |
| */ |
| int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) |
| { |
| struct fw_eq_eth_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_EXEC_F); |
| cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | |
| FW_LEN16(cmd)); |
| cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); |
| return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); |
| } |
| |
| /** |
| * t4vf_link_down_rc_str - return a string for a Link Down Reason Code |
| * @link_down_rc: Link Down Reason Code |
| * |
| * Returns a string representation of the Link Down Reason Code. |
| */ |
| static const char *t4vf_link_down_rc_str(unsigned char link_down_rc) |
| { |
| static const char * const reason[] = { |
| "Link Down", |
| "Remote Fault", |
| "Auto-negotiation Failure", |
| "Reserved", |
| "Insufficient Airflow", |
| "Unable To Determine Reason", |
| "No RX Signal Detected", |
| "Reserved", |
| }; |
| |
| if (link_down_rc >= ARRAY_SIZE(reason)) |
| return "Bad Reason Code"; |
| |
| return reason[link_down_rc]; |
| } |
| |
| /** |
| * t4vf_handle_get_port_info - process a FW reply message |
| * @pi: the port info |
| * @rpl: start of the FW message |
| * |
| * Processes a GET_PORT_INFO FW reply message. |
| */ |
| static void t4vf_handle_get_port_info(struct port_info *pi, |
| const struct fw_port_cmd *cmd) |
| { |
| int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); |
| struct adapter *adapter = pi->adapter; |
| struct link_config *lc = &pi->link_cfg; |
| int link_ok, linkdnrc; |
| enum fw_port_type port_type; |
| enum fw_port_module_type mod_type; |
| unsigned int speed, fc, fec; |
| fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; |
| |
| /* Extract the various fields from the Port Information message. */ |
| switch (action) { |
| case FW_PORT_ACTION_GET_PORT_INFO: { |
| u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); |
| |
| link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; |
| linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); |
| port_type = FW_PORT_CMD_PTYPE_G(lstatus); |
| mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); |
| pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); |
| acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); |
| lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); |
| |
| /* Unfortunately the format of the Link Status in the old |
| * 16-bit Port Information message isn't the same as the |
| * 16-bit Port Capabilities bitfield used everywhere else ... |
| */ |
| linkattr = 0; |
| if (lstatus & FW_PORT_CMD_RXPAUSE_F) |
| linkattr |= FW_PORT_CAP32_FC_RX; |
| if (lstatus & FW_PORT_CMD_TXPAUSE_F) |
| linkattr |= FW_PORT_CAP32_FC_TX; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) |
| linkattr |= FW_PORT_CAP32_SPEED_100M; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) |
| linkattr |= FW_PORT_CAP32_SPEED_1G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) |
| linkattr |= FW_PORT_CAP32_SPEED_10G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) |
| linkattr |= FW_PORT_CAP32_SPEED_25G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) |
| linkattr |= FW_PORT_CAP32_SPEED_40G; |
| if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) |
| linkattr |= FW_PORT_CAP32_SPEED_100G; |
| |
| break; |
| } |
| |
| case FW_PORT_ACTION_GET_PORT_INFO32: { |
| u32 lstatus32; |
| |
| lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); |
| link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; |
| linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); |
| port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); |
| mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); |
| pcaps = be32_to_cpu(cmd->u.info32.pcaps32); |
| acaps = be32_to_cpu(cmd->u.info32.acaps32); |
| lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); |
| linkattr = be32_to_cpu(cmd->u.info32.linkattr32); |
| break; |
| } |
| |
| default: |
| dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", |
| be32_to_cpu(cmd->action_to_len16)); |
| return; |
| } |
| |
| fec = fwcap_to_cc_fec(acaps); |
| fc = fwcap_to_cc_pause(linkattr); |
| speed = fwcap_to_speed(linkattr); |
| |
| if (mod_type != pi->mod_type) { |
| /* When a new Transceiver Module is inserted, the Firmware |
| * will examine any Forward Error Correction parameters |
| * present in the Transceiver Module i2c EPROM and determine |
| * the supported and recommended FEC settings from those |
| * based on IEEE 802.3 standards. We always record the |
| * IEEE 802.3 recommended "automatic" settings. |
| */ |
| lc->auto_fec = fec; |
| |
| /* Some versions of the early T6 Firmware "cheated" when |
| * handling different Transceiver Modules by changing the |
| * underlaying Port Type reported to the Host Drivers. As |
| * such we need to capture whatever Port Type the Firmware |
| * sends us and record it in case it's different from what we |
| * were told earlier. Unfortunately, since Firmware is |
| * forever, we'll need to keep this code here forever, but in |
| * later T6 Firmware it should just be an assignment of the |
| * same value already recorded. |
| */ |
| pi->port_type = port_type; |
| |
| pi->mod_type = mod_type; |
| t4vf_os_portmod_changed(adapter, pi->pidx); |
| } |
| |
| if (link_ok != lc->link_ok || speed != lc->speed || |
| fc != lc->fc || fec != lc->fec) { /* something changed */ |
| if (!link_ok && lc->link_ok) { |
| lc->link_down_rc = linkdnrc; |
| dev_warn_ratelimited(adapter->pdev_dev, |
| "Port %d link down, reason: %s\n", |
| pi->port_id, |
| t4vf_link_down_rc_str(linkdnrc)); |
| } |
| lc->link_ok = link_ok; |
| lc->speed = speed; |
| lc->fc = fc; |
| lc->fec = fec; |
| |
| lc->pcaps = pcaps; |
| lc->lpacaps = lpacaps; |
| lc->acaps = acaps & ADVERT_MASK; |
| |
| /* If we're not physically capable of Auto-Negotiation, note |
| * this as Auto-Negotiation disabled. Otherwise, we track |
| * what Auto-Negotiation settings we have. Note parallel |
| * structure in init_link_config(). |
| */ |
| if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { |
| lc->autoneg = AUTONEG_DISABLE; |
| } else if (lc->acaps & FW_PORT_CAP32_ANEG) { |
| lc->autoneg = AUTONEG_ENABLE; |
| } else { |
| /* When Autoneg is disabled, user needs to set |
| * single speed. |
| * Similar to cxgb4_ethtool.c: set_link_ksettings |
| */ |
| lc->acaps = 0; |
| lc->speed_caps = fwcap_to_speed(acaps); |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| |
| t4vf_os_link_changed(adapter, pi->pidx, link_ok); |
| } |
| } |
| |
| /** |
| * t4vf_update_port_info - retrieve and update port information if changed |
| * @pi: the port_info |
| * |
| * We issue a Get Port Information Command to the Firmware and, if |
| * successful, we check to see if anything is different from what we |
| * last recorded and update things accordingly. |
| */ |
| int t4vf_update_port_info(struct port_info *pi) |
| { |
| unsigned int fw_caps = pi->adapter->params.fw_caps_support; |
| struct fw_port_cmd port_cmd; |
| int ret; |
| |
| memset(&port_cmd, 0, sizeof(port_cmd)); |
| port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F | |
| FW_PORT_CMD_PORTID_V(pi->port_id)); |
| port_cmd.action_to_len16 = cpu_to_be32( |
| FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 |
| ? FW_PORT_ACTION_GET_PORT_INFO |
| : FW_PORT_ACTION_GET_PORT_INFO32) | |
| FW_LEN16(port_cmd)); |
| ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd), |
| &port_cmd); |
| if (ret) |
| return ret; |
| t4vf_handle_get_port_info(pi, &port_cmd); |
| return 0; |
| } |
| |
| /** |
| * t4vf_handle_fw_rpl - process a firmware reply message |
| * @adapter: the adapter |
| * @rpl: start of the firmware message |
| * |
| * Processes a firmware message, such as link state change messages. |
| */ |
| int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) |
| { |
| const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; |
| u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); |
| |
| switch (opcode) { |
| case FW_PORT_CMD: { |
| /* |
| * Link/module state change message. |
| */ |
| const struct fw_port_cmd *port_cmd = |
| (const struct fw_port_cmd *)rpl; |
| int action = FW_PORT_CMD_ACTION_G( |
| be32_to_cpu(port_cmd->action_to_len16)); |
| int port_id, pidx; |
| |
| if (action != FW_PORT_ACTION_GET_PORT_INFO && |
| action != FW_PORT_ACTION_GET_PORT_INFO32) { |
| dev_err(adapter->pdev_dev, |
| "Unknown firmware PORT reply action %x\n", |
| action); |
| break; |
| } |
| |
| port_id = FW_PORT_CMD_PORTID_G( |
| be32_to_cpu(port_cmd->op_to_portid)); |
| for_each_port(adapter, pidx) { |
| struct port_info *pi = adap2pinfo(adapter, pidx); |
| |
| if (pi->port_id != port_id) |
| continue; |
| t4vf_handle_get_port_info(pi, port_cmd); |
| } |
| break; |
| } |
| |
| default: |
| dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", |
| opcode); |
| } |
| return 0; |
| } |
| |
| /** |
| */ |
| int t4vf_prep_adapter(struct adapter *adapter) |
| { |
| int err; |
| unsigned int chipid; |
| |
| /* Wait for the device to become ready before proceeding ... |
| */ |
| err = t4vf_wait_dev_ready(adapter); |
| if (err) |
| return err; |
| |
| /* Default port and clock for debugging in case we can't reach |
| * firmware. |
| */ |
| adapter->params.nports = 1; |
| adapter->params.vfres.pmask = 1; |
| adapter->params.vpd.cclk = 50000; |
| |
| adapter->params.chip = 0; |
| switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { |
| case CHELSIO_T4: |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); |
| adapter->params.arch.sge_fl_db = DBPRIO_F; |
| adapter->params.arch.mps_tcam_size = |
| NUM_MPS_CLS_SRAM_L_INSTANCES; |
| break; |
| |
| case CHELSIO_T5: |
| chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); |
| adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; |
| adapter->params.arch.mps_tcam_size = |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| break; |
| |
| case CHELSIO_T6: |
| chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); |
| adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid); |
| adapter->params.arch.sge_fl_db = 0; |
| adapter->params.arch.mps_tcam_size = |
| NUM_MPS_T5_CLS_SRAM_L_INSTANCES; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4vf_get_vf_mac_acl - Get the MAC address to be set to |
| * the VI of this VF. |
| * @adapter: The adapter |
| * @pf: The pf associated with vf |
| * @naddr: the number of ACL MAC addresses returned in addr |
| * @addr: Placeholder for MAC addresses |
| * |
| * Find the MAC address to be set to the VF's VI. The requested MAC address |
| * is from the host OS via callback in the PF driver. |
| */ |
| int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf, |
| unsigned int *naddr, u8 *addr) |
| { |
| struct fw_acl_mac_cmd cmd; |
| int ret; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd); |
| if (ret) |
| return ret; |
| |
| if (cmd.nmac < *naddr) |
| *naddr = cmd.nmac; |
| |
| switch (pf) { |
| case 3: |
| memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3)); |
| break; |
| case 2: |
| memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2)); |
| break; |
| case 1: |
| memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1)); |
| break; |
| case 0: |
| memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0)); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to |
| * the VI of this VF. |
| * @adapter: The adapter |
| * |
| * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID |
| * is from the host OS via callback in the PF driver. |
| */ |
| int t4vf_get_vf_vlan_acl(struct adapter *adapter) |
| { |
| struct fw_acl_vlan_cmd cmd; |
| int vlan = 0; |
| int ret = 0; |
| |
| cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F); |
| |
| /* Note: Do not enable the ACL */ |
| cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); |
| |
| ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd); |
| |
| if (!ret) |
| vlan = be16_to_cpu(cmd.vlanid[0]); |
| |
| return vlan; |
| } |