blob: 6a9d12dad5d9d7be22a8f10970d8173e13dc858e [file] [log] [blame]
/* Copyright 2008 - 2016 Freescale Semiconductor Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/io.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/icmp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/percpu.h>
#include <linux/dma-mapping.h>
#include <linux/sort.h>
#include <linux/phy_fixed.h>
#include <soc/fsl/bman.h>
#include <soc/fsl/qman.h>
#include "fman.h"
#include "fman_port.h"
#include "mac.h"
#include "dpaa_eth.h"
/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
* using trace events only need to #include <trace/events/sched.h>
*/
#define CREATE_TRACE_POINTS
#include "dpaa_eth_trace.h"
static int debug = -1;
module_param(debug, int, 0444);
MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
static u16 tx_timeout = 1000;
module_param(tx_timeout, ushort, 0444);
MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
#define FM_FD_STAT_RX_ERRORS \
(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
FM_FD_ERR_PRS_HDR_ERR)
#define FM_FD_STAT_TX_ERRORS \
(FM_FD_ERR_UNSUPPORTED_FORMAT | \
FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
NETIF_MSG_LINK | NETIF_MSG_IFUP | \
NETIF_MSG_IFDOWN)
#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
/* Ingress congestion threshold on FMan ports
* The size in bytes of the ingress tail-drop threshold on FMan ports.
* Traffic piling up above this value will be rejected by QMan and discarded
* by FMan.
*/
/* Size in bytes of the FQ taildrop threshold */
#define DPAA_FQ_TD 0x200000
#define DPAA_CS_THRESHOLD_1G 0x06000000
/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
* The size in bytes of the egress Congestion State notification threshold on
* 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
* tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
* and the larger the frame size, the more acute the problem.
* So we have to find a balance between these factors:
* - avoiding the device staying congested for a prolonged time (risking
* the netdev watchdog to fire - see also the tx_timeout module param);
* - affecting performance of protocols such as TCP, which otherwise
* behave well under the congestion notification mechanism;
* - preventing the Tx cores from tightly-looping (as if the congestion
* threshold was too low to be effective);
* - running out of memory if the CS threshold is set too high.
*/
#define DPAA_CS_THRESHOLD_10G 0x10000000
/* The size in bytes of the egress Congestion State notification threshold on
* 10G ports, range 0x1000 .. 0x10000000
*/
/* Largest value that the FQD's OAL field can hold */
#define FSL_QMAN_MAX_OAL 127
/* Default alignment for start of data in an Rx FD */
#define DPAA_FD_DATA_ALIGNMENT 16
/* The DPAA requires 256 bytes reserved and mapped for the SGT */
#define DPAA_SGT_SIZE 256
/* Values for the L3R field of the FM Parse Results
*/
/* L3 Type field: First IP Present IPv4 */
#define FM_L3_PARSE_RESULT_IPV4 0x8000
/* L3 Type field: First IP Present IPv6 */
#define FM_L3_PARSE_RESULT_IPV6 0x4000
/* Values for the L4R field of the FM Parse Results */
/* L4 Type field: UDP */
#define FM_L4_PARSE_RESULT_UDP 0x40
/* L4 Type field: TCP */
#define FM_L4_PARSE_RESULT_TCP 0x20
/* FD status field indicating whether the FM Parser has attempted to validate
* the L4 csum of the frame.
* Note that having this bit set doesn't necessarily imply that the checksum
* is valid. One would have to check the parse results to find that out.
*/
#define FM_FD_STAT_L4CV 0x00000004
#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
#define FSL_DPAA_BPID_INV 0xff
#define FSL_DPAA_ETH_MAX_BUF_COUNT 128
#define FSL_DPAA_ETH_REFILL_THRESHOLD 80
#define DPAA_TX_PRIV_DATA_SIZE 16
#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
#define DPAA_TIME_STAMP_SIZE 8
#define DPAA_HASH_RESULTS_SIZE 8
#define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
dpaa_rx_extra_headroom)
#define DPAA_ETH_PCD_RXQ_NUM 128
#define DPAA_ENQUEUE_RETRIES 100000
enum port_type {RX, TX};
struct fm_port_fqs {
struct dpaa_fq *tx_defq;
struct dpaa_fq *tx_errq;
struct dpaa_fq *rx_defq;
struct dpaa_fq *rx_errq;
struct dpaa_fq *rx_pcdq;
};
/* All the dpa bps in use at any moment */
static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
#define DPAA_BP_RAW_SIZE 4096
#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
static int dpaa_max_frm;
static int dpaa_rx_extra_headroom;
#define dpaa_get_max_mtu() \
(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
static int dpaa_netdev_init(struct net_device *net_dev,
const struct net_device_ops *dpaa_ops,
u16 tx_timeout)
{
struct dpaa_priv *priv = netdev_priv(net_dev);
struct device *dev = net_dev->dev.parent;
struct dpaa_percpu_priv *percpu_priv;
const u8 *mac_addr;
int i, err;
/* Although we access another CPU's private data here
* we do it at initialization so it is safe
*/
for_each_possible_cpu(i) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
percpu_priv->net_dev = net_dev;
}
net_dev->netdev_ops = dpaa_ops;
mac_addr = priv->mac_dev->addr;
net_dev->mem_start = priv->mac_dev->res->start;
net_dev->mem_end = priv->mac_dev->res->end;
net_dev->min_mtu = ETH_MIN_MTU;
net_dev->max_mtu = dpaa_get_max_mtu();
net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_LLTX | NETIF_F_RXHASH);
net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
* For conformity, we'll still declare GSO explicitly.
*/
net_dev->features |= NETIF_F_GSO;
net_dev->features |= NETIF_F_RXCSUM;
net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
/* we do not want shared skbs on TX */
net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
net_dev->features |= net_dev->hw_features;
net_dev->vlan_features = net_dev->features;
memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
net_dev->ethtool_ops = &dpaa_ethtool_ops;
net_dev->needed_headroom = priv->tx_headroom;
net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
/* start without the RUNNING flag, phylib controls it later */
netif_carrier_off(net_dev);
err = register_netdev(net_dev);
if (err < 0) {
dev_err(dev, "register_netdev() = %d\n", err);
return err;
}
return 0;
}
static int dpaa_stop(struct net_device *net_dev)
{
struct mac_device *mac_dev;
struct dpaa_priv *priv;
int i, err, error;
priv = netdev_priv(net_dev);
mac_dev = priv->mac_dev;
netif_tx_stop_all_queues(net_dev);
/* Allow the Fman (Tx) port to process in-flight frames before we
* try switching it off.
*/
msleep(200);
err = mac_dev->stop(mac_dev);
if (err < 0)
netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
err);
for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
error = fman_port_disable(mac_dev->port[i]);
if (error)
err = error;
}
if (net_dev->phydev)
phy_disconnect(net_dev->phydev);
net_dev->phydev = NULL;
msleep(200);
return err;
}
static void dpaa_tx_timeout(struct net_device *net_dev)
{
struct dpaa_percpu_priv *percpu_priv;
const struct dpaa_priv *priv;
priv = netdev_priv(net_dev);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
percpu_priv->stats.tx_errors++;
}
/* Calculates the statistics for the given device by adding the statistics
* collected by each CPU.
*/
static void dpaa_get_stats64(struct net_device *net_dev,
struct rtnl_link_stats64 *s)
{
int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
struct dpaa_priv *priv = netdev_priv(net_dev);
struct dpaa_percpu_priv *percpu_priv;
u64 *netstats = (u64 *)s;
u64 *cpustats;
int i, j;
for_each_possible_cpu(i) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
cpustats = (u64 *)&percpu_priv->stats;
/* add stats from all CPUs */
for (j = 0; j < numstats; j++)
netstats[j] += cpustats[j];
}
}
static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
void *type_data)
{
struct dpaa_priv *priv = netdev_priv(net_dev);
struct tc_mqprio_qopt *mqprio = type_data;
u8 num_tc;
int i;
if (type != TC_SETUP_QDISC_MQPRIO)
return -EOPNOTSUPP;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
num_tc = mqprio->num_tc;
if (num_tc == priv->num_tc)
return 0;
if (!num_tc) {
netdev_reset_tc(net_dev);
goto out;
}
if (num_tc > DPAA_TC_NUM) {
netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
DPAA_TC_NUM);
return -EINVAL;
}
netdev_set_num_tc(net_dev, num_tc);
for (i = 0; i < num_tc; i++)
netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
i * DPAA_TC_TXQ_NUM);
out:
priv->num_tc = num_tc ? : 1;
netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
return 0;
}
static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
{
struct dpaa_eth_data *eth_data;
struct device *dpaa_dev;
struct mac_device *mac_dev;
dpaa_dev = &pdev->dev;
eth_data = dpaa_dev->platform_data;
if (!eth_data) {
dev_err(dpaa_dev, "eth_data missing\n");
return ERR_PTR(-ENODEV);
}
mac_dev = eth_data->mac_dev;
if (!mac_dev) {
dev_err(dpaa_dev, "mac_dev missing\n");
return ERR_PTR(-EINVAL);
}
return mac_dev;
}
static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
{
const struct dpaa_priv *priv;
struct mac_device *mac_dev;
struct sockaddr old_addr;
int err;
priv = netdev_priv(net_dev);
memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
err = eth_mac_addr(net_dev, addr);
if (err < 0) {
netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
return err;
}
mac_dev = priv->mac_dev;
err = mac_dev->change_addr(mac_dev->fman_mac,
(enet_addr_t *)net_dev->dev_addr);
if (err < 0) {
netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
err);
/* reverting to previous address */
eth_mac_addr(net_dev, &old_addr);
return err;
}
return 0;
}
static void dpaa_set_rx_mode(struct net_device *net_dev)
{
const struct dpaa_priv *priv;
int err;
priv = netdev_priv(net_dev);
if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
priv->mac_dev->promisc = !priv->mac_dev->promisc;
err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
priv->mac_dev->promisc);
if (err < 0)
netif_err(priv, drv, net_dev,
"mac_dev->set_promisc() = %d\n",
err);
}
if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
priv->mac_dev->allmulti);
if (err < 0)
netif_err(priv, drv, net_dev,
"mac_dev->set_allmulti() = %d\n",
err);
}
err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
if (err < 0)
netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
err);
}
static struct dpaa_bp *dpaa_bpid2pool(int bpid)
{
if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
return NULL;
return dpaa_bp_array[bpid];
}
/* checks if this bpool is already allocated */
static bool dpaa_bpid2pool_use(int bpid)
{
if (dpaa_bpid2pool(bpid)) {
refcount_inc(&dpaa_bp_array[bpid]->refs);
return true;
}
return false;
}
/* called only once per bpid by dpaa_bp_alloc_pool() */
static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
{
dpaa_bp_array[bpid] = dpaa_bp;
refcount_set(&dpaa_bp->refs, 1);
}
static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
{
int err;
if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
__func__);
return -EINVAL;
}
/* If the pool is already specified, we only create one per bpid */
if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
dpaa_bpid2pool_use(dpaa_bp->bpid))
return 0;
if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
dpaa_bp->pool = bman_new_pool();
if (!dpaa_bp->pool) {
pr_err("%s: bman_new_pool() failed\n",
__func__);
return -ENODEV;
}
dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
}
if (dpaa_bp->seed_cb) {
err = dpaa_bp->seed_cb(dpaa_bp);
if (err)
goto pool_seed_failed;
}
dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
return 0;
pool_seed_failed:
pr_err("%s: pool seeding failed\n", __func__);
bman_free_pool(dpaa_bp->pool);
return err;
}
/* remove and free all the buffers from the given buffer pool */
static void dpaa_bp_drain(struct dpaa_bp *bp)
{
u8 num = 8;
int ret;
do {
struct bm_buffer bmb[8];
int i;
ret = bman_acquire(bp->pool, bmb, num);
if (ret < 0) {
if (num == 8) {
/* we have less than 8 buffers left;
* drain them one by one
*/
num = 1;
ret = 1;
continue;
} else {
/* Pool is fully drained */
break;
}
}
if (bp->free_buf_cb)
for (i = 0; i < num; i++)
bp->free_buf_cb(bp, &bmb[i]);
} while (ret > 0);
}
static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
{
struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
/* the mapping between bpid and dpaa_bp is done very late in the
* allocation procedure; if something failed before the mapping, the bp
* was not configured, therefore we don't need the below instructions
*/
if (!bp)
return;
if (!refcount_dec_and_test(&bp->refs))
return;
if (bp->free_buf_cb)
dpaa_bp_drain(bp);
dpaa_bp_array[bp->bpid] = NULL;
bman_free_pool(bp->pool);
}
static void dpaa_bps_free(struct dpaa_priv *priv)
{
dpaa_bp_free(priv->dpaa_bp);
}
/* Use multiple WQs for FQ assignment:
* - Tx Confirmation queues go to WQ1.
* - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
* to be scheduled, in case there are many more FQs in WQ6).
* - Rx Default goes to WQ6.
* - Tx queues go to different WQs depending on their priority. Equal
* chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
* WQ0 (highest priority).
* This ensures that Tx-confirmed buffers are timely released. In particular,
* it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
* are greatly outnumbered by other FQs in the system, while
* dequeue scheduling is round-robin.
*/
static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
{
switch (fq->fq_type) {
case FQ_TYPE_TX_CONFIRM:
case FQ_TYPE_TX_CONF_MQ:
fq->wq = 1;
break;
case FQ_TYPE_RX_ERROR:
case FQ_TYPE_TX_ERROR:
fq->wq = 5;
break;
case FQ_TYPE_RX_DEFAULT:
case FQ_TYPE_RX_PCD:
fq->wq = 6;
break;
case FQ_TYPE_TX:
switch (idx / DPAA_TC_TXQ_NUM) {
case 0:
/* Low priority (best effort) */
fq->wq = 6;
break;
case 1:
/* Medium priority */
fq->wq = 2;
break;
case 2:
/* High priority */
fq->wq = 1;
break;
case 3:
/* Very high priority */
fq->wq = 0;
break;
default:
WARN(1, "Too many TX FQs: more than %d!\n",
DPAA_ETH_TXQ_NUM);
}
break;
default:
WARN(1, "Invalid FQ type %d for FQID %d!\n",
fq->fq_type, fq->fqid);
}
}
static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
u32 start, u32 count,
struct list_head *list,
enum dpaa_fq_type fq_type)
{
struct dpaa_fq *dpaa_fq;
int i;
dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
GFP_KERNEL);
if (!dpaa_fq)
return NULL;
for (i = 0; i < count; i++) {
dpaa_fq[i].fq_type = fq_type;
dpaa_fq[i].fqid = start ? start + i : 0;
list_add_tail(&dpaa_fq[i].list, list);
}
for (i = 0; i < count; i++)
dpaa_assign_wq(dpaa_fq + i, i);
return dpaa_fq;
}
static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
struct fm_port_fqs *port_fqs)
{
struct dpaa_fq *dpaa_fq;
u32 fq_base, fq_base_aligned, i;
dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
if (!dpaa_fq)
goto fq_alloc_failed;
port_fqs->rx_errq = &dpaa_fq[0];
dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
if (!dpaa_fq)
goto fq_alloc_failed;
port_fqs->rx_defq = &dpaa_fq[0];
/* the PCD FQIDs range needs to be aligned for correct operation */
if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
goto fq_alloc_failed;
fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
for (i = fq_base; i < fq_base_aligned; i++)
qman_release_fqid(i);
for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
qman_release_fqid(i);
dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
list, FQ_TYPE_RX_PCD);
if (!dpaa_fq)
goto fq_alloc_failed;
port_fqs->rx_pcdq = &dpaa_fq[0];
if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
goto fq_alloc_failed;
dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
if (!dpaa_fq)
goto fq_alloc_failed;
port_fqs->tx_errq = &dpaa_fq[0];
dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
if (!dpaa_fq)
goto fq_alloc_failed;
port_fqs->tx_defq = &dpaa_fq[0];
if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
goto fq_alloc_failed;
return 0;
fq_alloc_failed:
dev_err(dev, "dpaa_fq_alloc() failed\n");
return -ENOMEM;
}
static u32 rx_pool_channel;
static DEFINE_SPINLOCK(rx_pool_channel_init);
static int dpaa_get_channel(void)
{
spin_lock(&rx_pool_channel_init);
if (!rx_pool_channel) {
u32 pool;
int ret;
ret = qman_alloc_pool(&pool);
if (!ret)
rx_pool_channel = pool;
}
spin_unlock(&rx_pool_channel_init);
if (!rx_pool_channel)
return -ENOMEM;
return rx_pool_channel;
}
static void dpaa_release_channel(void)
{
qman_release_pool(rx_pool_channel);
}
static void dpaa_eth_add_channel(u16 channel, struct device *dev)
{
u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
const cpumask_t *cpus = qman_affine_cpus();
struct qman_portal *portal;
int cpu;
for_each_cpu_and(cpu, cpus, cpu_online_mask) {
portal = qman_get_affine_portal(cpu);
qman_p_static_dequeue_add(portal, pool);
qman_start_using_portal(portal, dev);
}
}
/* Congestion group state change notification callback.
* Stops the device's egress queues while they are congested and
* wakes them upon exiting congested state.
* Also updates some CGR-related stats.
*/
static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
int congested)
{
struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
struct dpaa_priv, cgr_data.cgr);
if (congested) {
priv->cgr_data.congestion_start_jiffies = jiffies;
netif_tx_stop_all_queues(priv->net_dev);
priv->cgr_data.cgr_congested_count++;
} else {
priv->cgr_data.congested_jiffies +=
(jiffies - priv->cgr_data.congestion_start_jiffies);
netif_tx_wake_all_queues(priv->net_dev);
}
}
static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
{
struct qm_mcc_initcgr initcgr;
u32 cs_th;
int err;
err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
if (err < 0) {
if (netif_msg_drv(priv))
pr_err("%s: Error %d allocating CGR ID\n",
__func__, err);
goto out_error;
}
priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
/* Enable Congestion State Change Notifications and CS taildrop */
memset(&initcgr, 0, sizeof(initcgr));
initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
initcgr.cgr.cscn_en = QM_CGR_EN;
/* Set different thresholds based on the MAC speed.
* This may turn suboptimal if the MAC is reconfigured at a speed
* lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
* In such cases, we ought to reconfigure the threshold, too.
*/
if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
cs_th = DPAA_CS_THRESHOLD_10G;
else
cs_th = DPAA_CS_THRESHOLD_1G;
qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
initcgr.cgr.cstd_en = QM_CGR_EN;
err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
&initcgr);
if (err < 0) {
if (netif_msg_drv(priv))
pr_err("%s: Error %d creating CGR with ID %d\n",
__func__, err, priv->cgr_data.cgr.cgrid);
qman_release_cgrid(priv->cgr_data.cgr.cgrid);
goto out_error;
}
if (netif_msg_drv(priv))
pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
priv->cgr_data.cgr.chan);
out_error:
return err;
}
static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
struct dpaa_fq *fq,
const struct qman_fq *template)
{
fq->fq_base = *template;
fq->net_dev = priv->net_dev;
fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
fq->channel = priv->channel;
}
static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
struct dpaa_fq *fq,
struct fman_port *port,
const struct qman_fq *template)
{
fq->fq_base = *template;
fq->net_dev = priv->net_dev;
if (port) {
fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
fq->channel = (u16)fman_port_get_qman_channel_id(port);
} else {
fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
}
}
static void dpaa_fq_setup(struct dpaa_priv *priv,
const struct dpaa_fq_cbs *fq_cbs,
struct fman_port *tx_port)
{
int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
const cpumask_t *affine_cpus = qman_affine_cpus();
u16 channels[NR_CPUS];
struct dpaa_fq *fq;
for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
channels[num_portals++] = qman_affine_channel(cpu);
if (num_portals == 0)
dev_err(priv->net_dev->dev.parent,
"No Qman software (affine) channels found\n");
/* Initialize each FQ in the list */
list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
switch (fq->fq_type) {
case FQ_TYPE_RX_DEFAULT:
dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
break;
case FQ_TYPE_RX_ERROR:
dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
break;
case FQ_TYPE_RX_PCD:
if (!num_portals)
continue;
dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
fq->channel = channels[portal_cnt++ % num_portals];
break;
case FQ_TYPE_TX:
dpaa_setup_egress(priv, fq, tx_port,
&fq_cbs->egress_ern);
/* If we have more Tx queues than the number of cores,
* just ignore the extra ones.
*/
if (egress_cnt < DPAA_ETH_TXQ_NUM)
priv->egress_fqs[egress_cnt++] = &fq->fq_base;
break;
case FQ_TYPE_TX_CONF_MQ:
priv->conf_fqs[conf_cnt++] = &fq->fq_base;
/* fall through */
case FQ_TYPE_TX_CONFIRM:
dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
break;
case FQ_TYPE_TX_ERROR:
dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
break;
default:
dev_warn(priv->net_dev->dev.parent,
"Unknown FQ type detected!\n");
break;
}
}
/* Make sure all CPUs receive a corresponding Tx queue. */
while (egress_cnt < DPAA_ETH_TXQ_NUM) {
list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
if (fq->fq_type != FQ_TYPE_TX)
continue;
priv->egress_fqs[egress_cnt++] = &fq->fq_base;
if (egress_cnt == DPAA_ETH_TXQ_NUM)
break;
}
}
}
static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
struct qman_fq *tx_fq)
{
int i;
for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
if (priv->egress_fqs[i] == tx_fq)
return i;
return -EINVAL;
}
static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
{
const struct dpaa_priv *priv;
struct qman_fq *confq = NULL;
struct qm_mcc_initfq initfq;
struct device *dev;
struct qman_fq *fq;
int queue_id;
int err;
priv = netdev_priv(dpaa_fq->net_dev);
dev = dpaa_fq->net_dev->dev.parent;
if (dpaa_fq->fqid == 0)
dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
if (err) {
dev_err(dev, "qman_create_fq() failed\n");
return err;
}
fq = &dpaa_fq->fq_base;
if (dpaa_fq->init) {
memset(&initfq, 0, sizeof(initfq));
initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
/* Note: we may get to keep an empty FQ in cache */
initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
/* Try to reduce the number of portal interrupts for
* Tx Confirmation FQs.
*/
if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
/* FQ placement */
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
/* Put all egress queues in a congestion group of their own.
* Sensu stricto, the Tx confirmation queues are Rx FQs,
* rather than Tx - but they nonetheless account for the
* memory footprint on behalf of egress traffic. We therefore
* place them in the netdev's CGR, along with the Tx FQs.
*/
if (dpaa_fq->fq_type == FQ_TYPE_TX ||
dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
/* Set a fixed overhead accounting, in an attempt to
* reduce the impact of fixed-size skb shells and the
* driver's needed headroom on system memory. This is
* especially the case when the egress traffic is
* composed of small datagrams.
* Unfortunately, QMan's OAL value is capped to an
* insufficient value, but even that is better than
* no overhead accounting at all.
*/
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
qm_fqd_set_oal(&initfq.fqd,
min(sizeof(struct sk_buff) +
priv->tx_headroom,
(size_t)FSL_QMAN_MAX_OAL));
}
if (td_enable) {
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
}
if (dpaa_fq->fq_type == FQ_TYPE_TX) {
queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
if (queue_id >= 0)
confq = priv->conf_fqs[queue_id];
if (confq) {
initfq.we_mask |=
cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
* A2V=1 (contextA A2 field is valid)
* A0V=1 (contextA A0 field is valid)
* B0V=1 (contextB field is valid)
* ContextA A2: EBD=1 (deallocate buffers inside FMan)
* ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
*/
qm_fqd_context_a_set64(&initfq.fqd,
0x1e00000080000000ULL);
}
}
/* Put all the ingress queues in our "ingress CGR". */
if (priv->use_ingress_cgr &&
(dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
/* Set a fixed overhead accounting, just like for the
* egress CGR.
*/
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
qm_fqd_set_oal(&initfq.fqd,
min(sizeof(struct sk_buff) +
priv->tx_headroom,
(size_t)FSL_QMAN_MAX_OAL));
}
/* Initialization common to all ingress queues */
if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
QM_FQCTRL_CTXASTASHING);
initfq.fqd.context_a.stashing.exclusive =
QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
QM_STASHING_EXCL_ANNOTATION;
qm_fqd_set_stashing(&initfq.fqd, 1, 2,
DIV_ROUND_UP(sizeof(struct qman_fq),
64));
}
err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
if (err < 0) {
dev_err(dev, "qman_init_fq(%u) = %d\n",
qman_fq_fqid(fq), err);
qman_destroy_fq(fq);
return err;
}
}
dpaa_fq->fqid = qman_fq_fqid(fq);
return 0;
}
static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
{
const struct dpaa_priv *priv;
struct dpaa_fq *dpaa_fq;
int err, error;
err = 0;
dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
priv = netdev_priv(dpaa_fq->net_dev);
if (dpaa_fq->init) {
err = qman_retire_fq(fq, NULL);
if (err < 0 && netif_msg_drv(priv))
dev_err(dev, "qman_retire_fq(%u) = %d\n",
qman_fq_fqid(fq), err);
error = qman_oos_fq(fq);
if (error < 0 && netif_msg_drv(priv)) {
dev_err(dev, "qman_oos_fq(%u) = %d\n",
qman_fq_fqid(fq), error);
if (err >= 0)
err = error;
}
}
qman_destroy_fq(fq);
list_del(&dpaa_fq->list);
return err;
}
static int dpaa_fq_free(struct device *dev, struct list_head *list)
{
struct dpaa_fq *dpaa_fq, *tmp;
int err, error;
err = 0;
list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
if (error < 0 && err >= 0)
err = error;
}
return err;
}
static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
struct dpaa_fq *defq,
struct dpaa_buffer_layout *buf_layout)
{
struct fman_buffer_prefix_content buf_prefix_content;
struct fman_port_params params;
int err;
memset(&params, 0, sizeof(params));
memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
buf_prefix_content.pass_prs_result = true;
buf_prefix_content.pass_hash_result = true;
buf_prefix_content.pass_time_stamp = true;
buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
params.specific_params.non_rx_params.err_fqid = errq->fqid;
params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
err = fman_port_config(port, &params);
if (err) {
pr_err("%s: fman_port_config failed\n", __func__);
return err;
}
err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
if (err) {
pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
__func__);
return err;
}
err = fman_port_init(port);
if (err)
pr_err("%s: fm_port_init failed\n", __func__);
return err;
}
static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
struct dpaa_fq *errq,
struct dpaa_fq *defq, struct dpaa_fq *pcdq,
struct dpaa_buffer_layout *buf_layout)
{
struct fman_buffer_prefix_content buf_prefix_content;
struct fman_port_rx_params *rx_p;
struct fman_port_params params;
int err;
memset(&params, 0, sizeof(params));
memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
buf_prefix_content.pass_prs_result = true;
buf_prefix_content.pass_hash_result = true;
buf_prefix_content.pass_time_stamp = true;
buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
rx_p = &params.specific_params.rx_params;
rx_p->err_fqid = errq->fqid;
rx_p->dflt_fqid = defq->fqid;
if (pcdq) {
rx_p->pcd_base_fqid = pcdq->fqid;
rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
}
rx_p->ext_buf_pools.num_of_pools_used = 1;
rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
err = fman_port_config(port, &params);
if (err) {
pr_err("%s: fman_port_config failed\n", __func__);
return err;
}
err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
if (err) {
pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
__func__);
return err;
}
err = fman_port_init(port);
if (err)
pr_err("%s: fm_port_init failed\n", __func__);
return err;
}
static int dpaa_eth_init_ports(struct mac_device *mac_dev,
struct dpaa_bp *bp,
struct fm_port_fqs *port_fqs,
struct dpaa_buffer_layout *buf_layout,
struct device *dev)
{
struct fman_port *rxport = mac_dev->port[RX];
struct fman_port *txport = mac_dev->port[TX];
int err;
err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
port_fqs->tx_defq, &buf_layout[TX]);
if (err)
return err;
err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
port_fqs->rx_defq, port_fqs->rx_pcdq,
&buf_layout[RX]);
return err;
}
static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
struct bm_buffer *bmb, int cnt)
{
int err;
err = bman_release(dpaa_bp->pool, bmb, cnt);
/* Should never occur, address anyway to avoid leaking the buffers */
if (WARN_ON(err) && dpaa_bp->free_buf_cb)
while (cnt-- > 0)
dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
return cnt;
}
static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
{
struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
struct dpaa_bp *dpaa_bp;
int i = 0, j;
memset(bmb, 0, sizeof(bmb));
do {
dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
if (!dpaa_bp)
return;
j = 0;
do {
WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
j++; i++;
} while (j < ARRAY_SIZE(bmb) &&
!qm_sg_entry_is_final(&sgt[i - 1]) &&
sgt[i - 1].bpid == sgt[i].bpid);
dpaa_bman_release(dpaa_bp, bmb, j);
} while (!qm_sg_entry_is_final(&sgt[i - 1]));
}
static void dpaa_fd_release(const struct net_device *net_dev,
const struct qm_fd *fd)
{
struct qm_sg_entry *sgt;
struct dpaa_bp *dpaa_bp;
struct bm_buffer bmb;
dma_addr_t addr;
void *vaddr;
bmb.data = 0;
bm_buffer_set64(&bmb, qm_fd_addr(fd));
dpaa_bp = dpaa_bpid2pool(fd->bpid);
if (!dpaa_bp)
return;
if (qm_fd_get_format(fd) == qm_fd_sg) {
vaddr = phys_to_virt(qm_fd_addr(fd));
sgt = vaddr + qm_fd_get_offset(fd);
dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
dpaa_release_sgt_members(sgt);
addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
netdev_err(net_dev, "DMA mapping failed\n");
return;
}
bm_buffer_set64(&bmb, addr);
}
dpaa_bman_release(dpaa_bp, &bmb, 1);
}
static void count_ern(struct dpaa_percpu_priv *percpu_priv,
const union qm_mr_entry *msg)
{
switch (msg->ern.rc & QM_MR_RC_MASK) {
case QM_MR_RC_CGR_TAILDROP:
percpu_priv->ern_cnt.cg_tdrop++;
break;
case QM_MR_RC_WRED:
percpu_priv->ern_cnt.wred++;
break;
case QM_MR_RC_ERROR:
percpu_priv->ern_cnt.err_cond++;
break;
case QM_MR_RC_ORPWINDOW_EARLY:
percpu_priv->ern_cnt.early_window++;
break;
case QM_MR_RC_ORPWINDOW_LATE:
percpu_priv->ern_cnt.late_window++;
break;
case QM_MR_RC_FQ_TAILDROP:
percpu_priv->ern_cnt.fq_tdrop++;
break;
case QM_MR_RC_ORPWINDOW_RETIRED:
percpu_priv->ern_cnt.fq_retired++;
break;
case QM_MR_RC_ORP_ZERO:
percpu_priv->ern_cnt.orp_zero++;
break;
}
}
/* Turn on HW checksum computation for this outgoing frame.
* If the current protocol is not something we support in this regard
* (or if the stack has already computed the SW checksum), we do nothing.
*
* Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
* otherwise.
*
* Note that this function may modify the fd->cmd field and the skb data buffer
* (the Parse Results area).
*/
static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
struct sk_buff *skb,
struct qm_fd *fd,
void *parse_results)
{
struct fman_prs_result *parse_result;
u16 ethertype = ntohs(skb->protocol);
struct ipv6hdr *ipv6h = NULL;
struct iphdr *iph;
int retval = 0;
u8 l4_proto;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
/* Note: L3 csum seems to be already computed in sw, but we can't choose
* L4 alone from the FM configuration anyway.
*/
/* Fill in some fields of the Parse Results array, so the FMan
* can find them as if they came from the FMan Parser.
*/
parse_result = (struct fman_prs_result *)parse_results;
/* If we're dealing with VLAN, get the real Ethernet type */
if (ethertype == ETH_P_8021Q) {
/* We can't always assume the MAC header is set correctly
* by the stack, so reset to beginning of skb->data
*/
skb_reset_mac_header(skb);
ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
}
/* Fill in the relevant L3 parse result fields
* and read the L4 protocol type
*/
switch (ethertype) {
case ETH_P_IP:
parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
iph = ip_hdr(skb);
WARN_ON(!iph);
l4_proto = iph->protocol;
break;
case ETH_P_IPV6:
parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
ipv6h = ipv6_hdr(skb);
WARN_ON(!ipv6h);
l4_proto = ipv6h->nexthdr;
break;
default:
/* We shouldn't even be here */
if (net_ratelimit())
netif_alert(priv, tx_err, priv->net_dev,
"Can't compute HW csum for L3 proto 0x%x\n",
ntohs(skb->protocol));
retval = -EIO;
goto return_error;
}
/* Fill in the relevant L4 parse result fields */
switch (l4_proto) {
case IPPROTO_UDP:
parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
break;
case IPPROTO_TCP:
parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
break;
default:
if (net_ratelimit())
netif_alert(priv, tx_err, priv->net_dev,
"Can't compute HW csum for L4 proto 0x%x\n",
l4_proto);
retval = -EIO;
goto return_error;
}
/* At index 0 is IPOffset_1 as defined in the Parse Results */
parse_result->ip_off[0] = (u8)skb_network_offset(skb);
parse_result->l4_off = (u8)skb_transport_offset(skb);
/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
/* On P1023 and similar platforms fd->cmd interpretation could
* be disabled by setting CONTEXT_A bit ICMD; currently this bit
* is not set so we do not need to check; in the future, if/when
* using context_a we need to check this bit
*/
return_error:
return retval;
}
static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
{
struct net_device *net_dev = dpaa_bp->priv->net_dev;
struct bm_buffer bmb[8];
dma_addr_t addr;
struct page *p;
u8 i;
for (i = 0; i < 8; i++) {
p = dev_alloc_pages(0);
if (unlikely(!p)) {
netdev_err(net_dev, "dev_alloc_pages() failed\n");
goto release_previous_buffs;
}
addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
addr))) {
netdev_err(net_dev, "DMA map failed\n");
goto release_previous_buffs;
}
bmb[i].data = 0;
bm_buffer_set64(&bmb[i], addr);
}
release_bufs:
return dpaa_bman_release(dpaa_bp, bmb, i);
release_previous_buffs:
WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
bm_buffer_set64(&bmb[i], 0);
/* Avoid releasing a completely null buffer; bman_release() requires
* at least one buffer.
*/
if (likely(i))
goto release_bufs;
return 0;
}
static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
{
int i;
/* Give each CPU an allotment of "config_count" buffers */
for_each_possible_cpu(i) {
int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
int j;
/* Although we access another CPU's counters here
* we do it at boot time so it is safe
*/
for (j = 0; j < dpaa_bp->config_count; j += 8)
*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
}
return 0;
}
/* Add buffers/(pages) for Rx processing whenever bpool count falls below
* REFILL_THRESHOLD.
*/
static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
{
int count = *countptr;
int new_bufs;
if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
do {
new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
if (unlikely(!new_bufs)) {
/* Avoid looping forever if we've temporarily
* run out of memory. We'll try again at the
* next NAPI cycle.
*/
break;
}
count += new_bufs;
} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
*countptr = count;
if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
return -ENOMEM;
}
return 0;
}
static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
{
struct dpaa_bp *dpaa_bp;
int *countptr;
int res;
dpaa_bp = priv->dpaa_bp;
if (!dpaa_bp)
return -EINVAL;
countptr = this_cpu_ptr(dpaa_bp->percpu_count);
res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
if (res)
return res;
return 0;
}
/* Cleanup function for outgoing frame descriptors that were built on Tx path,
* either contiguous frames or scatter/gather ones.
* Skb freeing is not handled here.
*
* This function may be called on error paths in the Tx function, so guard
* against cases when not all fd relevant fields were filled in. To avoid
* reading the invalid transmission timestamp for the error paths set ts to
* false.
*
* Return the skb backpointer, since for S/G frames the buffer containing it
* gets freed here.
*/
static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
const struct qm_fd *fd, bool ts)
{
const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
struct device *dev = priv->net_dev->dev.parent;
struct skb_shared_hwtstamps shhwtstamps;
dma_addr_t addr = qm_fd_addr(fd);
void *vaddr = phys_to_virt(addr);
const struct qm_sg_entry *sgt;
struct sk_buff *skb;
u64 ns;
int i;
if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
dma_unmap_page(priv->tx_dma_dev, addr,
qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
dma_dir);
/* The sgt buffer has been allocated with netdev_alloc_frag(),
* it's from lowmem.
*/
sgt = vaddr + qm_fd_get_offset(fd);
/* sgt[0] is from lowmem, was dma_map_single()-ed */
dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
qm_sg_entry_get_len(&sgt[0]), dma_dir);
/* remaining pages were mapped with skb_frag_dma_map() */
for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
!qm_sg_entry_is_final(&sgt[i - 1]); i++) {
WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
qm_sg_entry_get_len(&sgt[i]), dma_dir);
}
} else {
dma_unmap_single(priv->tx_dma_dev, addr,
priv->tx_headroom + qm_fd_get_length(fd),
dma_dir);
}
skb = *(struct sk_buff **)vaddr;
/* DMA unmapping is required before accessing the HW provided info */
if (ts && priv->tx_tstamp &&
skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
&ns)) {
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &shhwtstamps);
} else {
dev_warn(dev, "fman_port_get_tstamp failed!\n");
}
}
if (qm_fd_get_format(fd) == qm_fd_sg)
/* Free the page that we allocated on Tx for the SGT */
free_pages((unsigned long)vaddr, 0);
return skb;
}
static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
{
/* The parser has run and performed L4 checksum validation.
* We know there were no parser errors (and implicitly no
* L4 csum error), otherwise we wouldn't be here.
*/
if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
(be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
return CHECKSUM_UNNECESSARY;
/* We're here because either the parser didn't run or the L4 checksum
* was not verified. This may include the case of a UDP frame with
* checksum zero or an L4 proto other than TCP/UDP
*/
return CHECKSUM_NONE;
}
/* Build a linear skb around the received buffer.
* We are guaranteed there is enough room at the end of the data buffer to
* accommodate the shared info area of the skb.
*/
static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
const struct qm_fd *fd)
{
ssize_t fd_off = qm_fd_get_offset(fd);
dma_addr_t addr = qm_fd_addr(fd);
struct dpaa_bp *dpaa_bp;
struct sk_buff *skb;
void *vaddr;
vaddr = phys_to_virt(addr);
WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
dpaa_bp = dpaa_bpid2pool(fd->bpid);
if (!dpaa_bp)
goto free_buffer;
skb = build_skb(vaddr, dpaa_bp->size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
goto free_buffer;
WARN_ON(fd_off != priv->rx_headroom);
skb_reserve(skb, fd_off);
skb_put(skb, qm_fd_get_length(fd));
skb->ip_summed = rx_csum_offload(priv, fd);
return skb;
free_buffer:
free_pages((unsigned long)vaddr, 0);
return NULL;
}
/* Build an skb with the data of the first S/G entry in the linear portion and
* the rest of the frame as skb fragments.
*
* The page fragment holding the S/G Table is recycled here.
*/
static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
const struct qm_fd *fd)
{
ssize_t fd_off = qm_fd_get_offset(fd);
dma_addr_t addr = qm_fd_addr(fd);
const struct qm_sg_entry *sgt;
struct page *page, *head_page;
struct dpaa_bp *dpaa_bp;
void *vaddr, *sg_vaddr;
int frag_off, frag_len;
struct sk_buff *skb;
dma_addr_t sg_addr;
int page_offset;
unsigned int sz;
int *count_ptr;
int i;
vaddr = phys_to_virt(addr);
WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
/* Iterate through the SGT entries and add data buffers to the skb */
sgt = vaddr + fd_off;
skb = NULL;
for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
/* Extension bit is not supported */
WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
sg_addr = qm_sg_addr(&sgt[i]);
sg_vaddr = phys_to_virt(sg_addr);
WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
SMP_CACHE_BYTES));
/* We may use multiple Rx pools */
dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
if (!dpaa_bp)
goto free_buffers;
count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
dma_unmap_page(priv->rx_dma_dev, sg_addr,
DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
if (!skb) {
sz = dpaa_bp->size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
skb = build_skb(sg_vaddr, sz);
if (WARN_ON(!skb))
goto free_buffers;
skb->ip_summed = rx_csum_offload(priv, fd);
/* Make sure forwarded skbs will have enough space
* on Tx, if extra headers are added.
*/
WARN_ON(fd_off != priv->rx_headroom);
skb_reserve(skb, fd_off);
skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
} else {
/* Not the first S/G entry; all data from buffer will
* be added in an skb fragment; fragment index is offset
* by one since first S/G entry was incorporated in the
* linear part of the skb.
*
* Caution: 'page' may be a tail page.
*/
page = virt_to_page(sg_vaddr);
head_page = virt_to_head_page(sg_vaddr);
/* Compute offset in (possibly tail) page */
page_offset = ((unsigned long)sg_vaddr &
(PAGE_SIZE - 1)) +
(page_address(page) - page_address(head_page));
/* page_offset only refers to the beginning of sgt[i];
* but the buffer itself may have an internal offset.
*/
frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
frag_len = qm_sg_entry_get_len(&sgt[i]);
/* skb_add_rx_frag() does no checking on the page; if
* we pass it a tail page, we'll end up with
* bad page accounting and eventually with segafults.
*/
skb_add_rx_frag(skb, i - 1, head_page, frag_off,
frag_len, dpaa_bp->size);
}
/* Update the pool count for the current {cpu x bpool} */
(*count_ptr)--;
if (qm_sg_entry_is_final(&sgt[i]))
break;
}
WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
/* free the SG table buffer */
free_pages((unsigned long)vaddr, 0);
return skb;
free_buffers:
/* compensate sw bpool counter changes */
for (i--; i >= 0; i--) {
dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
if (dpaa_bp) {
count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
(*count_ptr)++;
}
}
/* free all the SG entries */
for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
sg_addr = qm_sg_addr(&sgt[i]);
sg_vaddr = phys_to_virt(sg_addr);
free_pages((unsigned long)sg_vaddr, 0);
dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
if (dpaa_bp) {
count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
(*count_ptr)--;
}
if (qm_sg_entry_is_final(&sgt[i]))
break;
}
/* free the SGT fragment */
free_pages((unsigned long)vaddr, 0);
return NULL;
}
static int skb_to_contig_fd(struct dpaa_priv *priv,
struct sk_buff *skb, struct qm_fd *fd,
int *offset)
{
struct net_device *net_dev = priv->net_dev;
enum dma_data_direction dma_dir;
unsigned char *buff_start;
struct sk_buff **skbh;
dma_addr_t addr;
int err;
/* We are guaranteed to have at least tx_headroom bytes
* available, so just use that for offset.
*/
fd->bpid = FSL_DPAA_BPID_INV;
buff_start = skb->data - priv->tx_headroom;
dma_dir = DMA_TO_DEVICE;
skbh = (struct sk_buff **)buff_start;
*skbh = skb;
/* Enable L3/L4 hardware checksum computation.
*
* We must do this before dma_map_single(DMA_TO_DEVICE), because we may
* need to write into the skb.
*/
err = dpaa_enable_tx_csum(priv, skb, fd,
buff_start + DPAA_TX_PRIV_DATA_SIZE);
if (unlikely(err < 0)) {
if (net_ratelimit())
netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
err);
return err;
}
/* Fill in the rest of the FD fields */
qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
/* Map the entire buffer size that may be seen by FMan, but no more */
addr = dma_map_single(priv->tx_dma_dev, buff_start,
priv->tx_headroom + skb->len, dma_dir);
if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
if (net_ratelimit())
netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
return -EINVAL;
}
qm_fd_addr_set64(fd, addr);
return 0;
}
static int skb_to_sg_fd(struct dpaa_priv *priv,
struct sk_buff *skb, struct qm_fd *fd)
{
const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
const int nr_frags = skb_shinfo(skb)->nr_frags;
struct net_device *net_dev = priv->net_dev;
struct qm_sg_entry *sgt;
struct sk_buff **skbh;
void *buff_start;
skb_frag_t *frag;
dma_addr_t addr;
size_t frag_len;
struct page *p;
int i, j, err;
/* get a page to store the SGTable */
p = dev_alloc_pages(0);
if (unlikely(!p)) {
netdev_err(net_dev, "dev_alloc_pages() failed\n");
return -ENOMEM;
}
buff_start = page_address(p);
/* Enable L3/L4 hardware checksum computation.
*
* We must do this before dma_map_single(DMA_TO_DEVICE), because we may
* need to write into the skb.
*/
err = dpaa_enable_tx_csum(priv, skb, fd,
buff_start + DPAA_TX_PRIV_DATA_SIZE);
if (unlikely(err < 0)) {
if (net_ratelimit())
netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
err);
goto csum_failed;
}
/* SGT[0] is used by the linear part */
sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
frag_len = skb_headlen(skb);
qm_sg_entry_set_len(&sgt[0], frag_len);
sgt[0].bpid = FSL_DPAA_BPID_INV;
sgt[0].offset = 0;
addr = dma_map_single(priv->tx_dma_dev, skb->data,
skb_headlen(skb), dma_dir);
if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
netdev_err(priv->net_dev, "DMA mapping failed\n");
err = -EINVAL;
goto sg0_map_failed;
}
qm_sg_entry_set64(&sgt[0], addr);
/* populate the rest of SGT entries */
for (i = 0; i < nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
frag_len = skb_frag_size(frag);
WARN_ON(!skb_frag_page(frag));
addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
frag_len, dma_dir);
if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
netdev_err(priv->net_dev, "DMA mapping failed\n");
err = -EINVAL;
goto sg_map_failed;
}
qm_sg_entry_set_len(&sgt[i + 1], frag_len);
sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
sgt[i + 1].offset = 0;
/* keep the offset in the address */
qm_sg_entry_set64(&sgt[i + 1], addr);
}
/* Set the final bit in the last used entry of the SGT */
qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
/* set fd offset to priv->tx_headroom */
qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
/* DMA map the SGT page */
skbh = (struct sk_buff **)buff_start;
*skbh = skb;
addr = dma_map_page(priv->tx_dma_dev, p, 0,
priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
netdev_err(priv->net_dev, "DMA mapping failed\n");
err = -EINVAL;
goto sgt_map_failed;
}
fd->bpid = FSL_DPAA_BPID_INV;
fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
qm_fd_addr_set64(fd, addr);
return 0;
sgt_map_failed:
sg_map_failed:
for (j = 0; j < i; j++)
dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
qm_sg_entry_get_len(&sgt[j]), dma_dir);
sg0_map_failed:
csum_failed:
free_pages((unsigned long)buff_start, 0);
return err;
}
static inline int dpaa_xmit(struct dpaa_priv *priv,
struct rtnl_link_stats64 *percpu_stats,
int queue,
struct qm_fd *fd)
{
struct qman_fq *egress_fq;
int err, i;
egress_fq = priv->egress_fqs[queue];
if (fd->bpid == FSL_DPAA_BPID_INV)
fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
/* Trace this Tx fd */
trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
err = qman_enqueue(egress_fq, fd);
if (err != -EBUSY)
break;
}
if (unlikely(err < 0)) {
percpu_stats->tx_fifo_errors++;
return err;
}
percpu_stats->tx_packets++;
percpu_stats->tx_bytes += qm_fd_get_length(fd);
return 0;
}
static netdev_tx_t
dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
{
const int queue_mapping = skb_get_queue_mapping(skb);
bool nonlinear = skb_is_nonlinear(skb);
struct rtnl_link_stats64 *percpu_stats;
struct dpaa_percpu_priv *percpu_priv;
struct netdev_queue *txq;
struct dpaa_priv *priv;
struct qm_fd fd;
int offset = 0;
int err = 0;
priv = netdev_priv(net_dev);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
percpu_stats = &percpu_priv->stats;
qm_fd_clear_fd(&fd);
if (!nonlinear) {
/* We're going to store the skb backpointer at the beginning
* of the data buffer, so we need a privately owned skb
*
* We've made sure skb is not shared in dev->priv_flags,
* we need to verify the skb head is not cloned
*/
if (skb_cow_head(skb, priv->tx_headroom))
goto enomem;
WARN_ON(skb_is_nonlinear(skb));
}
/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
* make sure we don't feed FMan with more fragments than it supports.
*/
if (unlikely(nonlinear &&
(skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
/* If the egress skb contains more fragments than we support
* we have no choice but to linearize it ourselves.
*/
if (__skb_linearize(skb))
goto enomem;
nonlinear = skb_is_nonlinear(skb);
}
if (nonlinear) {
/* Just create a S/G fd based on the skb */
err = skb_to_sg_fd(priv, skb, &fd);
percpu_priv->tx_frag_skbuffs++;
} else {
/* Create a contig FD from this skb */
err = skb_to_contig_fd(priv, skb, &fd, &offset);
}
if (unlikely(err < 0))
goto skb_to_fd_failed;
txq = netdev_get_tx_queue(net_dev, queue_mapping);
/* LLTX requires to do our own update of trans_start */
txq->trans_start = jiffies;
if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
return NETDEV_TX_OK;
dpaa_cleanup_tx_fd(priv, &fd, false);
skb_to_fd_failed:
enomem:
percpu_stats->tx_errors++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static void dpaa_rx_error(struct net_device *net_dev,
const struct dpaa_priv *priv,
struct dpaa_percpu_priv *percpu_priv,
const struct qm_fd *fd,
u32 fqid)
{
if (net_ratelimit())
netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
percpu_priv->stats.rx_errors++;
if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
percpu_priv->rx_errors.dme++;
if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
percpu_priv->rx_errors.fpe++;
if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
percpu_priv->rx_errors.fse++;
if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
percpu_priv->rx_errors.phe++;
dpaa_fd_release(net_dev, fd);
}
static void dpaa_tx_error(struct net_device *net_dev,
const struct dpaa_priv *priv,
struct dpaa_percpu_priv *percpu_priv,
const struct qm_fd *fd,
u32 fqid)
{
struct sk_buff *skb;
if (net_ratelimit())
netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
percpu_priv->stats.tx_errors++;
skb = dpaa_cleanup_tx_fd(priv, fd, false);
dev_kfree_skb(skb);
}
static int dpaa_eth_poll(struct napi_struct *napi, int budget)
{
struct dpaa_napi_portal *np =
container_of(napi, struct dpaa_napi_portal, napi);
int cleaned = qman_p_poll_dqrr(np->p, budget);
if (cleaned < budget) {
napi_complete_done(napi, cleaned);
qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
} else if (np->down) {
qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
}
return cleaned;
}
static void dpaa_tx_conf(struct net_device *net_dev,
const struct dpaa_priv *priv,
struct dpaa_percpu_priv *percpu_priv,
const struct qm_fd *fd,
u32 fqid)
{
struct sk_buff *skb;
if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
if (net_ratelimit())
netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
be32_to_cpu(fd->status) &
FM_FD_STAT_TX_ERRORS);
percpu_priv->stats.tx_errors++;
}
percpu_priv->tx_confirm++;
skb = dpaa_cleanup_tx_fd(priv, fd, true);
consume_skb(skb);
}
static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
struct qman_portal *portal)
{
if (unlikely(in_irq() || !in_serving_softirq())) {
/* Disable QMan IRQ and invoke NAPI */
qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
percpu_priv->np.p = portal;
napi_schedule(&percpu_priv->np.napi);
percpu_priv->in_interrupt++;
return 1;
}
return 0;
}
static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
struct qman_fq *fq,
const struct qm_dqrr_entry *dq)
{
struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
struct dpaa_percpu_priv *percpu_priv;
struct net_device *net_dev;
struct dpaa_bp *dpaa_bp;
struct dpaa_priv *priv;
net_dev = dpaa_fq->net_dev;
priv = netdev_priv(net_dev);
dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
if (!dpaa_bp)
return qman_cb_dqrr_consume;
percpu_priv = this_cpu_ptr(priv->percpu_priv);
if (dpaa_eth_napi_schedule(percpu_priv, portal))
return qman_cb_dqrr_stop;
dpaa_eth_refill_bpools(priv);
dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
return qman_cb_dqrr_consume;
}
static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
struct qman_fq *fq,
const struct qm_dqrr_entry *dq)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct rtnl_link_stats64 *percpu_stats;
struct dpaa_percpu_priv *percpu_priv;
const struct qm_fd *fd = &dq->fd;
dma_addr_t addr = qm_fd_addr(fd);
enum qm_fd_format fd_format;
struct net_device *net_dev;
u32 fd_status, hash_offset;
struct dpaa_bp *dpaa_bp;
struct dpaa_priv *priv;
unsigned int skb_len;
struct sk_buff *skb;
int *count_ptr;
void *vaddr;
u64 ns;
fd_status = be32_to_cpu(fd->status);
fd_format = qm_fd_get_format(fd);
net_dev = ((struct dpaa_fq *)fq)->net_dev;
priv = netdev_priv(net_dev);
dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
if (!dpaa_bp)
return qman_cb_dqrr_consume;
/* Trace the Rx fd */
trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
percpu_stats = &percpu_priv->stats;
if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
return qman_cb_dqrr_stop;
/* Make sure we didn't run out of buffers */
if (unlikely(dpaa_eth_refill_bpools(priv))) {
/* Unable to refill the buffer pool due to insufficient
* system memory. Just release the frame back into the pool,
* otherwise we'll soon end up with an empty buffer pool.
*/
dpaa_fd_release(net_dev, &dq->fd);
return qman_cb_dqrr_consume;
}
if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
if (net_ratelimit())
netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
fd_status & FM_FD_STAT_RX_ERRORS);
percpu_stats->rx_errors++;
dpaa_fd_release(net_dev, fd);
return qman_cb_dqrr_consume;
}
dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
DMA_FROM_DEVICE);
/* prefetch the first 64 bytes of the frame or the SGT start */
vaddr = phys_to_virt(addr);
prefetch(vaddr + qm_fd_get_offset(fd));
/* The only FD types that we may receive are contig and S/G */
WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
/* Account for either the contig buffer or the SGT buffer (depending on
* which case we were in) having been removed from the pool.
*/
count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
(*count_ptr)--;
if (likely(fd_format == qm_fd_contig))
skb = contig_fd_to_skb(priv, fd);
else
skb = sg_fd_to_skb(priv, fd);
if (!skb)
return qman_cb_dqrr_consume;
if (priv->rx_tstamp) {
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
shhwtstamps->hwtstamp = ns_to_ktime(ns);
else
dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
}
skb->protocol = eth_type_trans(skb, net_dev);
if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
!fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
&hash_offset)) {
enum pkt_hash_types type;
/* if L4 exists, it was used in the hash generation */
type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
type);
}
skb_len = skb->len;
if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
percpu_stats->rx_dropped++;
return qman_cb_dqrr_consume;
}
percpu_stats->rx_packets++;
percpu_stats->rx_bytes += skb_len;
return qman_cb_dqrr_consume;
}
static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
struct qman_fq *fq,
const struct qm_dqrr_entry *dq)
{
struct dpaa_percpu_priv *percpu_priv;
struct net_device *net_dev;
struct dpaa_priv *priv;
net_dev = ((struct dpaa_fq *)fq)->net_dev;
priv = netdev_priv(net_dev);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
if (dpaa_eth_napi_schedule(percpu_priv, portal))
return qman_cb_dqrr_stop;
dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
return qman_cb_dqrr_consume;
}
static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
struct qman_fq *fq,
const struct qm_dqrr_entry *dq)
{
struct dpaa_percpu_priv *percpu_priv;
struct net_device *net_dev;
struct dpaa_priv *priv;
net_dev = ((struct dpaa_fq *)fq)->net_dev;
priv = netdev_priv(net_dev);
/* Trace the fd */
trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
if (dpaa_eth_napi_schedule(percpu_priv, portal))
return qman_cb_dqrr_stop;
dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
return qman_cb_dqrr_consume;
}
static void egress_ern(struct qman_portal *portal,
struct qman_fq *fq,
const union qm_mr_entry *msg)
{
const struct qm_fd *fd = &msg->ern.fd;
struct dpaa_percpu_priv *percpu_priv;
const struct dpaa_priv *priv;
struct net_device *net_dev;
struct sk_buff *skb;
net_dev = ((struct dpaa_fq *)fq)->net_dev;
priv = netdev_priv(net_dev);
percpu_priv = this_cpu_ptr(priv->percpu_priv);
percpu_priv->stats.tx_dropped++;
percpu_priv->stats.tx_fifo_errors++;
count_ern(percpu_priv, msg);
skb = dpaa_cleanup_tx_fd(priv, fd, false);
dev_kfree_skb_any(skb);
}
static const struct dpaa_fq_cbs dpaa_fq_cbs = {
.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
.egress_ern = { .cb = { .ern = egress_ern } }
};
static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
{
struct dpaa_percpu_priv *percpu_priv;
int i;
for_each_online_cpu(i) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
percpu_priv->np.down = 0;
napi_enable(&percpu_priv->np.napi);
}
}
static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
{
struct dpaa_percpu_priv *percpu_priv;
int i;
for_each_online_cpu(i) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
percpu_priv->np.down = 1;
napi_disable(&percpu_priv->np.napi);
}
}
static void dpaa_adjust_link(struct net_device *net_dev)
{
struct mac_device *mac_dev;
struct dpaa_priv *priv;
priv = netdev_priv(net_dev);
mac_dev = priv->mac_dev;
mac_dev->adjust_link(mac_dev);
}
static int dpaa_phy_init(struct net_device *net_dev)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
struct mac_device *mac_dev;
struct phy_device *phy_dev;
struct dpaa_priv *priv;
priv = netdev_priv(net_dev);
mac_dev = priv->mac_dev;
phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
&dpaa_adjust_link, 0,
mac_dev->phy_if);
if (!phy_dev) {
netif_err(priv, ifup, net_dev, "init_phy() failed\n");
return -ENODEV;
}
/* Remove any features not supported by the controller */
ethtool_convert_legacy_u32_to_link_mode(mask, mac_dev->if_support);
linkmode_and(phy_dev->supported, phy_dev->supported, mask);
phy_support_asym_pause(phy_dev);
mac_dev->phy_dev = phy_dev;
net_dev->phydev = phy_dev;
return 0;
}
static int dpaa_open(struct net_device *net_dev)
{
struct mac_device *mac_dev;
struct dpaa_priv *priv;
int err, i;
priv = netdev_priv(net_dev);
mac_dev = priv->mac_dev;
dpaa_eth_napi_enable(priv);
err = dpaa_phy_init(net_dev);
if (err)
goto phy_init_failed;
for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
err = fman_port_enable(mac_dev->port[i]);
if (err)
goto mac_start_failed;
}
err = priv->mac_dev->start(mac_dev);
if (err < 0) {
netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
goto mac_start_failed;
}
netif_tx_start_all_queues(net_dev);
return 0;
mac_start_failed:
for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
fman_port_disable(mac_dev->port[i]);
phy_init_failed:
dpaa_eth_napi_disable(priv);
return err;
}
static int dpaa_eth_stop(struct net_device *net_dev)
{
struct dpaa_priv *priv;
int err;
err = dpaa_stop(net_dev);
priv = netdev_priv(net_dev);
dpaa_eth_napi_disable(priv);
return err;
}
static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct dpaa_priv *priv = netdev_priv(dev);
struct hwtstamp_config config;
if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
return -EFAULT;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
/* Couldn't disable rx/tx timestamping separately.
* Do nothing here.
*/
priv->tx_tstamp = false;
break;
case HWTSTAMP_TX_ON:
priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
priv->tx_tstamp = true;
break;
default:
return -ERANGE;
}
if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
/* Couldn't disable rx/tx timestamping separately.
* Do nothing here.
*/
priv->rx_tstamp = false;
} else {
priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
priv->rx_tstamp = true;
/* TS is set for all frame types, not only those requested */
config.rx_filter = HWTSTAMP_FILTER_ALL;
}
return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
{
int ret = -EINVAL;
if (cmd == SIOCGMIIREG) {
if (net_dev->phydev)
return phy_mii_ioctl(net_dev->phydev, rq, cmd);
}
if (cmd == SIOCSHWTSTAMP)
return dpaa_ts_ioctl(net_dev, rq, cmd);
return ret;
}
static const struct net_device_ops dpaa_ops = {
.ndo_open = dpaa_open,
.ndo_start_xmit = dpaa_start_xmit,
.ndo_stop = dpaa_eth_stop,
.ndo_tx_timeout = dpaa_tx_timeout,
.ndo_get_stats64 = dpaa_get_stats64,
.ndo_change_carrier = fixed_phy_change_carrier,
.ndo_set_mac_address = dpaa_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = dpaa_set_rx_mode,
.ndo_do_ioctl = dpaa_ioctl,
.ndo_setup_tc = dpaa_setup_tc,
};
static int dpaa_napi_add(struct net_device *net_dev)
{
struct dpaa_priv *priv = netdev_priv(net_dev);
struct dpaa_percpu_priv *percpu_priv;
int cpu;
for_each_possible_cpu(cpu) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
netif_napi_add(net_dev, &percpu_priv->np.napi,
dpaa_eth_poll, NAPI_POLL_WEIGHT);
}
return 0;
}
static void dpaa_napi_del(struct net_device *net_dev)
{
struct dpaa_priv *priv = netdev_priv(net_dev);
struct dpaa_percpu_priv *percpu_priv;
int cpu;
for_each_possible_cpu(cpu) {
percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
netif_napi_del(&percpu_priv->np.napi);
}
}
static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
struct bm_buffer *bmb)
{
dma_addr_t addr = bm_buf_addr(bmb);
dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
DMA_FROM_DEVICE);
skb_free_frag(phys_to_virt(addr));
}
/* Alloc the dpaa_bp struct and configure default values */
static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
{
struct dpaa_bp *dpaa_bp;
dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
if (!dpaa_bp)
return ERR_PTR(-ENOMEM);
dpaa_bp->bpid = FSL_DPAA_BPID_INV;
dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
if (!dpaa_bp->percpu_count)
return ERR_PTR(-ENOMEM);
dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
dpaa_bp->seed_cb = dpaa_bp_seed;
dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
return dpaa_bp;
}
/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
* We won't be sending congestion notifications to FMan; for now, we just use
* this CGR to generate enqueue rejections to FMan in order to drop the frames
* before they reach our ingress queues and eat up memory.
*/
static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
{
struct qm_mcc_initcgr initcgr;
u32 cs_th;
int err;
err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
if (err < 0) {
if (netif_msg_drv(priv))
pr_err("Error %d allocating CGR ID\n", err);
goto out_error;
}
/* Enable CS TD, but disable Congestion State Change Notifications. */
memset(&initcgr, 0, sizeof(initcgr));
initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
initcgr.cgr.cscn_en = QM_CGR_EN;
cs_th = DPAA_INGRESS_CS_THRESHOLD;
qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
initcgr.cgr.cstd_en = QM_CGR_EN;
/* This CGR will be associated with the SWP affined to the current CPU.
* However, we'll place all our ingress FQs in it.
*/
err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
&initcgr);
if (err < 0) {
if (netif_msg_drv(priv))
pr_err("Error %d creating ingress CGR with ID %d\n",
err, priv->ingress_cgr.cgrid);
qman_release_cgrid(priv->ingress_cgr.cgrid);
goto out_error;
}
if (netif_msg_drv(priv))
pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
priv->ingress_cgr.cgrid, priv->mac_dev->addr);
priv->use_ingress_cgr = true;
out_error:
return err;
}
static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
{
u16 headroom;
/* The frame headroom must accommodate:
* - the driver private data area
* - parse results, hash results, timestamp if selected
* If either hash results or time stamp are selected, both will
* be copied to/from the frame headroom, as TS is located between PR and
* HR in the IC and IC copy size has a granularity of 16bytes
* (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
*
* Also make sure the headroom is a multiple of data_align bytes
*/
headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
DPAA_FD_DATA_ALIGNMENT) :
headroom;
}
static int dpaa_eth_probe(struct platform_device *pdev)
{
struct net_device *net_dev = NULL;
struct dpaa_bp *dpaa_bp = NULL;
struct dpaa_fq *dpaa_fq, *tmp;
struct dpaa_priv *priv = NULL;
struct fm_port_fqs port_fqs;
struct mac_device *mac_dev;
int err = 0, channel;
struct device *dev;
dev = &pdev->dev;
err = bman_is_probed();
if (!err)
return -EPROBE_DEFER;
if (err < 0) {
dev_err(dev, "failing probe due to bman probe error\n");
return -ENODEV;
}
err = qman_is_probed();
if (!err)
return -EPROBE_DEFER;
if (err < 0) {
dev_err(dev, "failing probe due to qman probe error\n");
return -ENODEV;
}
err = bman_portals_probed();
if (!err)
return -EPROBE_DEFER;
if (err < 0) {
dev_err(dev,
"failing probe due to bman portals probe error\n");
return -ENODEV;
}
err = qman_portals_probed();
if (!err)
return -EPROBE_DEFER;
if (err < 0) {
dev_err(dev,
"failing probe due to qman portals probe error\n");
return -ENODEV;
}
/* Allocate this early, so we can store relevant information in
* the private area
*/
net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
if (!net_dev) {
dev_err(dev, "alloc_etherdev_mq() failed\n");
return -ENOMEM;
}
/* Do this here, so we can be verbose early */
SET_NETDEV_DEV(net_dev, dev);
dev_set_drvdata(dev, net_dev);
priv = netdev_priv(net_dev);
priv->net_dev = net_dev;
priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
mac_dev = dpaa_mac_dev_get(pdev);
if (IS_ERR(mac_dev)) {
netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
err = PTR_ERR(mac_dev);
goto free_netdev;
}
/* Devices used for DMA mapping */
priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
if (!err)
err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
DMA_BIT_MASK(40));
if (err) {
netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
return err;
}
/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
* we choose conservatively and let the user explicitly set a higher
* MTU via ifconfig. Otherwise, the user may end up with different MTUs
* in the same LAN.
* If on the other hand fsl_fm_max_frm has been chosen below 1500,
* start with the maximum allowed.
*/
net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
net_dev->mtu);
priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
/* bp init */
dpaa_bp = dpaa_bp_alloc(dev);
if (IS_ERR(dpaa_bp)) {
err = PTR_ERR(dpaa_bp);
goto free_dpaa_bps;
}
/* the raw size of the buffers used for reception */
dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
/* avoid runtime computations by keeping the usable size here */
dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
dpaa_bp->priv = priv;
err = dpaa_bp_alloc_pool(dpaa_bp);
if (err < 0)
goto free_dpaa_bps;
priv->dpaa_bp = dpaa_bp;
INIT_LIST_HEAD(&priv->dpaa_fq_list);
memset(&port_fqs, 0, sizeof(port_fqs));
err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
if (err < 0) {
dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
goto free_dpaa_bps;
}
priv->mac_dev = mac_dev;
channel = dpaa_get_channel();
if (channel < 0) {
dev_err(dev, "dpaa_get_channel() failed\n");
err = channel;
goto free_dpaa_bps;
}
priv->channel = (u16)channel;
/* Walk the CPUs with affine portals
* and add this pool channel to each's dequeue mask.
*/
dpaa_eth_add_channel(priv->channel, &pdev->dev);
dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
/* Create a congestion group for this netdev, with
* dynamically-allocated CGR ID.
* Must be executed after probing the MAC, but before
* assigning the egress FQs to the CGRs.
*/
err = dpaa_eth_cgr_init(priv);
if (err < 0) {
dev_err(dev, "Error initializing CGR\n");
goto free_dpaa_bps;
}
err = dpaa_ingress_cgr_init(priv);
if (err < 0) {
dev_err(dev, "Error initializing ingress CGR\n");
goto delete_egress_cgr;
}
/* Add the FQs to the interface, and make them active */
list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
err = dpaa_fq_init(dpaa_fq, false);
if (err < 0)
goto free_dpaa_fqs;
}
priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
/* All real interfaces need their ports initialized */
err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
&priv->buf_layout[0], dev);
if (err)
goto free_dpaa_fqs;
/* Rx traffic distribution based on keygen hashing defaults to on */
priv->keygen_in_use = true;
priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
if (!priv->percpu_priv) {
dev_err(dev, "devm_alloc_percpu() failed\n");
err = -ENOMEM;
goto free_dpaa_fqs;
}
priv->num_tc = 1;
netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
/* Initialize NAPI */
err = dpaa_napi_add(net_dev);
if (err < 0)
goto delete_dpaa_napi;
err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
if (err < 0)
goto delete_dpaa_napi;
dpaa_eth_sysfs_init(&net_dev->dev);
netif_info(priv, probe, net_dev, "Probed interface %s\n",
net_dev->name);
return 0;
delete_dpaa_napi:
dpaa_napi_del(net_dev);
free_dpaa_fqs:
dpaa_fq_free(dev, &priv->dpaa_fq_list);
qman_delete_cgr_safe(&priv->ingress_cgr);
qman_release_cgrid(priv->ingress_cgr.cgrid);
delete_egress_cgr:
qman_delete_cgr_safe(&priv->cgr_data.cgr);
qman_release_cgrid(priv->cgr_data.cgr.cgrid);
free_dpaa_bps:
dpaa_bps_free(priv);
free_netdev:
dev_set_drvdata(dev, NULL);
free_netdev(net_dev);
return err;
}
static int dpaa_remove(struct platform_device *pdev)
{
struct net_device *net_dev;
struct dpaa_priv *priv;
struct device *dev;
int err;
dev = &pdev->dev;
net_dev = dev_get_drvdata(dev);
priv = netdev_priv(net_dev);
dpaa_eth_sysfs_remove(dev);
dev_set_drvdata(dev, NULL);
unregister_netdev(net_dev);
err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
qman_delete_cgr_safe(&priv->ingress_cgr);
qman_release_cgrid(priv->ingress_cgr.cgrid);
qman_delete_cgr_safe(&priv->cgr_data.cgr);
qman_release_cgrid(priv->cgr_data.cgr.cgrid);
dpaa_napi_del(net_dev);
dpaa_bps_free(priv);
free_netdev(net_dev);
return err;
}
static const struct platform_device_id dpaa_devtype[] = {
{
.name = "dpaa-ethernet",
.driver_data = 0,
}, {
}
};
MODULE_DEVICE_TABLE(platform, dpaa_devtype);
static struct platform_driver dpaa_driver = {
.driver = {
.name = KBUILD_MODNAME,
},
.id_table = dpaa_devtype,
.probe = dpaa_eth_probe,
.remove = dpaa_remove
};
static int __init dpaa_load(void)
{
int err;
pr_debug("FSL DPAA Ethernet driver\n");
/* initialize dpaa_eth mirror values */
dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
dpaa_max_frm = fman_get_max_frm();
err = platform_driver_register(&dpaa_driver);
if (err < 0)
pr_err("Error, platform_driver_register() = %d\n", err);
return err;
}
module_init(dpaa_load);
static void __exit dpaa_unload(void)
{
platform_driver_unregister(&dpaa_driver);
/* Only one channel is used and needs to be released after all
* interfaces are removed
*/
dpaa_release_channel();
}
module_exit(dpaa_unload);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("FSL DPAA Ethernet driver");