blob: 2fb20d6f7e23b0ccace549901dacf89b51e9c381 [file] [log] [blame]
#ifndef _ASM_X86_MICROCODE_H
#define _ASM_X86_MICROCODE_H
#define native_rdmsr(msr, val1, val2) \
do { \
u64 __val = native_read_msr((msr)); \
(void)((val1) = (u32)__val); \
(void)((val2) = (u32)(__val >> 32)); \
} while (0)
#define native_wrmsr(msr, low, high) \
native_write_msr(msr, low, high)
#define native_wrmsrl(msr, val) \
native_write_msr((msr), \
(u32)((u64)(val)), \
(u32)((u64)(val) >> 32))
struct cpu_signature {
unsigned int sig;
unsigned int pf;
unsigned int rev;
};
struct device;
enum ucode_state { UCODE_ERROR, UCODE_OK, UCODE_NFOUND };
extern bool dis_ucode_ldr;
struct microcode_ops {
enum ucode_state (*request_microcode_user) (int cpu,
const void __user *buf, size_t size);
enum ucode_state (*request_microcode_fw) (int cpu, struct device *,
bool refresh_fw);
void (*microcode_fini_cpu) (int cpu);
/*
* The generic 'microcode_core' part guarantees that
* the callbacks below run on a target cpu when they
* are being called.
* See also the "Synchronization" section in microcode_core.c.
*/
int (*apply_microcode) (int cpu);
int (*collect_cpu_info) (int cpu, struct cpu_signature *csig);
};
struct ucode_cpu_info {
struct cpu_signature cpu_sig;
int valid;
void *mc;
};
extern struct ucode_cpu_info ucode_cpu_info[];
#ifdef CONFIG_MICROCODE_INTEL
extern struct microcode_ops * __init init_intel_microcode(void);
#else
static inline struct microcode_ops * __init init_intel_microcode(void)
{
return NULL;
}
#endif /* CONFIG_MICROCODE_INTEL */
#ifdef CONFIG_MICROCODE_AMD
extern struct microcode_ops * __init init_amd_microcode(void);
extern void __exit exit_amd_microcode(void);
#else
static inline struct microcode_ops * __init init_amd_microcode(void)
{
return NULL;
}
static inline void __exit exit_amd_microcode(void) {}
#endif
#ifdef CONFIG_MICROCODE_EARLY
#define MAX_UCODE_COUNT 128
#define QCHAR(a, b, c, d) ((a) + ((b) << 8) + ((c) << 16) + ((d) << 24))
#define CPUID_INTEL1 QCHAR('G', 'e', 'n', 'u')
#define CPUID_INTEL2 QCHAR('i', 'n', 'e', 'I')
#define CPUID_INTEL3 QCHAR('n', 't', 'e', 'l')
#define CPUID_AMD1 QCHAR('A', 'u', 't', 'h')
#define CPUID_AMD2 QCHAR('e', 'n', 't', 'i')
#define CPUID_AMD3 QCHAR('c', 'A', 'M', 'D')
#define CPUID_IS(a, b, c, ebx, ecx, edx) \
(!((ebx ^ (a))|(edx ^ (b))|(ecx ^ (c))))
/*
* In early loading microcode phase on BSP, boot_cpu_data is not set up yet.
* x86_vendor() gets vendor id for BSP.
*
* In 32 bit AP case, accessing boot_cpu_data needs linear address. To simplify
* coding, we still use x86_vendor() to get vendor id for AP.
*
* x86_vendor() gets vendor information directly from CPUID.
*/
static inline int x86_vendor(void)
{
u32 eax = 0x00000000;
u32 ebx, ecx = 0, edx;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (CPUID_IS(CPUID_INTEL1, CPUID_INTEL2, CPUID_INTEL3, ebx, ecx, edx))
return X86_VENDOR_INTEL;
if (CPUID_IS(CPUID_AMD1, CPUID_AMD2, CPUID_AMD3, ebx, ecx, edx))
return X86_VENDOR_AMD;
return X86_VENDOR_UNKNOWN;
}
static inline unsigned int __x86_family(unsigned int sig)
{
unsigned int x86;
x86 = (sig >> 8) & 0xf;
if (x86 == 0xf)
x86 += (sig >> 20) & 0xff;
return x86;
}
static inline unsigned int x86_family(void)
{
u32 eax = 0x00000001;
u32 ebx, ecx = 0, edx;
native_cpuid(&eax, &ebx, &ecx, &edx);
return __x86_family(eax);
}
static inline unsigned int x86_model(unsigned int sig)
{
unsigned int x86, model;
x86 = __x86_family(sig);
model = (sig >> 4) & 0xf;
if (x86 == 0x6 || x86 == 0xf)
model += ((sig >> 16) & 0xf) << 4;
return model;
}
extern void __init load_ucode_bsp(void);
extern void load_ucode_ap(void);
extern int __init save_microcode_in_initrd(void);
void reload_early_microcode(void);
#else
static inline void __init load_ucode_bsp(void) {}
static inline void load_ucode_ap(void) {}
static inline int __init save_microcode_in_initrd(void)
{
return 0;
}
static inline void reload_early_microcode(void) {}
#endif
#endif /* _ASM_X86_MICROCODE_H */