| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_MMU_NOTIFIER_H |
| #define _LINUX_MMU_NOTIFIER_H |
| |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm_types.h> |
| #include <linux/mmap_lock.h> |
| #include <linux/srcu.h> |
| #include <linux/interval_tree.h> |
| |
| struct mmu_notifier_subscriptions; |
| struct mmu_notifier; |
| struct mmu_notifier_range; |
| struct mmu_interval_notifier; |
| |
| /** |
| * enum mmu_notifier_event - reason for the mmu notifier callback |
| * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that |
| * move the range |
| * |
| * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like |
| * madvise() or replacing a page by another one, ...). |
| * |
| * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range |
| * ie using the vma access permission (vm_page_prot) to update the whole range |
| * is enough no need to inspect changes to the CPU page table (mprotect() |
| * syscall) |
| * |
| * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for |
| * pages in the range so to mirror those changes the user must inspect the CPU |
| * page table (from the end callback). |
| * |
| * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same |
| * access flags). User should soft dirty the page in the end callback to make |
| * sure that anyone relying on soft dirtyness catch pages that might be written |
| * through non CPU mappings. |
| * |
| * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal |
| * that the mm refcount is zero and the range is no longer accessible. |
| */ |
| enum mmu_notifier_event { |
| MMU_NOTIFY_UNMAP = 0, |
| MMU_NOTIFY_CLEAR, |
| MMU_NOTIFY_PROTECTION_VMA, |
| MMU_NOTIFY_PROTECTION_PAGE, |
| MMU_NOTIFY_SOFT_DIRTY, |
| MMU_NOTIFY_RELEASE, |
| }; |
| |
| #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) |
| |
| struct mmu_notifier_ops { |
| /* |
| * Called either by mmu_notifier_unregister or when the mm is |
| * being destroyed by exit_mmap, always before all pages are |
| * freed. This can run concurrently with other mmu notifier |
| * methods (the ones invoked outside the mm context) and it |
| * should tear down all secondary mmu mappings and freeze the |
| * secondary mmu. If this method isn't implemented you've to |
| * be sure that nothing could possibly write to the pages |
| * through the secondary mmu by the time the last thread with |
| * tsk->mm == mm exits. |
| * |
| * As side note: the pages freed after ->release returns could |
| * be immediately reallocated by the gart at an alias physical |
| * address with a different cache model, so if ->release isn't |
| * implemented because all _software_ driven memory accesses |
| * through the secondary mmu are terminated by the time the |
| * last thread of this mm quits, you've also to be sure that |
| * speculative _hardware_ operations can't allocate dirty |
| * cachelines in the cpu that could not be snooped and made |
| * coherent with the other read and write operations happening |
| * through the gart alias address, so leading to memory |
| * corruption. |
| */ |
| void (*release)(struct mmu_notifier *subscription, |
| struct mm_struct *mm); |
| |
| /* |
| * clear_flush_young is called after the VM is |
| * test-and-clearing the young/accessed bitflag in the |
| * pte. This way the VM will provide proper aging to the |
| * accesses to the page through the secondary MMUs and not |
| * only to the ones through the Linux pte. |
| * Start-end is necessary in case the secondary MMU is mapping the page |
| * at a smaller granularity than the primary MMU. |
| */ |
| int (*clear_flush_young)(struct mmu_notifier *subscription, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| |
| /* |
| * clear_young is a lightweight version of clear_flush_young. Like the |
| * latter, it is supposed to test-and-clear the young/accessed bitflag |
| * in the secondary pte, but it may omit flushing the secondary tlb. |
| */ |
| int (*clear_young)(struct mmu_notifier *subscription, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| |
| /* |
| * test_young is called to check the young/accessed bitflag in |
| * the secondary pte. This is used to know if the page is |
| * frequently used without actually clearing the flag or tearing |
| * down the secondary mapping on the page. |
| */ |
| int (*test_young)(struct mmu_notifier *subscription, |
| struct mm_struct *mm, |
| unsigned long address); |
| |
| /* |
| * change_pte is called in cases that pte mapping to page is changed: |
| * for example, when ksm remaps pte to point to a new shared page. |
| */ |
| void (*change_pte)(struct mmu_notifier *subscription, |
| struct mm_struct *mm, |
| unsigned long address, |
| pte_t pte); |
| |
| /* |
| * invalidate_range_start() and invalidate_range_end() must be |
| * paired and are called only when the mmap_lock and/or the |
| * locks protecting the reverse maps are held. If the subsystem |
| * can't guarantee that no additional references are taken to |
| * the pages in the range, it has to implement the |
| * invalidate_range() notifier to remove any references taken |
| * after invalidate_range_start(). |
| * |
| * Invalidation of multiple concurrent ranges may be |
| * optionally permitted by the driver. Either way the |
| * establishment of sptes is forbidden in the range passed to |
| * invalidate_range_begin/end for the whole duration of the |
| * invalidate_range_begin/end critical section. |
| * |
| * invalidate_range_start() is called when all pages in the |
| * range are still mapped and have at least a refcount of one. |
| * |
| * invalidate_range_end() is called when all pages in the |
| * range have been unmapped and the pages have been freed by |
| * the VM. |
| * |
| * The VM will remove the page table entries and potentially |
| * the page between invalidate_range_start() and |
| * invalidate_range_end(). If the page must not be freed |
| * because of pending I/O or other circumstances then the |
| * invalidate_range_start() callback (or the initial mapping |
| * by the driver) must make sure that the refcount is kept |
| * elevated. |
| * |
| * If the driver increases the refcount when the pages are |
| * initially mapped into an address space then either |
| * invalidate_range_start() or invalidate_range_end() may |
| * decrease the refcount. If the refcount is decreased on |
| * invalidate_range_start() then the VM can free pages as page |
| * table entries are removed. If the refcount is only |
| * droppped on invalidate_range_end() then the driver itself |
| * will drop the last refcount but it must take care to flush |
| * any secondary tlb before doing the final free on the |
| * page. Pages will no longer be referenced by the linux |
| * address space but may still be referenced by sptes until |
| * the last refcount is dropped. |
| * |
| * If blockable argument is set to false then the callback cannot |
| * sleep and has to return with -EAGAIN. 0 should be returned |
| * otherwise. Please note that if invalidate_range_start approves |
| * a non-blocking behavior then the same applies to |
| * invalidate_range_end. |
| * |
| */ |
| int (*invalidate_range_start)(struct mmu_notifier *subscription, |
| const struct mmu_notifier_range *range); |
| void (*invalidate_range_end)(struct mmu_notifier *subscription, |
| const struct mmu_notifier_range *range); |
| |
| /* |
| * invalidate_range() is either called between |
| * invalidate_range_start() and invalidate_range_end() when the |
| * VM has to free pages that where unmapped, but before the |
| * pages are actually freed, or outside of _start()/_end() when |
| * a (remote) TLB is necessary. |
| * |
| * If invalidate_range() is used to manage a non-CPU TLB with |
| * shared page-tables, it not necessary to implement the |
| * invalidate_range_start()/end() notifiers, as |
| * invalidate_range() alread catches the points in time when an |
| * external TLB range needs to be flushed. For more in depth |
| * discussion on this see Documentation/vm/mmu_notifier.rst |
| * |
| * Note that this function might be called with just a sub-range |
| * of what was passed to invalidate_range_start()/end(), if |
| * called between those functions. |
| */ |
| void (*invalidate_range)(struct mmu_notifier *subscription, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| |
| /* |
| * These callbacks are used with the get/put interface to manage the |
| * lifetime of the mmu_notifier memory. alloc_notifier() returns a new |
| * notifier for use with the mm. |
| * |
| * free_notifier() is only called after the mmu_notifier has been |
| * fully put, calls to any ops callback are prevented and no ops |
| * callbacks are currently running. It is called from a SRCU callback |
| * and cannot sleep. |
| */ |
| struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); |
| void (*free_notifier)(struct mmu_notifier *subscription); |
| }; |
| |
| /* |
| * The notifier chains are protected by mmap_lock and/or the reverse map |
| * semaphores. Notifier chains are only changed when all reverse maps and |
| * the mmap_lock locks are taken. |
| * |
| * Therefore notifier chains can only be traversed when either |
| * |
| * 1. mmap_lock is held. |
| * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). |
| * 3. No other concurrent thread can access the list (release) |
| */ |
| struct mmu_notifier { |
| struct hlist_node hlist; |
| const struct mmu_notifier_ops *ops; |
| struct mm_struct *mm; |
| struct rcu_head rcu; |
| unsigned int users; |
| }; |
| |
| /** |
| * struct mmu_interval_notifier_ops |
| * @invalidate: Upon return the caller must stop using any SPTEs within this |
| * range. This function can sleep. Return false only if sleeping |
| * was required but mmu_notifier_range_blockable(range) is false. |
| */ |
| struct mmu_interval_notifier_ops { |
| bool (*invalidate)(struct mmu_interval_notifier *interval_sub, |
| const struct mmu_notifier_range *range, |
| unsigned long cur_seq); |
| }; |
| |
| struct mmu_interval_notifier { |
| struct interval_tree_node interval_tree; |
| const struct mmu_interval_notifier_ops *ops; |
| struct mm_struct *mm; |
| struct hlist_node deferred_item; |
| unsigned long invalidate_seq; |
| }; |
| |
| #ifdef CONFIG_MMU_NOTIFIER |
| |
| #ifdef CONFIG_LOCKDEP |
| extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; |
| #endif |
| |
| struct mmu_notifier_range { |
| struct vm_area_struct *vma; |
| struct mm_struct *mm; |
| unsigned long start; |
| unsigned long end; |
| unsigned flags; |
| enum mmu_notifier_event event; |
| }; |
| |
| static inline int mm_has_notifiers(struct mm_struct *mm) |
| { |
| return unlikely(mm->notifier_subscriptions); |
| } |
| |
| struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, |
| struct mm_struct *mm); |
| static inline struct mmu_notifier * |
| mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) |
| { |
| struct mmu_notifier *ret; |
| |
| mmap_write_lock(mm); |
| ret = mmu_notifier_get_locked(ops, mm); |
| mmap_write_unlock(mm); |
| return ret; |
| } |
| void mmu_notifier_put(struct mmu_notifier *subscription); |
| void mmu_notifier_synchronize(void); |
| |
| extern int mmu_notifier_register(struct mmu_notifier *subscription, |
| struct mm_struct *mm); |
| extern int __mmu_notifier_register(struct mmu_notifier *subscription, |
| struct mm_struct *mm); |
| extern void mmu_notifier_unregister(struct mmu_notifier *subscription, |
| struct mm_struct *mm); |
| |
| unsigned long |
| mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); |
| int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, |
| struct mm_struct *mm, unsigned long start, |
| unsigned long length, |
| const struct mmu_interval_notifier_ops *ops); |
| int mmu_interval_notifier_insert_locked( |
| struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, |
| unsigned long start, unsigned long length, |
| const struct mmu_interval_notifier_ops *ops); |
| void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); |
| |
| /** |
| * mmu_interval_set_seq - Save the invalidation sequence |
| * @interval_sub - The subscription passed to invalidate |
| * @cur_seq - The cur_seq passed to the invalidate() callback |
| * |
| * This must be called unconditionally from the invalidate callback of a |
| * struct mmu_interval_notifier_ops under the same lock that is used to call |
| * mmu_interval_read_retry(). It updates the sequence number for later use by |
| * mmu_interval_read_retry(). The provided cur_seq will always be odd. |
| * |
| * If the caller does not call mmu_interval_read_begin() or |
| * mmu_interval_read_retry() then this call is not required. |
| */ |
| static inline void |
| mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, |
| unsigned long cur_seq) |
| { |
| WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); |
| } |
| |
| /** |
| * mmu_interval_read_retry - End a read side critical section against a VA range |
| * interval_sub: The subscription |
| * seq: The return of the paired mmu_interval_read_begin() |
| * |
| * This MUST be called under a user provided lock that is also held |
| * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). |
| * |
| * Each call should be paired with a single mmu_interval_read_begin() and |
| * should be used to conclude the read side. |
| * |
| * Returns true if an invalidation collided with this critical section, and |
| * the caller should retry. |
| */ |
| static inline bool |
| mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, |
| unsigned long seq) |
| { |
| return interval_sub->invalidate_seq != seq; |
| } |
| |
| /** |
| * mmu_interval_check_retry - Test if a collision has occurred |
| * interval_sub: The subscription |
| * seq: The return of the matching mmu_interval_read_begin() |
| * |
| * This can be used in the critical section between mmu_interval_read_begin() |
| * and mmu_interval_read_retry(). A return of true indicates an invalidation |
| * has collided with this critical region and a future |
| * mmu_interval_read_retry() will return true. |
| * |
| * False is not reliable and only suggests a collision may not have |
| * occured. It can be called many times and does not have to hold the user |
| * provided lock. |
| * |
| * This call can be used as part of loops and other expensive operations to |
| * expedite a retry. |
| */ |
| static inline bool |
| mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, |
| unsigned long seq) |
| { |
| /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ |
| return READ_ONCE(interval_sub->invalidate_seq) != seq; |
| } |
| |
| extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); |
| extern void __mmu_notifier_release(struct mm_struct *mm); |
| extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| extern int __mmu_notifier_clear_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end); |
| extern int __mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address); |
| extern void __mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte); |
| extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); |
| extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, |
| bool only_end); |
| extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end); |
| extern bool |
| mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); |
| |
| static inline bool |
| mmu_notifier_range_blockable(const struct mmu_notifier_range *range) |
| { |
| return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); |
| } |
| |
| static inline void mmu_notifier_release(struct mm_struct *mm) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_release(mm); |
| } |
| |
| static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| return __mmu_notifier_clear_flush_young(mm, start, end); |
| return 0; |
| } |
| |
| static inline int mmu_notifier_clear_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| return __mmu_notifier_clear_young(mm, start, end); |
| return 0; |
| } |
| |
| static inline int mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address) |
| { |
| if (mm_has_notifiers(mm)) |
| return __mmu_notifier_test_young(mm, address); |
| return 0; |
| } |
| |
| static inline void mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_change_pte(mm, address, pte); |
| } |
| |
| static inline void |
| mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) |
| { |
| might_sleep(); |
| |
| lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); |
| if (mm_has_notifiers(range->mm)) { |
| range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; |
| __mmu_notifier_invalidate_range_start(range); |
| } |
| lock_map_release(&__mmu_notifier_invalidate_range_start_map); |
| } |
| |
| static inline int |
| mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) |
| { |
| int ret = 0; |
| |
| lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); |
| if (mm_has_notifiers(range->mm)) { |
| range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; |
| ret = __mmu_notifier_invalidate_range_start(range); |
| } |
| lock_map_release(&__mmu_notifier_invalidate_range_start_map); |
| return ret; |
| } |
| |
| static inline void |
| mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) |
| { |
| if (mmu_notifier_range_blockable(range)) |
| might_sleep(); |
| |
| if (mm_has_notifiers(range->mm)) |
| __mmu_notifier_invalidate_range_end(range, false); |
| } |
| |
| static inline void |
| mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) |
| { |
| if (mm_has_notifiers(range->mm)) |
| __mmu_notifier_invalidate_range_end(range, true); |
| } |
| |
| static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_invalidate_range(mm, start, end); |
| } |
| |
| static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) |
| { |
| mm->notifier_subscriptions = NULL; |
| } |
| |
| static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) |
| { |
| if (mm_has_notifiers(mm)) |
| __mmu_notifier_subscriptions_destroy(mm); |
| } |
| |
| |
| static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, |
| enum mmu_notifier_event event, |
| unsigned flags, |
| struct vm_area_struct *vma, |
| struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| range->vma = vma; |
| range->event = event; |
| range->mm = mm; |
| range->start = start; |
| range->end = end; |
| range->flags = flags; |
| } |
| |
| #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ |
| __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ |
| ___address, \ |
| ___address + \ |
| PAGE_SIZE); \ |
| __young; \ |
| }) |
| |
| #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ |
| __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ |
| ___address, \ |
| ___address + \ |
| PMD_SIZE); \ |
| __young; \ |
| }) |
| |
| #define ptep_clear_young_notify(__vma, __address, __ptep) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ |
| __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ |
| ___address + PAGE_SIZE); \ |
| __young; \ |
| }) |
| |
| #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ |
| ({ \ |
| int __young; \ |
| struct vm_area_struct *___vma = __vma; \ |
| unsigned long ___address = __address; \ |
| __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ |
| __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ |
| ___address + PMD_SIZE); \ |
| __young; \ |
| }) |
| |
| #define ptep_clear_flush_notify(__vma, __address, __ptep) \ |
| ({ \ |
| unsigned long ___addr = __address & PAGE_MASK; \ |
| struct mm_struct *___mm = (__vma)->vm_mm; \ |
| pte_t ___pte; \ |
| \ |
| ___pte = ptep_clear_flush(__vma, __address, __ptep); \ |
| mmu_notifier_invalidate_range(___mm, ___addr, \ |
| ___addr + PAGE_SIZE); \ |
| \ |
| ___pte; \ |
| }) |
| |
| #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ |
| ({ \ |
| unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ |
| struct mm_struct *___mm = (__vma)->vm_mm; \ |
| pmd_t ___pmd; \ |
| \ |
| ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ |
| mmu_notifier_invalidate_range(___mm, ___haddr, \ |
| ___haddr + HPAGE_PMD_SIZE); \ |
| \ |
| ___pmd; \ |
| }) |
| |
| #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ |
| ({ \ |
| unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ |
| struct mm_struct *___mm = (__vma)->vm_mm; \ |
| pud_t ___pud; \ |
| \ |
| ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ |
| mmu_notifier_invalidate_range(___mm, ___haddr, \ |
| ___haddr + HPAGE_PUD_SIZE); \ |
| \ |
| ___pud; \ |
| }) |
| |
| /* |
| * set_pte_at_notify() sets the pte _after_ running the notifier. |
| * This is safe to start by updating the secondary MMUs, because the primary MMU |
| * pte invalidate must have already happened with a ptep_clear_flush() before |
| * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is |
| * required when we change both the protection of the mapping from read-only to |
| * read-write and the pfn (like during copy on write page faults). Otherwise the |
| * old page would remain mapped readonly in the secondary MMUs after the new |
| * page is already writable by some CPU through the primary MMU. |
| */ |
| #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ |
| ({ \ |
| struct mm_struct *___mm = __mm; \ |
| unsigned long ___address = __address; \ |
| pte_t ___pte = __pte; \ |
| \ |
| mmu_notifier_change_pte(___mm, ___address, ___pte); \ |
| set_pte_at(___mm, ___address, __ptep, ___pte); \ |
| }) |
| |
| #else /* CONFIG_MMU_NOTIFIER */ |
| |
| struct mmu_notifier_range { |
| unsigned long start; |
| unsigned long end; |
| }; |
| |
| static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, |
| unsigned long start, |
| unsigned long end) |
| { |
| range->start = start; |
| range->end = end; |
| } |
| |
| #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ |
| _mmu_notifier_range_init(range, start, end) |
| |
| static inline bool |
| mmu_notifier_range_blockable(const struct mmu_notifier_range *range) |
| { |
| return true; |
| } |
| |
| static inline int mm_has_notifiers(struct mm_struct *mm) |
| { |
| return 0; |
| } |
| |
| static inline void mmu_notifier_release(struct mm_struct *mm) |
| { |
| } |
| |
| static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| unsigned long start, |
| unsigned long end) |
| { |
| return 0; |
| } |
| |
| static inline int mmu_notifier_test_young(struct mm_struct *mm, |
| unsigned long address) |
| { |
| return 0; |
| } |
| |
| static inline void mmu_notifier_change_pte(struct mm_struct *mm, |
| unsigned long address, pte_t pte) |
| { |
| } |
| |
| static inline void |
| mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) |
| { |
| } |
| |
| static inline int |
| mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) |
| { |
| return 0; |
| } |
| |
| static inline |
| void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) |
| { |
| } |
| |
| static inline void |
| mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) |
| { |
| } |
| |
| static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, |
| unsigned long start, unsigned long end) |
| { |
| } |
| |
| static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) |
| { |
| } |
| |
| static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) |
| { |
| } |
| |
| #define mmu_notifier_range_update_to_read_only(r) false |
| |
| #define ptep_clear_flush_young_notify ptep_clear_flush_young |
| #define pmdp_clear_flush_young_notify pmdp_clear_flush_young |
| #define ptep_clear_young_notify ptep_test_and_clear_young |
| #define pmdp_clear_young_notify pmdp_test_and_clear_young |
| #define ptep_clear_flush_notify ptep_clear_flush |
| #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush |
| #define pudp_huge_clear_flush_notify pudp_huge_clear_flush |
| #define set_pte_at_notify set_pte_at |
| |
| static inline void mmu_notifier_synchronize(void) |
| { |
| } |
| |
| #endif /* CONFIG_MMU_NOTIFIER */ |
| |
| #endif /* _LINUX_MMU_NOTIFIER_H */ |