| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright 2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <drm/drm_drv.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_trace.h" |
| #include "amdgpu_vm.h" |
| |
| /* |
| * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt |
| */ |
| struct amdgpu_vm_pt_cursor { |
| uint64_t pfn; |
| struct amdgpu_vm_bo_base *parent; |
| struct amdgpu_vm_bo_base *entry; |
| unsigned int level; |
| }; |
| |
| /** |
| * amdgpu_vm_pt_level_shift - return the addr shift for each level |
| * |
| * @adev: amdgpu_device pointer |
| * @level: VMPT level |
| * |
| * Returns: |
| * The number of bits the pfn needs to be right shifted for a level. |
| */ |
| static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, |
| unsigned int level) |
| { |
| switch (level) { |
| case AMDGPU_VM_PDB2: |
| case AMDGPU_VM_PDB1: |
| case AMDGPU_VM_PDB0: |
| return 9 * (AMDGPU_VM_PDB0 - level) + |
| adev->vm_manager.block_size; |
| case AMDGPU_VM_PTB: |
| return 0; |
| default: |
| return ~0; |
| } |
| } |
| |
| /** |
| * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT |
| * |
| * @adev: amdgpu_device pointer |
| * @level: VMPT level |
| * |
| * Returns: |
| * The number of entries in a page directory or page table. |
| */ |
| static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, |
| unsigned int level) |
| { |
| unsigned int shift; |
| |
| shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); |
| if (level == adev->vm_manager.root_level) |
| /* For the root directory */ |
| return round_up(adev->vm_manager.max_pfn, 1ULL << shift) |
| >> shift; |
| else if (level != AMDGPU_VM_PTB) |
| /* Everything in between */ |
| return 512; |
| |
| /* For the page tables on the leaves */ |
| return AMDGPU_VM_PTE_COUNT(adev); |
| } |
| |
| /** |
| * amdgpu_vm_pt_num_ats_entries - return the number of ATS entries in the root PD |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Returns: |
| * The number of entries in the root page directory which needs the ATS setting. |
| */ |
| static unsigned int amdgpu_vm_pt_num_ats_entries(struct amdgpu_device *adev) |
| { |
| unsigned int shift; |
| |
| shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); |
| return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); |
| } |
| |
| /** |
| * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT |
| * |
| * @adev: amdgpu_device pointer |
| * @level: VMPT level |
| * |
| * Returns: |
| * The mask to extract the entry number of a PD/PT from an address. |
| */ |
| static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, |
| unsigned int level) |
| { |
| if (level <= adev->vm_manager.root_level) |
| return 0xffffffff; |
| else if (level != AMDGPU_VM_PTB) |
| return 0x1ff; |
| else |
| return AMDGPU_VM_PTE_COUNT(adev) - 1; |
| } |
| |
| /** |
| * amdgpu_vm_pt_size - returns the size of the page table in bytes |
| * |
| * @adev: amdgpu_device pointer |
| * @level: VMPT level |
| * |
| * Returns: |
| * The size of the BO for a page directory or page table in bytes. |
| */ |
| static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, |
| unsigned int level) |
| { |
| return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); |
| } |
| |
| /** |
| * amdgpu_vm_pt_parent - get the parent page directory |
| * |
| * @pt: child page table |
| * |
| * Helper to get the parent entry for the child page table. NULL if we are at |
| * the root page directory. |
| */ |
| static struct amdgpu_vm_bo_base * |
| amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) |
| { |
| struct amdgpu_bo *parent = pt->bo->parent; |
| |
| if (!parent) |
| return NULL; |
| |
| return parent->vm_bo; |
| } |
| |
| /** |
| * amdgpu_vm_pt_start - start PD/PT walk |
| * |
| * @adev: amdgpu_device pointer |
| * @vm: amdgpu_vm structure |
| * @start: start address of the walk |
| * @cursor: state to initialize |
| * |
| * Initialize a amdgpu_vm_pt_cursor to start a walk. |
| */ |
| static void amdgpu_vm_pt_start(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm, uint64_t start, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| cursor->pfn = start; |
| cursor->parent = NULL; |
| cursor->entry = &vm->root; |
| cursor->level = adev->vm_manager.root_level; |
| } |
| |
| /** |
| * amdgpu_vm_pt_descendant - go to child node |
| * |
| * @adev: amdgpu_device pointer |
| * @cursor: current state |
| * |
| * Walk to the child node of the current node. |
| * Returns: |
| * True if the walk was possible, false otherwise. |
| */ |
| static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| unsigned int mask, shift, idx; |
| |
| if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || |
| !cursor->entry->bo) |
| return false; |
| |
| mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); |
| shift = amdgpu_vm_pt_level_shift(adev, cursor->level); |
| |
| ++cursor->level; |
| idx = (cursor->pfn >> shift) & mask; |
| cursor->parent = cursor->entry; |
| cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; |
| return true; |
| } |
| |
| /** |
| * amdgpu_vm_pt_sibling - go to sibling node |
| * |
| * @adev: amdgpu_device pointer |
| * @cursor: current state |
| * |
| * Walk to the sibling node of the current node. |
| * Returns: |
| * True if the walk was possible, false otherwise. |
| */ |
| static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| |
| unsigned int shift, num_entries; |
| struct amdgpu_bo_vm *parent; |
| |
| /* Root doesn't have a sibling */ |
| if (!cursor->parent) |
| return false; |
| |
| /* Go to our parents and see if we got a sibling */ |
| shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); |
| num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); |
| parent = to_amdgpu_bo_vm(cursor->parent->bo); |
| |
| if (cursor->entry == &parent->entries[num_entries - 1]) |
| return false; |
| |
| cursor->pfn += 1ULL << shift; |
| cursor->pfn &= ~((1ULL << shift) - 1); |
| ++cursor->entry; |
| return true; |
| } |
| |
| /** |
| * amdgpu_vm_pt_ancestor - go to parent node |
| * |
| * @cursor: current state |
| * |
| * Walk to the parent node of the current node. |
| * Returns: |
| * True if the walk was possible, false otherwise. |
| */ |
| static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) |
| { |
| if (!cursor->parent) |
| return false; |
| |
| --cursor->level; |
| cursor->entry = cursor->parent; |
| cursor->parent = amdgpu_vm_pt_parent(cursor->parent); |
| return true; |
| } |
| |
| /** |
| * amdgpu_vm_pt_next - get next PD/PT in hieratchy |
| * |
| * @adev: amdgpu_device pointer |
| * @cursor: current state |
| * |
| * Walk the PD/PT tree to the next node. |
| */ |
| static void amdgpu_vm_pt_next(struct amdgpu_device *adev, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| /* First try a newborn child */ |
| if (amdgpu_vm_pt_descendant(adev, cursor)) |
| return; |
| |
| /* If that didn't worked try to find a sibling */ |
| while (!amdgpu_vm_pt_sibling(adev, cursor)) { |
| /* No sibling, go to our parents and grandparents */ |
| if (!amdgpu_vm_pt_ancestor(cursor)) { |
| cursor->pfn = ~0ll; |
| return; |
| } |
| } |
| } |
| |
| /** |
| * amdgpu_vm_pt_first_dfs - start a deep first search |
| * |
| * @adev: amdgpu_device structure |
| * @vm: amdgpu_vm structure |
| * @start: optional cursor to start with |
| * @cursor: state to initialize |
| * |
| * Starts a deep first traversal of the PD/PT tree. |
| */ |
| static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm, |
| struct amdgpu_vm_pt_cursor *start, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| if (start) |
| *cursor = *start; |
| else |
| amdgpu_vm_pt_start(adev, vm, 0, cursor); |
| |
| while (amdgpu_vm_pt_descendant(adev, cursor)) |
| ; |
| } |
| |
| /** |
| * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue |
| * |
| * @start: starting point for the search |
| * @entry: current entry |
| * |
| * Returns: |
| * True when the search should continue, false otherwise. |
| */ |
| static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, |
| struct amdgpu_vm_bo_base *entry) |
| { |
| return entry && (!start || entry != start->entry); |
| } |
| |
| /** |
| * amdgpu_vm_pt_next_dfs - get the next node for a deep first search |
| * |
| * @adev: amdgpu_device structure |
| * @cursor: current state |
| * |
| * Move the cursor to the next node in a deep first search. |
| */ |
| static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, |
| struct amdgpu_vm_pt_cursor *cursor) |
| { |
| if (!cursor->entry) |
| return; |
| |
| if (!cursor->parent) |
| cursor->entry = NULL; |
| else if (amdgpu_vm_pt_sibling(adev, cursor)) |
| while (amdgpu_vm_pt_descendant(adev, cursor)) |
| ; |
| else |
| amdgpu_vm_pt_ancestor(cursor); |
| } |
| |
| /* |
| * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs |
| */ |
| #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ |
| for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ |
| (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ |
| amdgpu_vm_pt_continue_dfs((start), (entry)); \ |
| (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) |
| |
| /** |
| * amdgpu_vm_pt_clear - initially clear the PDs/PTs |
| * |
| * @adev: amdgpu_device pointer |
| * @vm: VM to clear BO from |
| * @vmbo: BO to clear |
| * @immediate: use an immediate update |
| * |
| * Root PD needs to be reserved when calling this. |
| * |
| * Returns: |
| * 0 on success, errno otherwise. |
| */ |
| int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, |
| struct amdgpu_bo_vm *vmbo, bool immediate) |
| { |
| unsigned int level = adev->vm_manager.root_level; |
| struct ttm_operation_ctx ctx = { true, false }; |
| struct amdgpu_vm_update_params params; |
| struct amdgpu_bo *ancestor = &vmbo->bo; |
| unsigned int entries, ats_entries; |
| struct amdgpu_bo *bo = &vmbo->bo; |
| uint64_t addr; |
| int r, idx; |
| |
| /* Figure out our place in the hierarchy */ |
| if (ancestor->parent) { |
| ++level; |
| while (ancestor->parent->parent) { |
| ++level; |
| ancestor = ancestor->parent; |
| } |
| } |
| |
| entries = amdgpu_bo_size(bo) / 8; |
| if (!vm->pte_support_ats) { |
| ats_entries = 0; |
| |
| } else if (!bo->parent) { |
| ats_entries = amdgpu_vm_pt_num_ats_entries(adev); |
| ats_entries = min(ats_entries, entries); |
| entries -= ats_entries; |
| |
| } else { |
| struct amdgpu_vm_bo_base *pt; |
| |
| pt = ancestor->vm_bo; |
| ats_entries = amdgpu_vm_pt_num_ats_entries(adev); |
| if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= |
| ats_entries) { |
| ats_entries = 0; |
| } else { |
| ats_entries = entries; |
| entries = 0; |
| } |
| } |
| |
| r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); |
| if (r) |
| return r; |
| |
| if (vmbo->shadow) { |
| struct amdgpu_bo *shadow = vmbo->shadow; |
| |
| r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); |
| if (r) |
| return r; |
| } |
| |
| if (!drm_dev_enter(adev_to_drm(adev), &idx)) |
| return -ENODEV; |
| |
| r = vm->update_funcs->map_table(vmbo); |
| if (r) |
| goto exit; |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.adev = adev; |
| params.vm = vm; |
| params.immediate = immediate; |
| |
| r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); |
| if (r) |
| goto exit; |
| |
| addr = 0; |
| if (ats_entries) { |
| uint64_t value = 0, flags; |
| |
| flags = AMDGPU_PTE_DEFAULT_ATC; |
| if (level != AMDGPU_VM_PTB) { |
| /* Handle leaf PDEs as PTEs */ |
| flags |= AMDGPU_PDE_PTE; |
| amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); |
| } |
| |
| r = vm->update_funcs->update(¶ms, vmbo, addr, 0, |
| ats_entries, value, flags); |
| if (r) |
| goto exit; |
| |
| addr += ats_entries * 8; |
| } |
| |
| if (entries) { |
| uint64_t value = 0, flags = 0; |
| |
| if (adev->asic_type >= CHIP_VEGA10) { |
| if (level != AMDGPU_VM_PTB) { |
| /* Handle leaf PDEs as PTEs */ |
| flags |= AMDGPU_PDE_PTE; |
| amdgpu_gmc_get_vm_pde(adev, level, |
| &value, &flags); |
| } else { |
| /* Workaround for fault priority problem on GMC9 */ |
| flags = AMDGPU_PTE_EXECUTABLE; |
| } |
| } |
| |
| r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, |
| value, flags); |
| if (r) |
| goto exit; |
| } |
| |
| r = vm->update_funcs->commit(¶ms, NULL); |
| exit: |
| drm_dev_exit(idx); |
| return r; |
| } |
| |
| /** |
| * amdgpu_vm_pt_create - create bo for PD/PT |
| * |
| * @adev: amdgpu_device pointer |
| * @vm: requesting vm |
| * @level: the page table level |
| * @immediate: use a immediate update |
| * @vmbo: pointer to the buffer object pointer |
| */ |
| int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, |
| int level, bool immediate, struct amdgpu_bo_vm **vmbo) |
| { |
| struct amdgpu_bo_param bp; |
| struct amdgpu_bo *bo; |
| struct dma_resv *resv; |
| unsigned int num_entries; |
| int r; |
| |
| memset(&bp, 0, sizeof(bp)); |
| |
| bp.size = amdgpu_vm_pt_size(adev, level); |
| bp.byte_align = AMDGPU_GPU_PAGE_SIZE; |
| bp.domain = AMDGPU_GEM_DOMAIN_VRAM; |
| bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); |
| bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | |
| AMDGPU_GEM_CREATE_CPU_GTT_USWC; |
| |
| if (level < AMDGPU_VM_PTB) |
| num_entries = amdgpu_vm_pt_num_entries(adev, level); |
| else |
| num_entries = 0; |
| |
| bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); |
| |
| if (vm->use_cpu_for_update) |
| bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; |
| |
| bp.type = ttm_bo_type_kernel; |
| bp.no_wait_gpu = immediate; |
| if (vm->root.bo) |
| bp.resv = vm->root.bo->tbo.base.resv; |
| |
| r = amdgpu_bo_create_vm(adev, &bp, vmbo); |
| if (r) |
| return r; |
| |
| bo = &(*vmbo)->bo; |
| if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { |
| (*vmbo)->shadow = NULL; |
| return 0; |
| } |
| |
| if (!bp.resv) |
| WARN_ON(dma_resv_lock(bo->tbo.base.resv, |
| NULL)); |
| resv = bp.resv; |
| memset(&bp, 0, sizeof(bp)); |
| bp.size = amdgpu_vm_pt_size(adev, level); |
| bp.domain = AMDGPU_GEM_DOMAIN_GTT; |
| bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; |
| bp.type = ttm_bo_type_kernel; |
| bp.resv = bo->tbo.base.resv; |
| bp.bo_ptr_size = sizeof(struct amdgpu_bo); |
| |
| r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); |
| |
| if (!resv) |
| dma_resv_unlock(bo->tbo.base.resv); |
| |
| if (r) { |
| amdgpu_bo_unref(&bo); |
| return r; |
| } |
| |
| (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); |
| amdgpu_bo_add_to_shadow_list(*vmbo); |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_vm_pt_alloc - Allocate a specific page table |
| * |
| * @adev: amdgpu_device pointer |
| * @vm: VM to allocate page tables for |
| * @cursor: Which page table to allocate |
| * @immediate: use an immediate update |
| * |
| * Make sure a specific page table or directory is allocated. |
| * |
| * Returns: |
| * 1 if page table needed to be allocated, 0 if page table was already |
| * allocated, negative errno if an error occurred. |
| */ |
| static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm, |
| struct amdgpu_vm_pt_cursor *cursor, |
| bool immediate) |
| { |
| struct amdgpu_vm_bo_base *entry = cursor->entry; |
| struct amdgpu_bo *pt_bo; |
| struct amdgpu_bo_vm *pt; |
| int r; |
| |
| if (entry->bo) |
| return 0; |
| |
| amdgpu_vm_eviction_unlock(vm); |
| r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); |
| amdgpu_vm_eviction_lock(vm); |
| if (r) |
| return r; |
| |
| /* Keep a reference to the root directory to avoid |
| * freeing them up in the wrong order. |
| */ |
| pt_bo = &pt->bo; |
| pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); |
| amdgpu_vm_bo_base_init(entry, vm, pt_bo); |
| r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); |
| if (r) |
| goto error_free_pt; |
| |
| return 0; |
| |
| error_free_pt: |
| amdgpu_bo_unref(&pt->shadow); |
| amdgpu_bo_unref(&pt_bo); |
| return r; |
| } |
| |
| /** |
| * amdgpu_vm_pt_free - free one PD/PT |
| * |
| * @entry: PDE to free |
| */ |
| static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) |
| { |
| struct amdgpu_bo *shadow; |
| |
| if (!entry->bo) |
| return; |
| shadow = amdgpu_bo_shadowed(entry->bo); |
| if (shadow) { |
| ttm_bo_set_bulk_move(&shadow->tbo, NULL); |
| amdgpu_bo_unref(&shadow); |
| } |
| ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); |
| entry->bo->vm_bo = NULL; |
| |
| spin_lock(&entry->vm->status_lock); |
| list_del(&entry->vm_status); |
| spin_unlock(&entry->vm->status_lock); |
| amdgpu_bo_unref(&entry->bo); |
| } |
| |
| void amdgpu_vm_pt_free_work(struct work_struct *work) |
| { |
| struct amdgpu_vm_bo_base *entry, *next; |
| struct amdgpu_vm *vm; |
| LIST_HEAD(pt_freed); |
| |
| vm = container_of(work, struct amdgpu_vm, pt_free_work); |
| |
| spin_lock(&vm->status_lock); |
| list_splice_init(&vm->pt_freed, &pt_freed); |
| spin_unlock(&vm->status_lock); |
| |
| /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ |
| amdgpu_bo_reserve(vm->root.bo, true); |
| |
| list_for_each_entry_safe(entry, next, &pt_freed, vm_status) |
| amdgpu_vm_pt_free(entry); |
| |
| amdgpu_bo_unreserve(vm->root.bo); |
| } |
| |
| /** |
| * amdgpu_vm_pt_free_dfs - free PD/PT levels |
| * |
| * @adev: amdgpu device structure |
| * @vm: amdgpu vm structure |
| * @start: optional cursor where to start freeing PDs/PTs |
| * |
| * Free the page directory or page table level and all sub levels. |
| */ |
| static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm, |
| struct amdgpu_vm_pt_cursor *start, |
| bool unlocked) |
| { |
| struct amdgpu_vm_pt_cursor cursor; |
| struct amdgpu_vm_bo_base *entry; |
| |
| if (unlocked) { |
| spin_lock(&vm->status_lock); |
| for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) |
| list_move(&entry->vm_status, &vm->pt_freed); |
| |
| if (start) |
| list_move(&start->entry->vm_status, &vm->pt_freed); |
| spin_unlock(&vm->status_lock); |
| schedule_work(&vm->pt_free_work); |
| return; |
| } |
| |
| for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) |
| amdgpu_vm_pt_free(entry); |
| |
| if (start) |
| amdgpu_vm_pt_free(start->entry); |
| } |
| |
| /** |
| * amdgpu_vm_pt_free_root - free root PD |
| * @adev: amdgpu device structure |
| * @vm: amdgpu vm structure |
| * |
| * Free the root page directory and everything below it. |
| */ |
| void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) |
| { |
| amdgpu_vm_pt_free_dfs(adev, vm, NULL, false); |
| } |
| |
| /** |
| * amdgpu_vm_pt_is_root_clean - check if a root PD is clean |
| * |
| * @adev: amdgpu_device pointer |
| * @vm: the VM to check |
| * |
| * Check all entries of the root PD, if any subsequent PDs are allocated, |
| * it means there are page table creating and filling, and is no a clean |
| * VM |
| * |
| * Returns: |
| * 0 if this VM is clean |
| */ |
| bool amdgpu_vm_pt_is_root_clean(struct amdgpu_device *adev, |
| struct amdgpu_vm *vm) |
| { |
| enum amdgpu_vm_level root = adev->vm_manager.root_level; |
| unsigned int entries = amdgpu_vm_pt_num_entries(adev, root); |
| unsigned int i = 0; |
| |
| for (i = 0; i < entries; i++) { |
| if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * amdgpu_vm_pde_update - update a single level in the hierarchy |
| * |
| * @params: parameters for the update |
| * @entry: entry to update |
| * |
| * Makes sure the requested entry in parent is up to date. |
| */ |
| int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, |
| struct amdgpu_vm_bo_base *entry) |
| { |
| struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); |
| struct amdgpu_bo *bo = parent->bo, *pbo; |
| struct amdgpu_vm *vm = params->vm; |
| uint64_t pde, pt, flags; |
| unsigned int level; |
| |
| for (level = 0, pbo = bo->parent; pbo; ++level) |
| pbo = pbo->parent; |
| |
| level += params->adev->vm_manager.root_level; |
| amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); |
| pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; |
| return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, |
| 1, 0, flags); |
| } |
| |
| /* |
| * amdgpu_vm_pte_update_flags - figure out flags for PTE updates |
| * |
| * Make sure to set the right flags for the PTEs at the desired level. |
| */ |
| static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, |
| struct amdgpu_bo_vm *pt, |
| unsigned int level, |
| uint64_t pe, uint64_t addr, |
| unsigned int count, uint32_t incr, |
| uint64_t flags) |
| |
| { |
| if (level != AMDGPU_VM_PTB) { |
| flags |= AMDGPU_PDE_PTE; |
| amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); |
| |
| } else if (params->adev->asic_type >= CHIP_VEGA10 && |
| !(flags & AMDGPU_PTE_VALID) && |
| !(flags & AMDGPU_PTE_PRT)) { |
| |
| /* Workaround for fault priority problem on GMC9 */ |
| flags |= AMDGPU_PTE_EXECUTABLE; |
| } |
| |
| params->vm->update_funcs->update(params, pt, pe, addr, count, incr, |
| flags); |
| } |
| |
| /** |
| * amdgpu_vm_pte_fragment - get fragment for PTEs |
| * |
| * @params: see amdgpu_vm_update_params definition |
| * @start: first PTE to handle |
| * @end: last PTE to handle |
| * @flags: hw mapping flags |
| * @frag: resulting fragment size |
| * @frag_end: end of this fragment |
| * |
| * Returns the first possible fragment for the start and end address. |
| */ |
| static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, |
| uint64_t start, uint64_t end, uint64_t flags, |
| unsigned int *frag, uint64_t *frag_end) |
| { |
| /** |
| * The MC L1 TLB supports variable sized pages, based on a fragment |
| * field in the PTE. When this field is set to a non-zero value, page |
| * granularity is increased from 4KB to (1 << (12 + frag)). The PTE |
| * flags are considered valid for all PTEs within the fragment range |
| * and corresponding mappings are assumed to be physically contiguous. |
| * |
| * The L1 TLB can store a single PTE for the whole fragment, |
| * significantly increasing the space available for translation |
| * caching. This leads to large improvements in throughput when the |
| * TLB is under pressure. |
| * |
| * The L2 TLB distributes small and large fragments into two |
| * asymmetric partitions. The large fragment cache is significantly |
| * larger. Thus, we try to use large fragments wherever possible. |
| * Userspace can support this by aligning virtual base address and |
| * allocation size to the fragment size. |
| * |
| * Starting with Vega10 the fragment size only controls the L1. The L2 |
| * is now directly feed with small/huge/giant pages from the walker. |
| */ |
| unsigned int max_frag; |
| |
| if (params->adev->asic_type < CHIP_VEGA10) |
| max_frag = params->adev->vm_manager.fragment_size; |
| else |
| max_frag = 31; |
| |
| /* system pages are non continuously */ |
| if (params->pages_addr) { |
| *frag = 0; |
| *frag_end = end; |
| return; |
| } |
| |
| /* This intentionally wraps around if no bit is set */ |
| *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); |
| if (*frag >= max_frag) { |
| *frag = max_frag; |
| *frag_end = end & ~((1ULL << max_frag) - 1); |
| } else { |
| *frag_end = start + (1 << *frag); |
| } |
| } |
| |
| /** |
| * amdgpu_vm_ptes_update - make sure that page tables are valid |
| * |
| * @params: see amdgpu_vm_update_params definition |
| * @start: start of GPU address range |
| * @end: end of GPU address range |
| * @dst: destination address to map to, the next dst inside the function |
| * @flags: mapping flags |
| * |
| * Update the page tables in the range @start - @end. |
| * |
| * Returns: |
| * 0 for success, -EINVAL for failure. |
| */ |
| int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, |
| uint64_t start, uint64_t end, |
| uint64_t dst, uint64_t flags) |
| { |
| struct amdgpu_device *adev = params->adev; |
| struct amdgpu_vm_pt_cursor cursor; |
| uint64_t frag_start = start, frag_end; |
| unsigned int frag; |
| int r; |
| |
| /* figure out the initial fragment */ |
| amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, |
| &frag_end); |
| |
| /* walk over the address space and update the PTs */ |
| amdgpu_vm_pt_start(adev, params->vm, start, &cursor); |
| while (cursor.pfn < end) { |
| unsigned int shift, parent_shift, mask; |
| uint64_t incr, entry_end, pe_start; |
| struct amdgpu_bo *pt; |
| |
| if (!params->unlocked) { |
| /* make sure that the page tables covering the |
| * address range are actually allocated |
| */ |
| r = amdgpu_vm_pt_alloc(params->adev, params->vm, |
| &cursor, params->immediate); |
| if (r) |
| return r; |
| } |
| |
| shift = amdgpu_vm_pt_level_shift(adev, cursor.level); |
| parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); |
| if (params->unlocked) { |
| /* Unlocked updates are only allowed on the leaves */ |
| if (amdgpu_vm_pt_descendant(adev, &cursor)) |
| continue; |
| } else if (adev->asic_type < CHIP_VEGA10 && |
| (flags & AMDGPU_PTE_VALID)) { |
| /* No huge page support before GMC v9 */ |
| if (cursor.level != AMDGPU_VM_PTB) { |
| if (!amdgpu_vm_pt_descendant(adev, &cursor)) |
| return -ENOENT; |
| continue; |
| } |
| } else if (frag < shift) { |
| /* We can't use this level when the fragment size is |
| * smaller than the address shift. Go to the next |
| * child entry and try again. |
| */ |
| if (amdgpu_vm_pt_descendant(adev, &cursor)) |
| continue; |
| } else if (frag >= parent_shift) { |
| /* If the fragment size is even larger than the parent |
| * shift we should go up one level and check it again. |
| */ |
| if (!amdgpu_vm_pt_ancestor(&cursor)) |
| return -EINVAL; |
| continue; |
| } |
| |
| pt = cursor.entry->bo; |
| if (!pt) { |
| /* We need all PDs and PTs for mapping something, */ |
| if (flags & AMDGPU_PTE_VALID) |
| return -ENOENT; |
| |
| /* but unmapping something can happen at a higher |
| * level. |
| */ |
| if (!amdgpu_vm_pt_ancestor(&cursor)) |
| return -EINVAL; |
| |
| pt = cursor.entry->bo; |
| shift = parent_shift; |
| frag_end = max(frag_end, ALIGN(frag_start + 1, |
| 1ULL << shift)); |
| } |
| |
| /* Looks good so far, calculate parameters for the update */ |
| incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; |
| mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); |
| pe_start = ((cursor.pfn >> shift) & mask) * 8; |
| entry_end = ((uint64_t)mask + 1) << shift; |
| entry_end += cursor.pfn & ~(entry_end - 1); |
| entry_end = min(entry_end, end); |
| |
| do { |
| struct amdgpu_vm *vm = params->vm; |
| uint64_t upd_end = min(entry_end, frag_end); |
| unsigned int nptes = (upd_end - frag_start) >> shift; |
| uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); |
| |
| /* This can happen when we set higher level PDs to |
| * silent to stop fault floods. |
| */ |
| nptes = max(nptes, 1u); |
| |
| trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, |
| min(nptes, 32u), dst, incr, |
| upd_flags, |
| vm->task_info.tgid, |
| vm->immediate.fence_context); |
| amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), |
| cursor.level, pe_start, dst, |
| nptes, incr, upd_flags); |
| |
| pe_start += nptes * 8; |
| dst += nptes * incr; |
| |
| frag_start = upd_end; |
| if (frag_start >= frag_end) { |
| /* figure out the next fragment */ |
| amdgpu_vm_pte_fragment(params, frag_start, end, |
| flags, &frag, &frag_end); |
| if (frag < shift) |
| break; |
| } |
| } while (frag_start < entry_end); |
| |
| if (amdgpu_vm_pt_descendant(adev, &cursor)) { |
| /* Free all child entries. |
| * Update the tables with the flags and addresses and free up subsequent |
| * tables in the case of huge pages or freed up areas. |
| * This is the maximum you can free, because all other page tables are not |
| * completely covered by the range and so potentially still in use. |
| */ |
| while (cursor.pfn < frag_start) { |
| /* Make sure previous mapping is freed */ |
| if (cursor.entry->bo) { |
| params->table_freed = true; |
| amdgpu_vm_pt_free_dfs(adev, params->vm, |
| &cursor, |
| params->unlocked); |
| } |
| amdgpu_vm_pt_next(adev, &cursor); |
| } |
| |
| } else if (frag >= shift) { |
| /* or just move on to the next on the same level. */ |
| amdgpu_vm_pt_next(adev, &cursor); |
| } |
| } |
| |
| return 0; |
| } |