| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright(c) 2015 - 2017 Intel Deutschland GmbH |
| * Copyright (C) 2018-2021 Intel Corporation |
| */ |
| |
| #include <linux/jiffies.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/rcupdate.h> |
| #include <linux/export.h> |
| #include <linux/kcov.h> |
| #include <linux/bitops.h> |
| #include <net/mac80211.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <asm/unaligned.h> |
| |
| #include "ieee80211_i.h" |
| #include "driver-ops.h" |
| #include "led.h" |
| #include "mesh.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "tkip.h" |
| #include "wme.h" |
| #include "rate.h" |
| |
| /* |
| * monitor mode reception |
| * |
| * This function cleans up the SKB, i.e. it removes all the stuff |
| * only useful for monitoring. |
| */ |
| static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, |
| unsigned int present_fcs_len, |
| unsigned int rtap_space) |
| { |
| struct ieee80211_hdr *hdr; |
| unsigned int hdrlen; |
| __le16 fc; |
| |
| if (present_fcs_len) |
| __pskb_trim(skb, skb->len - present_fcs_len); |
| __pskb_pull(skb, rtap_space); |
| |
| hdr = (void *)skb->data; |
| fc = hdr->frame_control; |
| |
| /* |
| * Remove the HT-Control field (if present) on management |
| * frames after we've sent the frame to monitoring. We |
| * (currently) don't need it, and don't properly parse |
| * frames with it present, due to the assumption of a |
| * fixed management header length. |
| */ |
| if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) |
| return skb; |
| |
| hdrlen = ieee80211_hdrlen(fc); |
| hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); |
| |
| if (!pskb_may_pull(skb, hdrlen)) { |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| |
| memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, |
| hdrlen - IEEE80211_HT_CTL_LEN); |
| __pskb_pull(skb, IEEE80211_HT_CTL_LEN); |
| |
| return skb; |
| } |
| |
| static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, |
| unsigned int rtap_space) |
| { |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr; |
| |
| hdr = (void *)(skb->data + rtap_space); |
| |
| if (status->flag & (RX_FLAG_FAILED_FCS_CRC | |
| RX_FLAG_FAILED_PLCP_CRC | |
| RX_FLAG_ONLY_MONITOR | |
| RX_FLAG_NO_PSDU)) |
| return true; |
| |
| if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) |
| return true; |
| |
| if (ieee80211_is_ctl(hdr->frame_control) && |
| !ieee80211_is_pspoll(hdr->frame_control) && |
| !ieee80211_is_back_req(hdr->frame_control)) |
| return true; |
| |
| return false; |
| } |
| |
| static int |
| ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, |
| struct ieee80211_rx_status *status, |
| struct sk_buff *skb) |
| { |
| int len; |
| |
| /* always present fields */ |
| len = sizeof(struct ieee80211_radiotap_header) + 8; |
| |
| /* allocate extra bitmaps */ |
| if (status->chains) |
| len += 4 * hweight8(status->chains); |
| /* vendor presence bitmap */ |
| if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) |
| len += 4; |
| |
| if (ieee80211_have_rx_timestamp(status)) { |
| len = ALIGN(len, 8); |
| len += 8; |
| } |
| if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) |
| len += 1; |
| |
| /* antenna field, if we don't have per-chain info */ |
| if (!status->chains) |
| len += 1; |
| |
| /* padding for RX_FLAGS if necessary */ |
| len = ALIGN(len, 2); |
| |
| if (status->encoding == RX_ENC_HT) /* HT info */ |
| len += 3; |
| |
| if (status->flag & RX_FLAG_AMPDU_DETAILS) { |
| len = ALIGN(len, 4); |
| len += 8; |
| } |
| |
| if (status->encoding == RX_ENC_VHT) { |
| len = ALIGN(len, 2); |
| len += 12; |
| } |
| |
| if (local->hw.radiotap_timestamp.units_pos >= 0) { |
| len = ALIGN(len, 8); |
| len += 12; |
| } |
| |
| if (status->encoding == RX_ENC_HE && |
| status->flag & RX_FLAG_RADIOTAP_HE) { |
| len = ALIGN(len, 2); |
| len += 12; |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); |
| } |
| |
| if (status->encoding == RX_ENC_HE && |
| status->flag & RX_FLAG_RADIOTAP_HE_MU) { |
| len = ALIGN(len, 2); |
| len += 12; |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); |
| } |
| |
| if (status->flag & RX_FLAG_NO_PSDU) |
| len += 1; |
| |
| if (status->flag & RX_FLAG_RADIOTAP_LSIG) { |
| len = ALIGN(len, 2); |
| len += 4; |
| BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); |
| } |
| |
| if (status->chains) { |
| /* antenna and antenna signal fields */ |
| len += 2 * hweight8(status->chains); |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| struct ieee80211_vendor_radiotap *rtap; |
| int vendor_data_offset = 0; |
| |
| /* |
| * The position to look at depends on the existence (or non- |
| * existence) of other elements, so take that into account... |
| */ |
| if (status->flag & RX_FLAG_RADIOTAP_HE) |
| vendor_data_offset += |
| sizeof(struct ieee80211_radiotap_he); |
| if (status->flag & RX_FLAG_RADIOTAP_HE_MU) |
| vendor_data_offset += |
| sizeof(struct ieee80211_radiotap_he_mu); |
| if (status->flag & RX_FLAG_RADIOTAP_LSIG) |
| vendor_data_offset += |
| sizeof(struct ieee80211_radiotap_lsig); |
| |
| rtap = (void *)&skb->data[vendor_data_offset]; |
| |
| /* alignment for fixed 6-byte vendor data header */ |
| len = ALIGN(len, 2); |
| /* vendor data header */ |
| len += 6; |
| if (WARN_ON(rtap->align == 0)) |
| rtap->align = 1; |
| len = ALIGN(len, rtap->align); |
| len += rtap->len + rtap->pad; |
| } |
| |
| return len; |
| } |
| |
| static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| skb_queue_tail(&sdata->skb_queue, skb); |
| ieee80211_queue_work(&sdata->local->hw, &sdata->work); |
| if (sta) |
| sta->rx_stats.packets++; |
| } |
| |
| static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, |
| struct sk_buff *skb) |
| { |
| skb->protocol = 0; |
| __ieee80211_queue_skb_to_iface(sdata, sta, skb); |
| } |
| |
| static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, |
| struct sk_buff *skb, |
| int rtap_space) |
| { |
| struct { |
| struct ieee80211_hdr_3addr hdr; |
| u8 category; |
| u8 action_code; |
| } __packed __aligned(2) action; |
| |
| if (!sdata) |
| return; |
| |
| BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); |
| |
| if (skb->len < rtap_space + sizeof(action) + |
| VHT_MUMIMO_GROUPS_DATA_LEN) |
| return; |
| |
| if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) |
| return; |
| |
| skb_copy_bits(skb, rtap_space, &action, sizeof(action)); |
| |
| if (!ieee80211_is_action(action.hdr.frame_control)) |
| return; |
| |
| if (action.category != WLAN_CATEGORY_VHT) |
| return; |
| |
| if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) |
| return; |
| |
| if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) |
| return; |
| |
| skb = skb_copy(skb, GFP_ATOMIC); |
| if (!skb) |
| return; |
| |
| ieee80211_queue_skb_to_iface(sdata, NULL, skb); |
| } |
| |
| /* |
| * ieee80211_add_rx_radiotap_header - add radiotap header |
| * |
| * add a radiotap header containing all the fields which the hardware provided. |
| */ |
| static void |
| ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, |
| struct sk_buff *skb, |
| struct ieee80211_rate *rate, |
| int rtap_len, bool has_fcs) |
| { |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_header *rthdr; |
| unsigned char *pos; |
| __le32 *it_present; |
| u32 it_present_val; |
| u16 rx_flags = 0; |
| u16 channel_flags = 0; |
| int mpdulen, chain; |
| unsigned long chains = status->chains; |
| struct ieee80211_vendor_radiotap rtap = {}; |
| struct ieee80211_radiotap_he he = {}; |
| struct ieee80211_radiotap_he_mu he_mu = {}; |
| struct ieee80211_radiotap_lsig lsig = {}; |
| |
| if (status->flag & RX_FLAG_RADIOTAP_HE) { |
| he = *(struct ieee80211_radiotap_he *)skb->data; |
| skb_pull(skb, sizeof(he)); |
| WARN_ON_ONCE(status->encoding != RX_ENC_HE); |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { |
| he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; |
| skb_pull(skb, sizeof(he_mu)); |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_LSIG) { |
| lsig = *(struct ieee80211_radiotap_lsig *)skb->data; |
| skb_pull(skb, sizeof(lsig)); |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| rtap = *(struct ieee80211_vendor_radiotap *)skb->data; |
| /* rtap.len and rtap.pad are undone immediately */ |
| skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); |
| } |
| |
| mpdulen = skb->len; |
| if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) |
| mpdulen += FCS_LEN; |
| |
| rthdr = skb_push(skb, rtap_len); |
| memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); |
| it_present = &rthdr->it_present; |
| |
| /* radiotap header, set always present flags */ |
| rthdr->it_len = cpu_to_le16(rtap_len); |
| it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | |
| BIT(IEEE80211_RADIOTAP_CHANNEL) | |
| BIT(IEEE80211_RADIOTAP_RX_FLAGS); |
| |
| if (!status->chains) |
| it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); |
| |
| for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { |
| it_present_val |= |
| BIT(IEEE80211_RADIOTAP_EXT) | |
| BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); |
| put_unaligned_le32(it_present_val, it_present); |
| it_present++; |
| it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | |
| BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | |
| BIT(IEEE80211_RADIOTAP_EXT); |
| put_unaligned_le32(it_present_val, it_present); |
| it_present++; |
| it_present_val = rtap.present; |
| } |
| |
| put_unaligned_le32(it_present_val, it_present); |
| |
| /* This references through an offset into it_optional[] rather |
| * than via it_present otherwise later uses of pos will cause |
| * the compiler to think we have walked past the end of the |
| * struct member. |
| */ |
| pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; |
| |
| /* the order of the following fields is important */ |
| |
| /* IEEE80211_RADIOTAP_TSFT */ |
| if (ieee80211_have_rx_timestamp(status)) { |
| /* padding */ |
| while ((pos - (u8 *)rthdr) & 7) |
| *pos++ = 0; |
| put_unaligned_le64( |
| ieee80211_calculate_rx_timestamp(local, status, |
| mpdulen, 0), |
| pos); |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); |
| pos += 8; |
| } |
| |
| /* IEEE80211_RADIOTAP_FLAGS */ |
| if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) |
| *pos |= IEEE80211_RADIOTAP_F_FCS; |
| if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) |
| *pos |= IEEE80211_RADIOTAP_F_BADFCS; |
| if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) |
| *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; |
| pos++; |
| |
| /* IEEE80211_RADIOTAP_RATE */ |
| if (!rate || status->encoding != RX_ENC_LEGACY) { |
| /* |
| * Without rate information don't add it. If we have, |
| * MCS information is a separate field in radiotap, |
| * added below. The byte here is needed as padding |
| * for the channel though, so initialise it to 0. |
| */ |
| *pos = 0; |
| } else { |
| int shift = 0; |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); |
| if (status->bw == RATE_INFO_BW_10) |
| shift = 1; |
| else if (status->bw == RATE_INFO_BW_5) |
| shift = 2; |
| *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); |
| } |
| pos++; |
| |
| /* IEEE80211_RADIOTAP_CHANNEL */ |
| /* TODO: frequency offset in KHz */ |
| put_unaligned_le16(status->freq, pos); |
| pos += 2; |
| if (status->bw == RATE_INFO_BW_10) |
| channel_flags |= IEEE80211_CHAN_HALF; |
| else if (status->bw == RATE_INFO_BW_5) |
| channel_flags |= IEEE80211_CHAN_QUARTER; |
| |
| if (status->band == NL80211_BAND_5GHZ || |
| status->band == NL80211_BAND_6GHZ) |
| channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; |
| else if (status->encoding != RX_ENC_LEGACY) |
| channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; |
| else if (rate && rate->flags & IEEE80211_RATE_ERP_G) |
| channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; |
| else if (rate) |
| channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; |
| else |
| channel_flags |= IEEE80211_CHAN_2GHZ; |
| put_unaligned_le16(channel_flags, pos); |
| pos += 2; |
| |
| /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ |
| if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && |
| !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { |
| *pos = status->signal; |
| rthdr->it_present |= |
| cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); |
| pos++; |
| } |
| |
| /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ |
| |
| if (!status->chains) { |
| /* IEEE80211_RADIOTAP_ANTENNA */ |
| *pos = status->antenna; |
| pos++; |
| } |
| |
| /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ |
| |
| /* IEEE80211_RADIOTAP_RX_FLAGS */ |
| /* ensure 2 byte alignment for the 2 byte field as required */ |
| if ((pos - (u8 *)rthdr) & 1) |
| *pos++ = 0; |
| if (status->flag & RX_FLAG_FAILED_PLCP_CRC) |
| rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; |
| put_unaligned_le16(rx_flags, pos); |
| pos += 2; |
| |
| if (status->encoding == RX_ENC_HT) { |
| unsigned int stbc; |
| |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); |
| *pos++ = local->hw.radiotap_mcs_details; |
| *pos = 0; |
| if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) |
| *pos |= IEEE80211_RADIOTAP_MCS_SGI; |
| if (status->bw == RATE_INFO_BW_40) |
| *pos |= IEEE80211_RADIOTAP_MCS_BW_40; |
| if (status->enc_flags & RX_ENC_FLAG_HT_GF) |
| *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; |
| if (status->enc_flags & RX_ENC_FLAG_LDPC) |
| *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; |
| stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; |
| *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; |
| pos++; |
| *pos++ = status->rate_idx; |
| } |
| |
| if (status->flag & RX_FLAG_AMPDU_DETAILS) { |
| u16 flags = 0; |
| |
| /* ensure 4 byte alignment */ |
| while ((pos - (u8 *)rthdr) & 3) |
| pos++; |
| rthdr->it_present |= |
| cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); |
| put_unaligned_le32(status->ampdu_reference, pos); |
| pos += 4; |
| if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) |
| flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; |
| if (status->flag & RX_FLAG_AMPDU_IS_LAST) |
| flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; |
| if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) |
| flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; |
| if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) |
| flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; |
| if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) |
| flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; |
| if (status->flag & RX_FLAG_AMPDU_EOF_BIT) |
| flags |= IEEE80211_RADIOTAP_AMPDU_EOF; |
| put_unaligned_le16(flags, pos); |
| pos += 2; |
| if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) |
| *pos++ = status->ampdu_delimiter_crc; |
| else |
| *pos++ = 0; |
| *pos++ = 0; |
| } |
| |
| if (status->encoding == RX_ENC_VHT) { |
| u16 known = local->hw.radiotap_vht_details; |
| |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); |
| put_unaligned_le16(known, pos); |
| pos += 2; |
| /* flags */ |
| if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) |
| *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; |
| /* in VHT, STBC is binary */ |
| if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) |
| *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; |
| if (status->enc_flags & RX_ENC_FLAG_BF) |
| *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; |
| pos++; |
| /* bandwidth */ |
| switch (status->bw) { |
| case RATE_INFO_BW_80: |
| *pos++ = 4; |
| break; |
| case RATE_INFO_BW_160: |
| *pos++ = 11; |
| break; |
| case RATE_INFO_BW_40: |
| *pos++ = 1; |
| break; |
| default: |
| *pos++ = 0; |
| } |
| /* MCS/NSS */ |
| *pos = (status->rate_idx << 4) | status->nss; |
| pos += 4; |
| /* coding field */ |
| if (status->enc_flags & RX_ENC_FLAG_LDPC) |
| *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; |
| pos++; |
| /* group ID */ |
| pos++; |
| /* partial_aid */ |
| pos += 2; |
| } |
| |
| if (local->hw.radiotap_timestamp.units_pos >= 0) { |
| u16 accuracy = 0; |
| u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; |
| |
| rthdr->it_present |= |
| cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); |
| |
| /* ensure 8 byte alignment */ |
| while ((pos - (u8 *)rthdr) & 7) |
| pos++; |
| |
| put_unaligned_le64(status->device_timestamp, pos); |
| pos += sizeof(u64); |
| |
| if (local->hw.radiotap_timestamp.accuracy >= 0) { |
| accuracy = local->hw.radiotap_timestamp.accuracy; |
| flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; |
| } |
| put_unaligned_le16(accuracy, pos); |
| pos += sizeof(u16); |
| |
| *pos++ = local->hw.radiotap_timestamp.units_pos; |
| *pos++ = flags; |
| } |
| |
| if (status->encoding == RX_ENC_HE && |
| status->flag & RX_FLAG_RADIOTAP_HE) { |
| #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) |
| |
| if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { |
| he.data6 |= HE_PREP(DATA6_NSTS, |
| FIELD_GET(RX_ENC_FLAG_STBC_MASK, |
| status->enc_flags)); |
| he.data3 |= HE_PREP(DATA3_STBC, 1); |
| } else { |
| he.data6 |= HE_PREP(DATA6_NSTS, status->nss); |
| } |
| |
| #define CHECK_GI(s) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ |
| (int)NL80211_RATE_INFO_HE_GI_##s) |
| |
| CHECK_GI(0_8); |
| CHECK_GI(1_6); |
| CHECK_GI(3_2); |
| |
| he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); |
| he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); |
| he.data3 |= HE_PREP(DATA3_CODING, |
| !!(status->enc_flags & RX_ENC_FLAG_LDPC)); |
| |
| he.data5 |= HE_PREP(DATA5_GI, status->he_gi); |
| |
| switch (status->bw) { |
| case RATE_INFO_BW_20: |
| he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, |
| IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); |
| break; |
| case RATE_INFO_BW_40: |
| he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, |
| IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); |
| break; |
| case RATE_INFO_BW_80: |
| he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, |
| IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); |
| break; |
| case RATE_INFO_BW_160: |
| he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, |
| IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); |
| break; |
| case RATE_INFO_BW_HE_RU: |
| #define CHECK_RU_ALLOC(s) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ |
| NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) |
| |
| CHECK_RU_ALLOC(26); |
| CHECK_RU_ALLOC(52); |
| CHECK_RU_ALLOC(106); |
| CHECK_RU_ALLOC(242); |
| CHECK_RU_ALLOC(484); |
| CHECK_RU_ALLOC(996); |
| CHECK_RU_ALLOC(2x996); |
| |
| he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, |
| status->he_ru + 4); |
| break; |
| default: |
| WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); |
| } |
| |
| /* ensure 2 byte alignment */ |
| while ((pos - (u8 *)rthdr) & 1) |
| pos++; |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); |
| memcpy(pos, &he, sizeof(he)); |
| pos += sizeof(he); |
| } |
| |
| if (status->encoding == RX_ENC_HE && |
| status->flag & RX_FLAG_RADIOTAP_HE_MU) { |
| /* ensure 2 byte alignment */ |
| while ((pos - (u8 *)rthdr) & 1) |
| pos++; |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); |
| memcpy(pos, &he_mu, sizeof(he_mu)); |
| pos += sizeof(he_mu); |
| } |
| |
| if (status->flag & RX_FLAG_NO_PSDU) { |
| rthdr->it_present |= |
| cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); |
| *pos++ = status->zero_length_psdu_type; |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_LSIG) { |
| /* ensure 2 byte alignment */ |
| while ((pos - (u8 *)rthdr) & 1) |
| pos++; |
| rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); |
| memcpy(pos, &lsig, sizeof(lsig)); |
| pos += sizeof(lsig); |
| } |
| |
| for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { |
| *pos++ = status->chain_signal[chain]; |
| *pos++ = chain; |
| } |
| |
| if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| /* ensure 2 byte alignment for the vendor field as required */ |
| if ((pos - (u8 *)rthdr) & 1) |
| *pos++ = 0; |
| *pos++ = rtap.oui[0]; |
| *pos++ = rtap.oui[1]; |
| *pos++ = rtap.oui[2]; |
| *pos++ = rtap.subns; |
| put_unaligned_le16(rtap.len, pos); |
| pos += 2; |
| /* align the actual payload as requested */ |
| while ((pos - (u8 *)rthdr) & (rtap.align - 1)) |
| *pos++ = 0; |
| /* data (and possible padding) already follows */ |
| } |
| } |
| |
| static struct sk_buff * |
| ieee80211_make_monitor_skb(struct ieee80211_local *local, |
| struct sk_buff **origskb, |
| struct ieee80211_rate *rate, |
| int rtap_space, bool use_origskb) |
| { |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); |
| int rt_hdrlen, needed_headroom; |
| struct sk_buff *skb; |
| |
| /* room for the radiotap header based on driver features */ |
| rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); |
| needed_headroom = rt_hdrlen - rtap_space; |
| |
| if (use_origskb) { |
| /* only need to expand headroom if necessary */ |
| skb = *origskb; |
| *origskb = NULL; |
| |
| /* |
| * This shouldn't trigger often because most devices have an |
| * RX header they pull before we get here, and that should |
| * be big enough for our radiotap information. We should |
| * probably export the length to drivers so that we can have |
| * them allocate enough headroom to start with. |
| */ |
| if (skb_headroom(skb) < needed_headroom && |
| pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| } else { |
| /* |
| * Need to make a copy and possibly remove radiotap header |
| * and FCS from the original. |
| */ |
| skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, |
| 0, GFP_ATOMIC); |
| |
| if (!skb) |
| return NULL; |
| } |
| |
| /* prepend radiotap information */ |
| ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); |
| |
| skb_reset_mac_header(skb); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->pkt_type = PACKET_OTHERHOST; |
| skb->protocol = htons(ETH_P_802_2); |
| |
| return skb; |
| } |
| |
| /* |
| * This function copies a received frame to all monitor interfaces and |
| * returns a cleaned-up SKB that no longer includes the FCS nor the |
| * radiotap header the driver might have added. |
| */ |
| static struct sk_buff * |
| ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, |
| struct ieee80211_rate *rate) |
| { |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); |
| struct ieee80211_sub_if_data *sdata; |
| struct sk_buff *monskb = NULL; |
| int present_fcs_len = 0; |
| unsigned int rtap_space = 0; |
| struct ieee80211_sub_if_data *monitor_sdata = |
| rcu_dereference(local->monitor_sdata); |
| bool only_monitor = false; |
| unsigned int min_head_len; |
| |
| if (status->flag & RX_FLAG_RADIOTAP_HE) |
| rtap_space += sizeof(struct ieee80211_radiotap_he); |
| |
| if (status->flag & RX_FLAG_RADIOTAP_HE_MU) |
| rtap_space += sizeof(struct ieee80211_radiotap_he_mu); |
| |
| if (status->flag & RX_FLAG_RADIOTAP_LSIG) |
| rtap_space += sizeof(struct ieee80211_radiotap_lsig); |
| |
| if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { |
| struct ieee80211_vendor_radiotap *rtap = |
| (void *)(origskb->data + rtap_space); |
| |
| rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; |
| } |
| |
| min_head_len = rtap_space; |
| |
| /* |
| * First, we may need to make a copy of the skb because |
| * (1) we need to modify it for radiotap (if not present), and |
| * (2) the other RX handlers will modify the skb we got. |
| * |
| * We don't need to, of course, if we aren't going to return |
| * the SKB because it has a bad FCS/PLCP checksum. |
| */ |
| |
| if (!(status->flag & RX_FLAG_NO_PSDU)) { |
| if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { |
| if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { |
| /* driver bug */ |
| WARN_ON(1); |
| dev_kfree_skb(origskb); |
| return NULL; |
| } |
| present_fcs_len = FCS_LEN; |
| } |
| |
| /* also consider the hdr->frame_control */ |
| min_head_len += 2; |
| } |
| |
| /* ensure that the expected data elements are in skb head */ |
| if (!pskb_may_pull(origskb, min_head_len)) { |
| dev_kfree_skb(origskb); |
| return NULL; |
| } |
| |
| only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); |
| |
| if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { |
| if (only_monitor) { |
| dev_kfree_skb(origskb); |
| return NULL; |
| } |
| |
| return ieee80211_clean_skb(origskb, present_fcs_len, |
| rtap_space); |
| } |
| |
| ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); |
| |
| list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { |
| bool last_monitor = list_is_last(&sdata->u.mntr.list, |
| &local->mon_list); |
| |
| if (!monskb) |
| monskb = ieee80211_make_monitor_skb(local, &origskb, |
| rate, rtap_space, |
| only_monitor && |
| last_monitor); |
| |
| if (monskb) { |
| struct sk_buff *skb; |
| |
| if (last_monitor) { |
| skb = monskb; |
| monskb = NULL; |
| } else { |
| skb = skb_clone(monskb, GFP_ATOMIC); |
| } |
| |
| if (skb) { |
| skb->dev = sdata->dev; |
| dev_sw_netstats_rx_add(skb->dev, skb->len); |
| netif_receive_skb(skb); |
| } |
| } |
| |
| if (last_monitor) |
| break; |
| } |
| |
| /* this happens if last_monitor was erroneously false */ |
| dev_kfree_skb(monskb); |
| |
| /* ditto */ |
| if (!origskb) |
| return NULL; |
| |
| return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); |
| } |
| |
| static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| int tid, seqno_idx, security_idx; |
| |
| /* does the frame have a qos control field? */ |
| if (ieee80211_is_data_qos(hdr->frame_control)) { |
| u8 *qc = ieee80211_get_qos_ctl(hdr); |
| /* frame has qos control */ |
| tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) |
| status->rx_flags |= IEEE80211_RX_AMSDU; |
| |
| seqno_idx = tid; |
| security_idx = tid; |
| } else { |
| /* |
| * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): |
| * |
| * Sequence numbers for management frames, QoS data |
| * frames with a broadcast/multicast address in the |
| * Address 1 field, and all non-QoS data frames sent |
| * by QoS STAs are assigned using an additional single |
| * modulo-4096 counter, [...] |
| * |
| * We also use that counter for non-QoS STAs. |
| */ |
| seqno_idx = IEEE80211_NUM_TIDS; |
| security_idx = 0; |
| if (ieee80211_is_mgmt(hdr->frame_control)) |
| security_idx = IEEE80211_NUM_TIDS; |
| tid = 0; |
| } |
| |
| rx->seqno_idx = seqno_idx; |
| rx->security_idx = security_idx; |
| /* Set skb->priority to 1d tag if highest order bit of TID is not set. |
| * For now, set skb->priority to 0 for other cases. */ |
| rx->skb->priority = (tid > 7) ? 0 : tid; |
| } |
| |
| /** |
| * DOC: Packet alignment |
| * |
| * Drivers always need to pass packets that are aligned to two-byte boundaries |
| * to the stack. |
| * |
| * Additionally, should, if possible, align the payload data in a way that |
| * guarantees that the contained IP header is aligned to a four-byte |
| * boundary. In the case of regular frames, this simply means aligning the |
| * payload to a four-byte boundary (because either the IP header is directly |
| * contained, or IV/RFC1042 headers that have a length divisible by four are |
| * in front of it). If the payload data is not properly aligned and the |
| * architecture doesn't support efficient unaligned operations, mac80211 |
| * will align the data. |
| * |
| * With A-MSDU frames, however, the payload data address must yield two modulo |
| * four because there are 14-byte 802.3 headers within the A-MSDU frames that |
| * push the IP header further back to a multiple of four again. Thankfully, the |
| * specs were sane enough this time around to require padding each A-MSDU |
| * subframe to a length that is a multiple of four. |
| * |
| * Padding like Atheros hardware adds which is between the 802.11 header and |
| * the payload is not supported, the driver is required to move the 802.11 |
| * header to be directly in front of the payload in that case. |
| */ |
| static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) |
| { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| WARN_ON_ONCE((unsigned long)rx->skb->data & 1); |
| #endif |
| } |
| |
| |
| /* rx handlers */ |
| |
| static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (is_multicast_ether_addr(hdr->addr1)) |
| return 0; |
| |
| return ieee80211_is_robust_mgmt_frame(skb); |
| } |
| |
| |
| static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (!is_multicast_ether_addr(hdr->addr1)) |
| return 0; |
| |
| return ieee80211_is_robust_mgmt_frame(skb); |
| } |
| |
| |
| /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ |
| static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) |
| { |
| struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; |
| struct ieee80211_mmie *mmie; |
| struct ieee80211_mmie_16 *mmie16; |
| |
| if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) |
| return -1; |
| |
| if (!ieee80211_is_robust_mgmt_frame(skb) && |
| !ieee80211_is_beacon(hdr->frame_control)) |
| return -1; /* not a robust management frame */ |
| |
| mmie = (struct ieee80211_mmie *) |
| (skb->data + skb->len - sizeof(*mmie)); |
| if (mmie->element_id == WLAN_EID_MMIE && |
| mmie->length == sizeof(*mmie) - 2) |
| return le16_to_cpu(mmie->key_id); |
| |
| mmie16 = (struct ieee80211_mmie_16 *) |
| (skb->data + skb->len - sizeof(*mmie16)); |
| if (skb->len >= 24 + sizeof(*mmie16) && |
| mmie16->element_id == WLAN_EID_MMIE && |
| mmie16->length == sizeof(*mmie16) - 2) |
| return le16_to_cpu(mmie16->key_id); |
| |
| return -1; |
| } |
| |
| static int ieee80211_get_keyid(struct sk_buff *skb, |
| const struct ieee80211_cipher_scheme *cs) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| __le16 fc; |
| int hdrlen; |
| int minlen; |
| u8 key_idx_off; |
| u8 key_idx_shift; |
| u8 keyid; |
| |
| fc = hdr->frame_control; |
| hdrlen = ieee80211_hdrlen(fc); |
| |
| if (cs) { |
| minlen = hdrlen + cs->hdr_len; |
| key_idx_off = hdrlen + cs->key_idx_off; |
| key_idx_shift = cs->key_idx_shift; |
| } else { |
| /* WEP, TKIP, CCMP and GCMP */ |
| minlen = hdrlen + IEEE80211_WEP_IV_LEN; |
| key_idx_off = hdrlen + 3; |
| key_idx_shift = 6; |
| } |
| |
| if (unlikely(skb->len < minlen)) |
| return -EINVAL; |
| |
| skb_copy_bits(skb, key_idx_off, &keyid, 1); |
| |
| if (cs) |
| keyid &= cs->key_idx_mask; |
| keyid >>= key_idx_shift; |
| |
| /* cs could use more than the usual two bits for the keyid */ |
| if (unlikely(keyid >= NUM_DEFAULT_KEYS)) |
| return -EINVAL; |
| |
| return keyid; |
| } |
| |
| static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| char *dev_addr = rx->sdata->vif.addr; |
| |
| if (ieee80211_is_data(hdr->frame_control)) { |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| if (ieee80211_has_tods(hdr->frame_control) || |
| !ieee80211_has_fromds(hdr->frame_control)) |
| return RX_DROP_MONITOR; |
| if (ether_addr_equal(hdr->addr3, dev_addr)) |
| return RX_DROP_MONITOR; |
| } else { |
| if (!ieee80211_has_a4(hdr->frame_control)) |
| return RX_DROP_MONITOR; |
| if (ether_addr_equal(hdr->addr4, dev_addr)) |
| return RX_DROP_MONITOR; |
| } |
| } |
| |
| /* If there is not an established peer link and this is not a peer link |
| * establisment frame, beacon or probe, drop the frame. |
| */ |
| |
| if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { |
| struct ieee80211_mgmt *mgmt; |
| |
| if (!ieee80211_is_mgmt(hdr->frame_control)) |
| return RX_DROP_MONITOR; |
| |
| if (ieee80211_is_action(hdr->frame_control)) { |
| u8 category; |
| |
| /* make sure category field is present */ |
| if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) |
| return RX_DROP_MONITOR; |
| |
| mgmt = (struct ieee80211_mgmt *)hdr; |
| category = mgmt->u.action.category; |
| if (category != WLAN_CATEGORY_MESH_ACTION && |
| category != WLAN_CATEGORY_SELF_PROTECTED) |
| return RX_DROP_MONITOR; |
| return RX_CONTINUE; |
| } |
| |
| if (ieee80211_is_probe_req(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control) || |
| ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_auth(hdr->frame_control)) |
| return RX_CONTINUE; |
| |
| return RX_DROP_MONITOR; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, |
| int index) |
| { |
| struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; |
| struct sk_buff *tail = skb_peek_tail(frames); |
| struct ieee80211_rx_status *status; |
| |
| if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) |
| return true; |
| |
| if (!tail) |
| return false; |
| |
| status = IEEE80211_SKB_RXCB(tail); |
| if (status->flag & RX_FLAG_AMSDU_MORE) |
| return false; |
| |
| return true; |
| } |
| |
| static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, |
| struct tid_ampdu_rx *tid_agg_rx, |
| int index, |
| struct sk_buff_head *frames) |
| { |
| struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; |
| struct sk_buff *skb; |
| struct ieee80211_rx_status *status; |
| |
| lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| |
| if (skb_queue_empty(skb_list)) |
| goto no_frame; |
| |
| if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { |
| __skb_queue_purge(skb_list); |
| goto no_frame; |
| } |
| |
| /* release frames from the reorder ring buffer */ |
| tid_agg_rx->stored_mpdu_num--; |
| while ((skb = __skb_dequeue(skb_list))) { |
| status = IEEE80211_SKB_RXCB(skb); |
| status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; |
| __skb_queue_tail(frames, skb); |
| } |
| |
| no_frame: |
| tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); |
| tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); |
| } |
| |
| static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, |
| struct tid_ampdu_rx *tid_agg_rx, |
| u16 head_seq_num, |
| struct sk_buff_head *frames) |
| { |
| int index; |
| |
| lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| |
| while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { |
| index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, |
| frames); |
| } |
| } |
| |
| /* |
| * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If |
| * the skb was added to the buffer longer than this time ago, the earlier |
| * frames that have not yet been received are assumed to be lost and the skb |
| * can be released for processing. This may also release other skb's from the |
| * reorder buffer if there are no additional gaps between the frames. |
| * |
| * Callers must hold tid_agg_rx->reorder_lock. |
| */ |
| #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) |
| |
| static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, |
| struct tid_ampdu_rx *tid_agg_rx, |
| struct sk_buff_head *frames) |
| { |
| int index, i, j; |
| |
| lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| |
| /* release the buffer until next missing frame */ |
| index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && |
| tid_agg_rx->stored_mpdu_num) { |
| /* |
| * No buffers ready to be released, but check whether any |
| * frames in the reorder buffer have timed out. |
| */ |
| int skipped = 1; |
| for (j = (index + 1) % tid_agg_rx->buf_size; j != index; |
| j = (j + 1) % tid_agg_rx->buf_size) { |
| if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { |
| skipped++; |
| continue; |
| } |
| if (skipped && |
| !time_after(jiffies, tid_agg_rx->reorder_time[j] + |
| HT_RX_REORDER_BUF_TIMEOUT)) |
| goto set_release_timer; |
| |
| /* don't leave incomplete A-MSDUs around */ |
| for (i = (index + 1) % tid_agg_rx->buf_size; i != j; |
| i = (i + 1) % tid_agg_rx->buf_size) |
| __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); |
| |
| ht_dbg_ratelimited(sdata, |
| "release an RX reorder frame due to timeout on earlier frames\n"); |
| ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, |
| frames); |
| |
| /* |
| * Increment the head seq# also for the skipped slots. |
| */ |
| tid_agg_rx->head_seq_num = |
| (tid_agg_rx->head_seq_num + |
| skipped) & IEEE80211_SN_MASK; |
| skipped = 0; |
| } |
| } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { |
| ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, |
| frames); |
| index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| } |
| |
| if (tid_agg_rx->stored_mpdu_num) { |
| j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| |
| for (; j != (index - 1) % tid_agg_rx->buf_size; |
| j = (j + 1) % tid_agg_rx->buf_size) { |
| if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) |
| break; |
| } |
| |
| set_release_timer: |
| |
| if (!tid_agg_rx->removed) |
| mod_timer(&tid_agg_rx->reorder_timer, |
| tid_agg_rx->reorder_time[j] + 1 + |
| HT_RX_REORDER_BUF_TIMEOUT); |
| } else { |
| del_timer(&tid_agg_rx->reorder_timer); |
| } |
| } |
| |
| /* |
| * As this function belongs to the RX path it must be under |
| * rcu_read_lock protection. It returns false if the frame |
| * can be processed immediately, true if it was consumed. |
| */ |
| static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, |
| struct tid_ampdu_rx *tid_agg_rx, |
| struct sk_buff *skb, |
| struct sk_buff_head *frames) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| u16 sc = le16_to_cpu(hdr->seq_ctrl); |
| u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| u16 head_seq_num, buf_size; |
| int index; |
| bool ret = true; |
| |
| spin_lock(&tid_agg_rx->reorder_lock); |
| |
| /* |
| * Offloaded BA sessions have no known starting sequence number so pick |
| * one from first Rxed frame for this tid after BA was started. |
| */ |
| if (unlikely(tid_agg_rx->auto_seq)) { |
| tid_agg_rx->auto_seq = false; |
| tid_agg_rx->ssn = mpdu_seq_num; |
| tid_agg_rx->head_seq_num = mpdu_seq_num; |
| } |
| |
| buf_size = tid_agg_rx->buf_size; |
| head_seq_num = tid_agg_rx->head_seq_num; |
| |
| /* |
| * If the current MPDU's SN is smaller than the SSN, it shouldn't |
| * be reordered. |
| */ |
| if (unlikely(!tid_agg_rx->started)) { |
| if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { |
| ret = false; |
| goto out; |
| } |
| tid_agg_rx->started = true; |
| } |
| |
| /* frame with out of date sequence number */ |
| if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { |
| dev_kfree_skb(skb); |
| goto out; |
| } |
| |
| /* |
| * If frame the sequence number exceeds our buffering window |
| * size release some previous frames to make room for this one. |
| */ |
| if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { |
| head_seq_num = ieee80211_sn_inc( |
| ieee80211_sn_sub(mpdu_seq_num, buf_size)); |
| /* release stored frames up to new head to stack */ |
| ieee80211_release_reorder_frames(sdata, tid_agg_rx, |
| head_seq_num, frames); |
| } |
| |
| /* Now the new frame is always in the range of the reordering buffer */ |
| |
| index = mpdu_seq_num % tid_agg_rx->buf_size; |
| |
| /* check if we already stored this frame */ |
| if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { |
| dev_kfree_skb(skb); |
| goto out; |
| } |
| |
| /* |
| * If the current MPDU is in the right order and nothing else |
| * is stored we can process it directly, no need to buffer it. |
| * If it is first but there's something stored, we may be able |
| * to release frames after this one. |
| */ |
| if (mpdu_seq_num == tid_agg_rx->head_seq_num && |
| tid_agg_rx->stored_mpdu_num == 0) { |
| if (!(status->flag & RX_FLAG_AMSDU_MORE)) |
| tid_agg_rx->head_seq_num = |
| ieee80211_sn_inc(tid_agg_rx->head_seq_num); |
| ret = false; |
| goto out; |
| } |
| |
| /* put the frame in the reordering buffer */ |
| __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); |
| if (!(status->flag & RX_FLAG_AMSDU_MORE)) { |
| tid_agg_rx->reorder_time[index] = jiffies; |
| tid_agg_rx->stored_mpdu_num++; |
| ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); |
| } |
| |
| out: |
| spin_unlock(&tid_agg_rx->reorder_lock); |
| return ret; |
| } |
| |
| /* |
| * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns |
| * true if the MPDU was buffered, false if it should be processed. |
| */ |
| static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, |
| struct sk_buff_head *frames) |
| { |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct sta_info *sta = rx->sta; |
| struct tid_ampdu_rx *tid_agg_rx; |
| u16 sc; |
| u8 tid, ack_policy; |
| |
| if (!ieee80211_is_data_qos(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| goto dont_reorder; |
| |
| /* |
| * filter the QoS data rx stream according to |
| * STA/TID and check if this STA/TID is on aggregation |
| */ |
| |
| if (!sta) |
| goto dont_reorder; |
| |
| ack_policy = *ieee80211_get_qos_ctl(hdr) & |
| IEEE80211_QOS_CTL_ACK_POLICY_MASK; |
| tid = ieee80211_get_tid(hdr); |
| |
| tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); |
| if (!tid_agg_rx) { |
| if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && |
| !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && |
| !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) |
| ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, |
| WLAN_BACK_RECIPIENT, |
| WLAN_REASON_QSTA_REQUIRE_SETUP); |
| goto dont_reorder; |
| } |
| |
| /* qos null data frames are excluded */ |
| if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) |
| goto dont_reorder; |
| |
| /* not part of a BA session */ |
| if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && |
| ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) |
| goto dont_reorder; |
| |
| /* new, potentially un-ordered, ampdu frame - process it */ |
| |
| /* reset session timer */ |
| if (tid_agg_rx->timeout) |
| tid_agg_rx->last_rx = jiffies; |
| |
| /* if this mpdu is fragmented - terminate rx aggregation session */ |
| sc = le16_to_cpu(hdr->seq_ctrl); |
| if (sc & IEEE80211_SCTL_FRAG) { |
| ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); |
| return; |
| } |
| |
| /* |
| * No locking needed -- we will only ever process one |
| * RX packet at a time, and thus own tid_agg_rx. All |
| * other code manipulating it needs to (and does) make |
| * sure that we cannot get to it any more before doing |
| * anything with it. |
| */ |
| if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, |
| frames)) |
| return; |
| |
| dont_reorder: |
| __skb_queue_tail(frames, skb); |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| |
| if (status->flag & RX_FLAG_DUP_VALIDATED) |
| return RX_CONTINUE; |
| |
| /* |
| * Drop duplicate 802.11 retransmissions |
| * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") |
| */ |
| |
| if (rx->skb->len < 24) |
| return RX_CONTINUE; |
| |
| if (ieee80211_is_ctl(hdr->frame_control) || |
| ieee80211_is_any_nullfunc(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return RX_CONTINUE; |
| |
| if (!rx->sta) |
| return RX_CONTINUE; |
| |
| if (unlikely(ieee80211_has_retry(hdr->frame_control) && |
| rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { |
| I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); |
| rx->sta->rx_stats.num_duplicates++; |
| return RX_DROP_UNUSABLE; |
| } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { |
| rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_check(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| |
| /* Drop disallowed frame classes based on STA auth/assoc state; |
| * IEEE 802.11, Chap 5.5. |
| * |
| * mac80211 filters only based on association state, i.e. it drops |
| * Class 3 frames from not associated stations. hostapd sends |
| * deauth/disassoc frames when needed. In addition, hostapd is |
| * responsible for filtering on both auth and assoc states. |
| */ |
| |
| if (ieee80211_vif_is_mesh(&rx->sdata->vif)) |
| return ieee80211_rx_mesh_check(rx); |
| |
| if (unlikely((ieee80211_is_data(hdr->frame_control) || |
| ieee80211_is_pspoll(hdr->frame_control)) && |
| rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| rx->sdata->vif.type != NL80211_IFTYPE_OCB && |
| (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { |
| /* |
| * accept port control frames from the AP even when it's not |
| * yet marked ASSOC to prevent a race where we don't set the |
| * assoc bit quickly enough before it sends the first frame |
| */ |
| if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && |
| ieee80211_is_data_present(hdr->frame_control)) { |
| unsigned int hdrlen; |
| __be16 ethertype; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| if (rx->skb->len < hdrlen + 8) |
| return RX_DROP_MONITOR; |
| |
| skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); |
| if (ethertype == rx->sdata->control_port_protocol) |
| return RX_CONTINUE; |
| } |
| |
| if (rx->sdata->vif.type == NL80211_IFTYPE_AP && |
| cfg80211_rx_spurious_frame(rx->sdata->dev, |
| hdr->addr2, |
| GFP_ATOMIC)) |
| return RX_DROP_UNUSABLE; |
| |
| return RX_DROP_MONITOR; |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_local *local; |
| struct ieee80211_hdr *hdr; |
| struct sk_buff *skb; |
| |
| local = rx->local; |
| skb = rx->skb; |
| hdr = (struct ieee80211_hdr *) skb->data; |
| |
| if (!local->pspolling) |
| return RX_CONTINUE; |
| |
| if (!ieee80211_has_fromds(hdr->frame_control)) |
| /* this is not from AP */ |
| return RX_CONTINUE; |
| |
| if (!ieee80211_is_data(hdr->frame_control)) |
| return RX_CONTINUE; |
| |
| if (!ieee80211_has_moredata(hdr->frame_control)) { |
| /* AP has no more frames buffered for us */ |
| local->pspolling = false; |
| return RX_CONTINUE; |
| } |
| |
| /* more data bit is set, let's request a new frame from the AP */ |
| ieee80211_send_pspoll(local, rx->sdata); |
| |
| return RX_CONTINUE; |
| } |
| |
| static void sta_ps_start(struct sta_info *sta) |
| { |
| struct ieee80211_sub_if_data *sdata = sta->sdata; |
| struct ieee80211_local *local = sdata->local; |
| struct ps_data *ps; |
| int tid; |
| |
| if (sta->sdata->vif.type == NL80211_IFTYPE_AP || |
| sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) |
| ps = &sdata->bss->ps; |
| else |
| return; |
| |
| atomic_inc(&ps->num_sta_ps); |
| set_sta_flag(sta, WLAN_STA_PS_STA); |
| if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) |
| drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); |
| ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", |
| sta->sta.addr, sta->sta.aid); |
| |
| ieee80211_clear_fast_xmit(sta); |
| |
| if (!sta->sta.txq[0]) |
| return; |
| |
| for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { |
| struct ieee80211_txq *txq = sta->sta.txq[tid]; |
| |
| ieee80211_unschedule_txq(&local->hw, txq, false); |
| |
| if (txq_has_queue(txq)) |
| set_bit(tid, &sta->txq_buffered_tids); |
| else |
| clear_bit(tid, &sta->txq_buffered_tids); |
| } |
| } |
| |
| static void sta_ps_end(struct sta_info *sta) |
| { |
| ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", |
| sta->sta.addr, sta->sta.aid); |
| |
| if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { |
| /* |
| * Clear the flag only if the other one is still set |
| * so that the TX path won't start TX'ing new frames |
| * directly ... In the case that the driver flag isn't |
| * set ieee80211_sta_ps_deliver_wakeup() will clear it. |
| */ |
| clear_sta_flag(sta, WLAN_STA_PS_STA); |
| ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", |
| sta->sta.addr, sta->sta.aid); |
| return; |
| } |
| |
| set_sta_flag(sta, WLAN_STA_PS_DELIVER); |
| clear_sta_flag(sta, WLAN_STA_PS_STA); |
| ieee80211_sta_ps_deliver_wakeup(sta); |
| } |
| |
| int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) |
| { |
| struct sta_info *sta = container_of(pubsta, struct sta_info, sta); |
| bool in_ps; |
| |
| WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); |
| |
| /* Don't let the same PS state be set twice */ |
| in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); |
| if ((start && in_ps) || (!start && !in_ps)) |
| return -EINVAL; |
| |
| if (start) |
| sta_ps_start(sta); |
| else |
| sta_ps_end(sta); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ieee80211_sta_ps_transition); |
| |
| void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) |
| { |
| struct sta_info *sta = container_of(pubsta, struct sta_info, sta); |
| |
| if (test_sta_flag(sta, WLAN_STA_SP)) |
| return; |
| |
| if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) |
| ieee80211_sta_ps_deliver_poll_response(sta); |
| else |
| set_sta_flag(sta, WLAN_STA_PSPOLL); |
| } |
| EXPORT_SYMBOL(ieee80211_sta_pspoll); |
| |
| void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) |
| { |
| struct sta_info *sta = container_of(pubsta, struct sta_info, sta); |
| int ac = ieee80211_ac_from_tid(tid); |
| |
| /* |
| * If this AC is not trigger-enabled do nothing unless the |
| * driver is calling us after it already checked. |
| * |
| * NB: This could/should check a separate bitmap of trigger- |
| * enabled queues, but for now we only implement uAPSD w/o |
| * TSPEC changes to the ACs, so they're always the same. |
| */ |
| if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && |
| tid != IEEE80211_NUM_TIDS) |
| return; |
| |
| /* if we are in a service period, do nothing */ |
| if (test_sta_flag(sta, WLAN_STA_SP)) |
| return; |
| |
| if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) |
| ieee80211_sta_ps_deliver_uapsd(sta); |
| else |
| set_sta_flag(sta, WLAN_STA_UAPSD); |
| } |
| EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct ieee80211_hdr *hdr = (void *)rx->skb->data; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| |
| if (!rx->sta) |
| return RX_CONTINUE; |
| |
| if (sdata->vif.type != NL80211_IFTYPE_AP && |
| sdata->vif.type != NL80211_IFTYPE_AP_VLAN) |
| return RX_CONTINUE; |
| |
| /* |
| * The device handles station powersave, so don't do anything about |
| * uAPSD and PS-Poll frames (the latter shouldn't even come up from |
| * it to mac80211 since they're handled.) |
| */ |
| if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) |
| return RX_CONTINUE; |
| |
| /* |
| * Don't do anything if the station isn't already asleep. In |
| * the uAPSD case, the station will probably be marked asleep, |
| * in the PS-Poll case the station must be confused ... |
| */ |
| if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) |
| return RX_CONTINUE; |
| |
| if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { |
| ieee80211_sta_pspoll(&rx->sta->sta); |
| |
| /* Free PS Poll skb here instead of returning RX_DROP that would |
| * count as an dropped frame. */ |
| dev_kfree_skb(rx->skb); |
| |
| return RX_QUEUED; |
| } else if (!ieee80211_has_morefrags(hdr->frame_control) && |
| !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && |
| ieee80211_has_pm(hdr->frame_control) && |
| (ieee80211_is_data_qos(hdr->frame_control) || |
| ieee80211_is_qos_nullfunc(hdr->frame_control))) { |
| u8 tid = ieee80211_get_tid(hdr); |
| |
| ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); |
| } |
| |
| return RX_CONTINUE; |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) |
| { |
| struct sta_info *sta = rx->sta; |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| int i; |
| |
| if (!sta) |
| return RX_CONTINUE; |
| |
| /* |
| * Update last_rx only for IBSS packets which are for the current |
| * BSSID and for station already AUTHORIZED to avoid keeping the |
| * current IBSS network alive in cases where other STAs start |
| * using different BSSID. This will also give the station another |
| * chance to restart the authentication/authorization in case |
| * something went wrong the first time. |
| */ |
| if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { |
| u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, |
| NL80211_IFTYPE_ADHOC); |
| if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && |
| test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { |
| sta->rx_stats.last_rx = jiffies; |
| if (ieee80211_is_data(hdr->frame_control) && |
| !is_multicast_ether_addr(hdr->addr1)) |
| sta->rx_stats.last_rate = |
| sta_stats_encode_rate(status); |
| } |
| } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { |
| sta->rx_stats.last_rx = jiffies; |
| } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && |
| !is_multicast_ether_addr(hdr->addr1)) { |
| /* |
| * Mesh beacons will update last_rx when if they are found to |
| * match the current local configuration when processed. |
| */ |
| sta->rx_stats.last_rx = jiffies; |
| if (ieee80211_is_data(hdr->frame_control)) |
| sta->rx_stats.last_rate = sta_stats_encode_rate(status); |
| } |
| |
| sta->rx_stats.fragments++; |
| |
| u64_stats_update_begin(&rx->sta->rx_stats.syncp); |
| sta->rx_stats.bytes += rx->skb->len; |
| u64_stats_update_end(&rx->sta->rx_stats.syncp); |
| |
| if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { |
| sta->rx_stats.last_signal = status->signal; |
| ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); |
| } |
| |
| if (status->chains) { |
| sta->rx_stats.chains = status->chains; |
| for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { |
| int signal = status->chain_signal[i]; |
| |
| if (!(status->chains & BIT(i))) |
| continue; |
| |
| sta->rx_stats.chain_signal_last[i] = signal; |
| ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], |
| -signal); |
| } |
| } |
| |
| if (ieee80211_is_s1g_beacon(hdr->frame_control)) |
| return RX_CONTINUE; |
| |
| /* |
| * Change STA power saving mode only at the end of a frame |
| * exchange sequence, and only for a data or management |
| * frame as specified in IEEE 802.11-2016 11.2.3.2 |
| */ |
| if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && |
| !ieee80211_has_morefrags(hdr->frame_control) && |
| !is_multicast_ether_addr(hdr->addr1) && |
| (ieee80211_is_mgmt(hdr->frame_control) || |
| ieee80211_is_data(hdr->frame_control)) && |
| !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && |
| (rx->sdata->vif.type == NL80211_IFTYPE_AP || |
| rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { |
| if (test_sta_flag(sta, WLAN_STA_PS_STA)) { |
| if (!ieee80211_has_pm(hdr->frame_control)) |
| sta_ps_end(sta); |
| } else { |
| if (ieee80211_has_pm(hdr->frame_control)) |
| sta_ps_start(sta); |
| } |
| } |
| |
| /* mesh power save support */ |
| if (ieee80211_vif_is_mesh(&rx->sdata->vif)) |
| ieee80211_mps_rx_h_sta_process(sta, hdr); |
| |
| /* |
| * Drop (qos-)data::nullfunc frames silently, since they |
| * are used only to control station power saving mode. |
| */ |
| if (ieee80211_is_any_nullfunc(hdr->frame_control)) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); |
| |
| /* |
| * If we receive a 4-addr nullfunc frame from a STA |
| * that was not moved to a 4-addr STA vlan yet send |
| * the event to userspace and for older hostapd drop |
| * the frame to the monitor interface. |
| */ |
| if (ieee80211_has_a4(hdr->frame_control) && |
| (rx->sdata->vif.type == NL80211_IFTYPE_AP || |
| (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && |
| !rx->sdata->u.vlan.sta))) { |
| if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) |
| cfg80211_rx_unexpected_4addr_frame( |
| rx->sdata->dev, sta->sta.addr, |
| GFP_ATOMIC); |
| return RX_DROP_MONITOR; |
| } |
| /* |
| * Update counter and free packet here to avoid |
| * counting this as a dropped packed. |
| */ |
| sta->rx_stats.packets++; |
| dev_kfree_skb(rx->skb); |
| return RX_QUEUED; |
| } |
| |
| return RX_CONTINUE; |
| } /* ieee80211_rx_h_sta_process */ |
| |
| static struct ieee80211_key * |
| ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) |
| { |
| struct ieee80211_key *key = NULL; |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| int idx2; |
| |
| /* Make sure key gets set if either BIGTK key index is set so that |
| * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected |
| * Beacon frames and Beacon frames that claim to use another BIGTK key |
| * index (i.e., a key that we do not have). |
| */ |
| |
| if (idx < 0) { |
| idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; |
| idx2 = idx + 1; |
| } else { |
| if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) |
| idx2 = idx + 1; |
| else |
| idx2 = idx - 1; |
| } |
| |
| if (rx->sta) |
| key = rcu_dereference(rx->sta->gtk[idx]); |
| if (!key) |
| key = rcu_dereference(sdata->keys[idx]); |
| if (!key && rx->sta) |
| key = rcu_dereference(rx->sta->gtk[idx2]); |
| if (!key) |
| key = rcu_dereference(sdata->keys[idx2]); |
| |
| return key; |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) |
| { |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| int keyidx; |
| ieee80211_rx_result result = RX_DROP_UNUSABLE; |
| struct ieee80211_key *sta_ptk = NULL; |
| struct ieee80211_key *ptk_idx = NULL; |
| int mmie_keyidx = -1; |
| __le16 fc; |
| const struct ieee80211_cipher_scheme *cs = NULL; |
| |
| if (ieee80211_is_ext(hdr->frame_control)) |
| return RX_CONTINUE; |
| |
| /* |
| * Key selection 101 |
| * |
| * There are five types of keys: |
| * - GTK (group keys) |
| * - IGTK (group keys for management frames) |
| * - BIGTK (group keys for Beacon frames) |
| * - PTK (pairwise keys) |
| * - STK (station-to-station pairwise keys) |
| * |
| * When selecting a key, we have to distinguish between multicast |
| * (including broadcast) and unicast frames, the latter can only |
| * use PTKs and STKs while the former always use GTKs, IGTKs, and |
| * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, |
| * then unicast frames can also use key indices like GTKs. Hence, if we |
| * don't have a PTK/STK we check the key index for a WEP key. |
| * |
| * Note that in a regular BSS, multicast frames are sent by the |
| * AP only, associated stations unicast the frame to the AP first |
| * which then multicasts it on their behalf. |
| * |
| * There is also a slight problem in IBSS mode: GTKs are negotiated |
| * with each station, that is something we don't currently handle. |
| * The spec seems to expect that one negotiates the same key with |
| * every station but there's no such requirement; VLANs could be |
| * possible. |
| */ |
| |
| /* start without a key */ |
| rx->key = NULL; |
| fc = hdr->frame_control; |
| |
| if (rx->sta) { |
| int keyid = rx->sta->ptk_idx; |
| sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); |
| |
| if (ieee80211_has_protected(fc) && |
| !(status->flag & RX_FLAG_IV_STRIPPED)) { |
| cs = rx->sta->cipher_scheme; |
| keyid = ieee80211_get_keyid(rx->skb, cs); |
| |
| if (unlikely(keyid < 0)) |
| return RX_DROP_UNUSABLE; |
| |
| ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); |
| } |
| } |
| |
| if (!ieee80211_has_protected(fc)) |
| mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); |
| |
| if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { |
| rx->key = ptk_idx ? ptk_idx : sta_ptk; |
| if ((status->flag & RX_FLAG_DECRYPTED) && |
| (status->flag & RX_FLAG_IV_STRIPPED)) |
| return RX_CONTINUE; |
| /* Skip decryption if the frame is not protected. */ |
| if (!ieee80211_has_protected(fc)) |
| return RX_CONTINUE; |
| } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { |
| /* Broadcast/multicast robust management frame / BIP */ |
| if ((status->flag & RX_FLAG_DECRYPTED) && |
| (status->flag & RX_FLAG_IV_STRIPPED)) |
| return RX_CONTINUE; |
| |
| if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || |
| mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + |
| NUM_DEFAULT_BEACON_KEYS) { |
| cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| skb->data, |
| skb->len); |
| return RX_DROP_MONITOR; /* unexpected BIP keyidx */ |
| } |
| |
| rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); |
| if (!rx->key) |
| return RX_CONTINUE; /* Beacon protection not in use */ |
| } else if (mmie_keyidx >= 0) { |
| /* Broadcast/multicast robust management frame / BIP */ |
| if ((status->flag & RX_FLAG_DECRYPTED) && |
| (status->flag & RX_FLAG_IV_STRIPPED)) |
| return RX_CONTINUE; |
| |
| if (mmie_keyidx < NUM_DEFAULT_KEYS || |
| mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) |
| return RX_DROP_MONITOR; /* unexpected BIP keyidx */ |
| if (rx->sta) { |
| if (ieee80211_is_group_privacy_action(skb) && |
| test_sta_flag(rx->sta, WLAN_STA_MFP)) |
| return RX_DROP_MONITOR; |
| |
| rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); |
| } |
| if (!rx->key) |
| rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); |
| } else if (!ieee80211_has_protected(fc)) { |
| /* |
| * The frame was not protected, so skip decryption. However, we |
| * need to set rx->key if there is a key that could have been |
| * used so that the frame may be dropped if encryption would |
| * have been expected. |
| */ |
| struct ieee80211_key *key = NULL; |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| int i; |
| |
| if (ieee80211_is_beacon(fc)) { |
| key = ieee80211_rx_get_bigtk(rx, -1); |
| } else if (ieee80211_is_mgmt(fc) && |
| is_multicast_ether_addr(hdr->addr1)) { |
| key = rcu_dereference(rx->sdata->default_mgmt_key); |
| } else { |
| if (rx->sta) { |
| for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| key = rcu_dereference(rx->sta->gtk[i]); |
| if (key) |
| break; |
| } |
| } |
| if (!key) { |
| for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| key = rcu_dereference(sdata->keys[i]); |
| if (key) |
| break; |
| } |
| } |
| } |
| if (key) |
| rx->key = key; |
| return RX_CONTINUE; |
| } else { |
| /* |
| * The device doesn't give us the IV so we won't be |
| * able to look up the key. That's ok though, we |
| * don't need to decrypt the frame, we just won't |
| * be able to keep statistics accurate. |
| * Except for key threshold notifications, should |
| * we somehow allow the driver to tell us which key |
| * the hardware used if this flag is set? |
| */ |
| if ((status->flag & RX_FLAG_DECRYPTED) && |
| (status->flag & RX_FLAG_IV_STRIPPED)) |
| return RX_CONTINUE; |
| |
| keyidx = ieee80211_get_keyid(rx->skb, cs); |
| |
| if (unlikely(keyidx < 0)) |
| return RX_DROP_UNUSABLE; |
| |
| /* check per-station GTK first, if multicast packet */ |
| if (is_multicast_ether_addr(hdr->addr1) && rx->sta) |
| rx->key = rcu_dereference(rx->sta->gtk[keyidx]); |
| |
| /* if not found, try default key */ |
| if (!rx->key) { |
| rx->key = rcu_dereference(rx->sdata->keys[keyidx]); |
| |
| /* |
| * RSNA-protected unicast frames should always be |
| * sent with pairwise or station-to-station keys, |
| * but for WEP we allow using a key index as well. |
| */ |
| if (rx->key && |
| rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && |
| rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && |
| !is_multicast_ether_addr(hdr->addr1)) |
| rx->key = NULL; |
| } |
| } |
| |
| if (rx->key) { |
| if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) |
| return RX_DROP_MONITOR; |
| |
| /* TODO: add threshold stuff again */ |
| } else { |
| return RX_DROP_MONITOR; |
| } |
| |
| switch (rx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| result = ieee80211_crypto_wep_decrypt(rx); |
| break; |
| case WLAN_CIPHER_SUITE_TKIP: |
| result = ieee80211_crypto_tkip_decrypt(rx); |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| result = ieee80211_crypto_ccmp_decrypt( |
| rx, IEEE80211_CCMP_MIC_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| result = ieee80211_crypto_ccmp_decrypt( |
| rx, IEEE80211_CCMP_256_MIC_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| result = ieee80211_crypto_aes_cmac_decrypt(rx); |
| break; |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| result = ieee80211_crypto_aes_cmac_256_decrypt(rx); |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| result = ieee80211_crypto_aes_gmac_decrypt(rx); |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| result = ieee80211_crypto_gcmp_decrypt(rx); |
| break; |
| default: |
| result = ieee80211_crypto_hw_decrypt(rx); |
| } |
| |
| /* the hdr variable is invalid after the decrypt handlers */ |
| |
| /* either the frame has been decrypted or will be dropped */ |
| status->flag |= RX_FLAG_DECRYPTED; |
| |
| if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) |
| cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| skb->data, skb->len); |
| |
| return result; |
| } |
| |
| void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cache->entries); i++) |
| skb_queue_head_init(&cache->entries[i].skb_list); |
| } |
| |
| void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cache->entries); i++) |
| __skb_queue_purge(&cache->entries[i].skb_list); |
| } |
| |
| static inline struct ieee80211_fragment_entry * |
| ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, |
| unsigned int frag, unsigned int seq, int rx_queue, |
| struct sk_buff **skb) |
| { |
| struct ieee80211_fragment_entry *entry; |
| |
| entry = &cache->entries[cache->next++]; |
| if (cache->next >= IEEE80211_FRAGMENT_MAX) |
| cache->next = 0; |
| |
| __skb_queue_purge(&entry->skb_list); |
| |
| __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ |
| *skb = NULL; |
| entry->first_frag_time = jiffies; |
| entry->seq = seq; |
| entry->rx_queue = rx_queue; |
| entry->last_frag = frag; |
| entry->check_sequential_pn = false; |
| entry->extra_len = 0; |
| |
| return entry; |
| } |
| |
| static inline struct ieee80211_fragment_entry * |
| ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, |
| unsigned int frag, unsigned int seq, |
| int rx_queue, struct ieee80211_hdr *hdr) |
| { |
| struct ieee80211_fragment_entry *entry; |
| int i, idx; |
| |
| idx = cache->next; |
| for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { |
| struct ieee80211_hdr *f_hdr; |
| struct sk_buff *f_skb; |
| |
| idx--; |
| if (idx < 0) |
| idx = IEEE80211_FRAGMENT_MAX - 1; |
| |
| entry = &cache->entries[idx]; |
| if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || |
| entry->rx_queue != rx_queue || |
| entry->last_frag + 1 != frag) |
| continue; |
| |
| f_skb = __skb_peek(&entry->skb_list); |
| f_hdr = (struct ieee80211_hdr *) f_skb->data; |
| |
| /* |
| * Check ftype and addresses are equal, else check next fragment |
| */ |
| if (((hdr->frame_control ^ f_hdr->frame_control) & |
| cpu_to_le16(IEEE80211_FCTL_FTYPE)) || |
| !ether_addr_equal(hdr->addr1, f_hdr->addr1) || |
| !ether_addr_equal(hdr->addr2, f_hdr->addr2)) |
| continue; |
| |
| if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { |
| __skb_queue_purge(&entry->skb_list); |
| continue; |
| } |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) |
| { |
| return rx->key && |
| (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || |
| rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || |
| rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || |
| rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && |
| ieee80211_has_protected(fc); |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_fragment_cache *cache = &rx->sdata->frags; |
| struct ieee80211_hdr *hdr; |
| u16 sc; |
| __le16 fc; |
| unsigned int frag, seq; |
| struct ieee80211_fragment_entry *entry; |
| struct sk_buff *skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| |
| hdr = (struct ieee80211_hdr *)rx->skb->data; |
| fc = hdr->frame_control; |
| |
| if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) |
| return RX_CONTINUE; |
| |
| sc = le16_to_cpu(hdr->seq_ctrl); |
| frag = sc & IEEE80211_SCTL_FRAG; |
| |
| if (rx->sta) |
| cache = &rx->sta->frags; |
| |
| if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) |
| goto out; |
| |
| if (is_multicast_ether_addr(hdr->addr1)) |
| return RX_DROP_MONITOR; |
| |
| I802_DEBUG_INC(rx->local->rx_handlers_fragments); |
| |
| if (skb_linearize(rx->skb)) |
| return RX_DROP_UNUSABLE; |
| |
| /* |
| * skb_linearize() might change the skb->data and |
| * previously cached variables (in this case, hdr) need to |
| * be refreshed with the new data. |
| */ |
| hdr = (struct ieee80211_hdr *)rx->skb->data; |
| seq = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| |
| if (frag == 0) { |
| /* This is the first fragment of a new frame. */ |
| entry = ieee80211_reassemble_add(cache, frag, seq, |
| rx->seqno_idx, &(rx->skb)); |
| if (requires_sequential_pn(rx, fc)) { |
| int queue = rx->security_idx; |
| |
| /* Store CCMP/GCMP PN so that we can verify that the |
| * next fragment has a sequential PN value. |
| */ |
| entry->check_sequential_pn = true; |
| entry->is_protected = true; |
| entry->key_color = rx->key->color; |
| memcpy(entry->last_pn, |
| rx->key->u.ccmp.rx_pn[queue], |
| IEEE80211_CCMP_PN_LEN); |
| BUILD_BUG_ON(offsetof(struct ieee80211_key, |
| u.ccmp.rx_pn) != |
| offsetof(struct ieee80211_key, |
| u.gcmp.rx_pn)); |
| BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != |
| sizeof(rx->key->u.gcmp.rx_pn[queue])); |
| BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != |
| IEEE80211_GCMP_PN_LEN); |
| } else if (rx->key && |
| (ieee80211_has_protected(fc) || |
| (status->flag & RX_FLAG_DECRYPTED))) { |
| entry->is_protected = true; |
| entry->key_color = rx->key->color; |
| } |
| return RX_QUEUED; |
| } |
| |
| /* This is a fragment for a frame that should already be pending in |
| * fragment cache. Add this fragment to the end of the pending entry. |
| */ |
| entry = ieee80211_reassemble_find(cache, frag, seq, |
| rx->seqno_idx, hdr); |
| if (!entry) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| return RX_DROP_MONITOR; |
| } |
| |
| /* "The receiver shall discard MSDUs and MMPDUs whose constituent |
| * MPDU PN values are not incrementing in steps of 1." |
| * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) |
| * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) |
| */ |
| if (entry->check_sequential_pn) { |
| int i; |
| u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; |
| |
| if (!requires_sequential_pn(rx, fc)) |
| return RX_DROP_UNUSABLE; |
| |
| /* Prevent mixed key and fragment cache attacks */ |
| if (entry->key_color != rx->key->color) |
| return RX_DROP_UNUSABLE; |
| |
| memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); |
| for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { |
| pn[i]++; |
| if (pn[i]) |
| break; |
| } |
| |
| rpn = rx->ccm_gcm.pn; |
| if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) |
| return RX_DROP_UNUSABLE; |
| memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); |
| } else if (entry->is_protected && |
| (!rx->key || |
| (!ieee80211_has_protected(fc) && |
| !(status->flag & RX_FLAG_DECRYPTED)) || |
| rx->key->color != entry->key_color)) { |
| /* Drop this as a mixed key or fragment cache attack, even |
| * if for TKIP Michael MIC should protect us, and WEP is a |
| * lost cause anyway. |
| */ |
| return RX_DROP_UNUSABLE; |
| } else if (entry->is_protected && rx->key && |
| entry->key_color != rx->key->color && |
| (status->flag & RX_FLAG_DECRYPTED)) { |
| return RX_DROP_UNUSABLE; |
| } |
| |
| skb_pull(rx->skb, ieee80211_hdrlen(fc)); |
| __skb_queue_tail(&entry->skb_list, rx->skb); |
| entry->last_frag = frag; |
| entry->extra_len += rx->skb->len; |
| if (ieee80211_has_morefrags(fc)) { |
| rx->skb = NULL; |
| return RX_QUEUED; |
| } |
| |
| rx->skb = __skb_dequeue(&entry->skb_list); |
| if (skb_tailroom(rx->skb) < entry->extra_len) { |
| I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); |
| if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, |
| GFP_ATOMIC))) { |
| I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| __skb_queue_purge(&entry->skb_list); |
| return RX_DROP_UNUSABLE; |
| } |
| } |
| while ((skb = __skb_dequeue(&entry->skb_list))) { |
| skb_put_data(rx->skb, skb->data, skb->len); |
| dev_kfree_skb(skb); |
| } |
| |
| out: |
| ieee80211_led_rx(rx->local); |
| if (rx->sta) |
| rx->sta->rx_stats.packets++; |
| return RX_CONTINUE; |
| } |
| |
| static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) |
| { |
| if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) |
| { |
| struct ieee80211_hdr *hdr = (void *)rx->skb->data; |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| |
| /* |
| * Pass through unencrypted frames if the hardware has |
| * decrypted them already. |
| */ |
| if (status->flag & RX_FLAG_DECRYPTED) |
| return 0; |
| |
| /* check mesh EAPOL frames first */ |
| if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && |
| ieee80211_is_data(fc))) { |
| struct ieee80211s_hdr *mesh_hdr; |
| u16 hdr_len = ieee80211_hdrlen(fc); |
| u16 ethertype_offset; |
| __be16 ethertype; |
| |
| if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) |
| goto drop_check; |
| |
| /* make sure fixed part of mesh header is there, also checks skb len */ |
| if (!pskb_may_pull(rx->skb, hdr_len + 6)) |
| goto drop_check; |
| |
| mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); |
| ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + |
| sizeof(rfc1042_header); |
| |
| if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && |
| ethertype == rx->sdata->control_port_protocol) |
| return 0; |
| } |
| |
| drop_check: |
| /* Drop unencrypted frames if key is set. */ |
| if (unlikely(!ieee80211_has_protected(fc) && |
| !ieee80211_is_any_nullfunc(fc) && |
| ieee80211_is_data(fc) && rx->key)) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| __le16 fc = hdr->frame_control; |
| |
| /* |
| * Pass through unencrypted frames if the hardware has |
| * decrypted them already. |
| */ |
| if (status->flag & RX_FLAG_DECRYPTED) |
| return 0; |
| |
| if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { |
| if (unlikely(!ieee80211_has_protected(fc) && |
| ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && |
| rx->key)) { |
| if (ieee80211_is_deauth(fc) || |
| ieee80211_is_disassoc(fc)) |
| cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| rx->skb->data, |
| rx->skb->len); |
| return -EACCES; |
| } |
| /* BIP does not use Protected field, so need to check MMIE */ |
| if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && |
| ieee80211_get_mmie_keyidx(rx->skb) < 0)) { |
| if (ieee80211_is_deauth(fc) || |
| ieee80211_is_disassoc(fc)) |
| cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| rx->skb->data, |
| rx->skb->len); |
| return -EACCES; |
| } |
| if (unlikely(ieee80211_is_beacon(fc) && rx->key && |
| ieee80211_get_mmie_keyidx(rx->skb) < 0)) { |
| cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| rx->skb->data, |
| rx->skb->len); |
| return -EACCES; |
| } |
| /* |
| * When using MFP, Action frames are not allowed prior to |
| * having configured keys. |
| */ |
| if (unlikely(ieee80211_is_action(fc) && !rx->key && |
| ieee80211_is_robust_mgmt_frame(rx->skb))) |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) |
| { |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| bool check_port_control = false; |
| struct ethhdr *ehdr; |
| int ret; |
| |
| *port_control = false; |
| if (ieee80211_has_a4(hdr->frame_control) && |
| sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) |
| return -1; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_STATION && |
| !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { |
| |
| if (!sdata->u.mgd.use_4addr) |
| return -1; |
| else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) |
| check_port_control = true; |
| } |
| |
| if (is_multicast_ether_addr(hdr->addr1) && |
| sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) |
| return -1; |
| |
| ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); |
| if (ret < 0) |
| return ret; |
| |
| ehdr = (struct ethhdr *) rx->skb->data; |
| if (ehdr->h_proto == rx->sdata->control_port_protocol) |
| *port_control = true; |
| else if (check_port_control) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* |
| * requires that rx->skb is a frame with ethernet header |
| */ |
| static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) |
| { |
| static const u8 pae_group_addr[ETH_ALEN] __aligned(2) |
| = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; |
| struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| |
| /* |
| * Allow EAPOL frames to us/the PAE group address regardless of |
| * whether the frame was encrypted or not, and always disallow |
| * all other destination addresses for them. |
| */ |
| if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) |
| return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || |
| ether_addr_equal(ehdr->h_dest, pae_group_addr); |
| |
| if (ieee80211_802_1x_port_control(rx) || |
| ieee80211_drop_unencrypted(rx, fc)) |
| return false; |
| |
| return true; |
| } |
| |
| static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, |
| struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct net_device *dev = sdata->dev; |
| |
| if (unlikely((skb->protocol == sdata->control_port_protocol || |
| (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && |
| !sdata->control_port_no_preauth)) && |
| sdata->control_port_over_nl80211)) { |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); |
| |
| cfg80211_rx_control_port(dev, skb, noencrypt); |
| dev_kfree_skb(skb); |
| } else { |
| struct ethhdr *ehdr = (void *)skb_mac_header(skb); |
| |
| memset(skb->cb, 0, sizeof(skb->cb)); |
| |
| /* |
| * 802.1X over 802.11 requires that the authenticator address |
| * be used for EAPOL frames. However, 802.1X allows the use of |
| * the PAE group address instead. If the interface is part of |
| * a bridge and we pass the frame with the PAE group address, |
| * then the bridge will forward it to the network (even if the |
| * client was not associated yet), which isn't supposed to |
| * happen. |
| * To avoid that, rewrite the destination address to our own |
| * address, so that the authenticator (e.g. hostapd) will see |
| * the frame, but bridge won't forward it anywhere else. Note |
| * that due to earlier filtering, the only other address can |
| * be the PAE group address. |
| */ |
| if (unlikely(skb->protocol == sdata->control_port_protocol && |
| !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) |
| ether_addr_copy(ehdr->h_dest, sdata->vif.addr); |
| |
| /* deliver to local stack */ |
| if (rx->list) |
| list_add_tail(&skb->list, rx->list); |
| else |
| netif_receive_skb(skb); |
| } |
| } |
| |
| /* |
| * requires that rx->skb is a frame with ethernet header |
| */ |
| static void |
| ieee80211_deliver_skb(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct net_device *dev = sdata->dev; |
| struct sk_buff *skb, *xmit_skb; |
| struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| struct sta_info *dsta; |
| |
| skb = rx->skb; |
| xmit_skb = NULL; |
| |
| dev_sw_netstats_rx_add(dev, skb->len); |
| |
| if (rx->sta) { |
| /* The seqno index has the same property as needed |
| * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS |
| * for non-QoS-data frames. Here we know it's a data |
| * frame, so count MSDUs. |
| */ |
| u64_stats_update_begin(&rx->sta->rx_stats.syncp); |
| rx->sta->rx_stats.msdu[rx->seqno_idx]++; |
| u64_stats_update_end(&rx->sta->rx_stats.syncp); |
| } |
| |
| if ((sdata->vif.type == NL80211_IFTYPE_AP || |
| sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && |
| !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && |
| ehdr->h_proto != rx->sdata->control_port_protocol && |
| (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { |
| if (is_multicast_ether_addr(ehdr->h_dest) && |
| ieee80211_vif_get_num_mcast_if(sdata) != 0) { |
| /* |
| * send multicast frames both to higher layers in |
| * local net stack and back to the wireless medium |
| */ |
| xmit_skb = skb_copy(skb, GFP_ATOMIC); |
| if (!xmit_skb) |
| net_info_ratelimited("%s: failed to clone multicast frame\n", |
| dev->name); |
| } else if (!is_multicast_ether_addr(ehdr->h_dest) && |
| !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { |
| dsta = sta_info_get(sdata, ehdr->h_dest); |
| if (dsta) { |
| /* |
| * The destination station is associated to |
| * this AP (in this VLAN), so send the frame |
| * directly to it and do not pass it to local |
| * net stack. |
| */ |
| xmit_skb = skb; |
| skb = NULL; |
| } |
| } |
| } |
| |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| if (skb) { |
| /* 'align' will only take the values 0 or 2 here since all |
| * frames are required to be aligned to 2-byte boundaries |
| * when being passed to mac80211; the code here works just |
| * as well if that isn't true, but mac80211 assumes it can |
| * access fields as 2-byte aligned (e.g. for ether_addr_equal) |
| */ |
| int align; |
| |
| align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; |
| if (align) { |
| if (WARN_ON(skb_headroom(skb) < 3)) { |
| dev_kfree_skb(skb); |
| skb = NULL; |
| } else { |
| u8 *data = skb->data; |
| size_t len = skb_headlen(skb); |
| skb->data -= align; |
| memmove(skb->data, data, len); |
| skb_set_tail_pointer(skb, len); |
| } |
| } |
| } |
| #endif |
| |
| if (skb) { |
| skb->protocol = eth_type_trans(skb, dev); |
| ieee80211_deliver_skb_to_local_stack(skb, rx); |
| } |
| |
| if (xmit_skb) { |
| /* |
| * Send to wireless media and increase priority by 256 to |
| * keep the received priority instead of reclassifying |
| * the frame (see cfg80211_classify8021d). |
| */ |
| xmit_skb->priority += 256; |
| xmit_skb->protocol = htons(ETH_P_802_3); |
| skb_reset_network_header(xmit_skb); |
| skb_reset_mac_header(xmit_skb); |
| dev_queue_xmit(xmit_skb); |
| } |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) |
| { |
| struct net_device *dev = rx->sdata->dev; |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| __le16 fc = hdr->frame_control; |
| struct sk_buff_head frame_list; |
| struct ethhdr ethhdr; |
| const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; |
| |
| if (unlikely(ieee80211_has_a4(hdr->frame_control))) { |
| check_da = NULL; |
| check_sa = NULL; |
| } else switch (rx->sdata->vif.type) { |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_AP_VLAN: |
| check_da = NULL; |
| break; |
| case NL80211_IFTYPE_STATION: |
| if (!rx->sta || |
| !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) |
| check_sa = NULL; |
| break; |
| case NL80211_IFTYPE_MESH_POINT: |
| check_sa = NULL; |
| break; |
| default: |
| break; |
| } |
| |
| skb->dev = dev; |
| __skb_queue_head_init(&frame_list); |
| |
| if (ieee80211_data_to_8023_exthdr(skb, ðhdr, |
| rx->sdata->vif.addr, |
| rx->sdata->vif.type, |
| data_offset, true)) |
| return RX_DROP_UNUSABLE; |
| |
| ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, |
| rx->sdata->vif.type, |
| rx->local->hw.extra_tx_headroom, |
| check_da, check_sa); |
| |
| while (!skb_queue_empty(&frame_list)) { |
| rx->skb = __skb_dequeue(&frame_list); |
| |
| if (!ieee80211_frame_allowed(rx, fc)) { |
| dev_kfree_skb(rx->skb); |
| continue; |
| } |
| |
| ieee80211_deliver_skb(rx); |
| } |
| |
| return RX_QUEUED; |
| } |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) |
| { |
| struct sk_buff *skb = rx->skb; |
| struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| __le16 fc = hdr->frame_control; |
| |
| if (!(status->rx_flags & IEEE80211_RX_AMSDU)) |
| return RX_CONTINUE; |
| |
| if (unlikely(!ieee80211_is_data(fc))) |
| return RX_CONTINUE; |
| |
| if (unlikely(!ieee80211_is_data_present(fc))) |
| return RX_DROP_MONITOR; |
| |
| if (unlikely(ieee80211_has_a4(hdr->frame_control))) { |
| switch (rx->sdata->vif.type) { |
| case NL80211_IFTYPE_AP_VLAN: |
| if (!rx->sdata->u.vlan.sta) |
| return RX_DROP_UNUSABLE; |
| break; |
| case NL80211_IFTYPE_STATION: |
| if (!rx->sdata->u.mgd.use_4addr) |
| return RX_DROP_UNUSABLE; |
| break; |
| default: |
| return RX_DROP_UNUSABLE; |
| } |
| } |
| |
| if (is_multicast_ether_addr(hdr->addr1)) |
| return RX_DROP_UNUSABLE; |
| |
| if (rx->key) { |
| /* |
| * We should not receive A-MSDUs on pre-HT connections, |
| * and HT connections cannot use old ciphers. Thus drop |
| * them, as in those cases we couldn't even have SPP |
| * A-MSDUs or such. |
| */ |
| switch (rx->key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| case WLAN_CIPHER_SUITE_TKIP: |
| return RX_DROP_UNUSABLE; |
| default: |
| break; |
| } |
| } |
| |
| return __ieee80211_rx_h_amsdu(rx, 0); |
| } |
| |
| #ifdef CONFIG_MAC80211_MESH |
| static ieee80211_rx_result |
| ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_hdr *fwd_hdr, *hdr; |
| struct ieee80211_tx_info *info; |
| struct ieee80211s_hdr *mesh_hdr; |
| struct sk_buff *skb = rx->skb, *fwd_skb; |
| struct ieee80211_local *local = rx->local; |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; |
| u16 ac, q, hdrlen; |
| int tailroom = 0; |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| |
| /* make sure fixed part of mesh header is there, also checks skb len */ |
| if (!pskb_may_pull(rx->skb, hdrlen + 6)) |
| return RX_DROP_MONITOR; |
| |
| mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); |
| |
| /* make sure full mesh header is there, also checks skb len */ |
| if (!pskb_may_pull(rx->skb, |
| hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) |
| return RX_DROP_MONITOR; |
| |
| /* reload pointers */ |
| hdr = (struct ieee80211_hdr *) skb->data; |
| mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); |
| |
| if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) |
| return RX_DROP_MONITOR; |
| |
| /* frame is in RMC, don't forward */ |
| if (ieee80211_is_data(hdr->frame_control) && |
| is_multicast_ether_addr(hdr->addr1) && |
| mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) |
| return RX_DROP_MONITOR; |
| |
| if (!ieee80211_is_data(hdr->frame_control)) |
| return RX_CONTINUE; |
| |
| if (!mesh_hdr->ttl) |
| return RX_DROP_MONITOR; |
| |
| if (mesh_hdr->flags & MESH_FLAGS_AE) { |
| struct mesh_path *mppath; |
| char *proxied_addr; |
| char *mpp_addr; |
| |
| if (is_multicast_ether_addr(hdr->addr1)) { |
| mpp_addr = hdr->addr3; |
| proxied_addr = mesh_hdr->eaddr1; |
| } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == |
| MESH_FLAGS_AE_A5_A6) { |
| /* has_a4 already checked in ieee80211_rx_mesh_check */ |
| mpp_addr = hdr->addr4; |
| proxied_addr = mesh_hdr->eaddr2; |
| } else { |
| return RX_DROP_MONITOR; |
| } |
| |
| rcu_read_lock(); |
| mppath = mpp_path_lookup(sdata, proxied_addr); |
| if (!mppath) { |
| mpp_path_add(sdata, proxied_addr, mpp_addr); |
| } else { |
| spin_lock_bh(&mppath->state_lock); |
| if (!ether_addr_equal(mppath->mpp, mpp_addr)) |
| memcpy(mppath->mpp, mpp_addr, ETH_ALEN); |
| mppath->exp_time = jiffies; |
| spin_unlock_bh(&mppath->state_lock); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* Frame has reached destination. Don't forward */ |
| if (!is_multicast_ether_addr(hdr->addr1) && |
| ether_addr_equal(sdata->vif.addr, hdr->addr3)) |
| return RX_CONTINUE; |
| |
| ac = ieee80211_select_queue_80211(sdata, skb, hdr); |
| q = sdata->vif.hw_queue[ac]; |
| if (ieee80211_queue_stopped(&local->hw, q)) { |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); |
| return RX_DROP_MONITOR; |
| } |
| skb_set_queue_mapping(skb, q); |
| |
| if (!--mesh_hdr->ttl) { |
| if (!is_multicast_ether_addr(hdr->addr1)) |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, |
| dropped_frames_ttl); |
| goto out; |
| } |
| |
| if (!ifmsh->mshcfg.dot11MeshForwarding) |
| goto out; |
| |
| if (sdata->crypto_tx_tailroom_needed_cnt) |
| tailroom = IEEE80211_ENCRYPT_TAILROOM; |
| |
| fwd_skb = skb_copy_expand(skb, local->tx_headroom + |
| sdata->encrypt_headroom, |
| tailroom, GFP_ATOMIC); |
| if (!fwd_skb) |
| goto out; |
| |
| fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; |
| fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); |
| info = IEEE80211_SKB_CB(fwd_skb); |
| memset(info, 0, sizeof(*info)); |
| info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; |
| info->control.vif = &rx->sdata->vif; |
| info->control.jiffies = jiffies; |
| if (is_multicast_ether_addr(fwd_hdr->addr1)) { |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); |
| memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); |
| /* update power mode indication when forwarding */ |
| ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); |
| } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { |
| /* mesh power mode flags updated in mesh_nexthop_lookup */ |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); |
| } else { |
| /* unable to resolve next hop */ |
| mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, |
| fwd_hdr->addr3, 0, |
| WLAN_REASON_MESH_PATH_NOFORWARD, |
| fwd_hdr->addr2); |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); |
| kfree_skb(fwd_skb); |
| return RX_DROP_MONITOR; |
| } |
| |
| IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); |
| ieee80211_add_pending_skb(local, fwd_skb); |
| out: |
| if (is_multicast_ether_addr(hdr->addr1)) |
| return RX_CONTINUE; |
| return RX_DROP_MONITOR; |
| } |
| #endif |
| |
| static ieee80211_rx_result debug_noinline |
| ieee80211_rx_h_data(struct ieee80211_rx_data *rx) |
| { |
| struct ieee80211_sub_if_data *sdata = rx->sdata; |
| struct ieee80211_local *local = rx->local; |
| struct net_device *dev = sdata->dev; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| __le16 fc = hdr->frame_control; |
| bool port_control; |
| int err; |
| |
| if (unlikely(!ieee80211_is_data(hdr->frame_control))) |
| return RX_CONTINUE; |
| |
| if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) |
| return RX_DROP_MONITOR; |
| |
| /* |
| * Send unexpected-4addr-frame event to hostapd. For older versions, |
| * also drop the frame to cooked monitor interfaces. |
| */ |
| if (ieee80211_has_a4(hdr->frame_control) && |
| sdata->vif.type == NL80211_IFTYPE_AP) { |
| if (rx->sta && |
| !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) |
| cfg80211_rx_unexpected_4addr_frame( |
| rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); |
| return RX_DROP_MONITOR; |
| } |
| |
| err = __ieee80211_data_to_8023(rx, &port_control); |
| if (unlikely(err |