blob: 5b63d179b24ea753e98b095159bd557e8943b598 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* IBM Accelerator Family 'GenWQE'
*
* (C) Copyright IBM Corp. 2013
*
* Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
* Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
* Author: Michael Jung <mijung@gmx.net>
* Author: Michael Ruettger <michael@ibmra.de>
*/
/*
* Module initialization and PCIe setup. Card health monitoring and
* recovery functionality. Character device creation and deletion are
* controlled from here.
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/err.h>
#include <linux/aer.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/device.h>
#include <linux/log2.h>
#include "card_base.h"
#include "card_ddcb.h"
MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
MODULE_DESCRIPTION("GenWQE Card");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
static char genwqe_driver_name[] = GENWQE_DEVNAME;
static struct class *class_genwqe;
static struct dentry *debugfs_genwqe;
static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
/* PCI structure for identifying device by PCI vendor and device ID */
static const struct pci_device_id genwqe_device_table[] = {
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5 << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Initial SR-IOV bring-up image */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
{ .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
.device = 0x0000, /* VF Device ID */
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Fixed up image */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
{ .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
.device = 0x0000, /* VF Device ID */
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Even one more ... */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
.class = (PCI_CLASSCODE_GENWQE5 << 8),
.class_mask = ~0,
.driver_data = 0 },
{ 0, } /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, genwqe_device_table);
/**
* genwqe_dev_alloc() - Create and prepare a new card descriptor
*
* Return: Pointer to card descriptor, or ERR_PTR(err) on error
*/
static struct genwqe_dev *genwqe_dev_alloc(void)
{
unsigned int i = 0, j;
struct genwqe_dev *cd;
for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
if (genwqe_devices[i] == NULL)
break;
}
if (i >= GENWQE_CARD_NO_MAX)
return ERR_PTR(-ENODEV);
cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
if (!cd)
return ERR_PTR(-ENOMEM);
cd->card_idx = i;
cd->class_genwqe = class_genwqe;
cd->debugfs_genwqe = debugfs_genwqe;
/*
* This comes from kernel config option and can be overritten via
* debugfs.
*/
cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
init_waitqueue_head(&cd->queue_waitq);
spin_lock_init(&cd->file_lock);
INIT_LIST_HEAD(&cd->file_list);
cd->card_state = GENWQE_CARD_UNUSED;
spin_lock_init(&cd->print_lock);
cd->ddcb_software_timeout = GENWQE_DDCB_SOFTWARE_TIMEOUT;
cd->kill_timeout = GENWQE_KILL_TIMEOUT;
for (j = 0; j < GENWQE_MAX_VFS; j++)
cd->vf_jobtimeout_msec[j] = GENWQE_VF_JOBTIMEOUT_MSEC;
genwqe_devices[i] = cd;
return cd;
}
static void genwqe_dev_free(struct genwqe_dev *cd)
{
if (!cd)
return;
genwqe_devices[cd->card_idx] = NULL;
kfree(cd);
}
/**
* genwqe_bus_reset() - Card recovery
* @cd: GenWQE device information
*
* pci_reset_function() will recover the device and ensure that the
* registers are accessible again when it completes with success. If
* not, the card will stay dead and registers will be unaccessible
* still.
*/
static int genwqe_bus_reset(struct genwqe_dev *cd)
{
int rc = 0;
struct pci_dev *pci_dev = cd->pci_dev;
void __iomem *mmio;
if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
return -EIO;
mmio = cd->mmio;
cd->mmio = NULL;
pci_iounmap(pci_dev, mmio);
pci_release_mem_regions(pci_dev);
/*
* Firmware/BIOS might change memory mapping during bus reset.
* Settings like enable bus-mastering, ... are backuped and
* restored by the pci_reset_function().
*/
dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
rc = pci_reset_function(pci_dev);
if (rc) {
dev_err(&pci_dev->dev,
"[%s] err: failed reset func (rc %d)\n", __func__, rc);
return rc;
}
dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
/*
* Here is the right spot to clear the register read
* failure. pci_bus_reset() does this job in real systems.
*/
cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
GENWQE_INJECT_GFIR_FATAL |
GENWQE_INJECT_GFIR_INFO);
rc = pci_request_mem_regions(pci_dev, genwqe_driver_name);
if (rc) {
dev_err(&pci_dev->dev,
"[%s] err: request bars failed (%d)\n", __func__, rc);
return -EIO;
}
cd->mmio = pci_iomap(pci_dev, 0, 0);
if (cd->mmio == NULL) {
dev_err(&pci_dev->dev,
"[%s] err: mapping BAR0 failed\n", __func__);
return -ENOMEM;
}
return 0;
}
/*
* Hardware circumvention section. Certain bitstreams in our test-lab
* had different kinds of problems. Here is where we adjust those
* bitstreams to function will with this version of our device driver.
*
* Thise circumventions are applied to the physical function only.
* The magical numbers below are identifying development/manufacturing
* versions of the bitstream used on the card.
*
* Turn off error reporting for old/manufacturing images.
*/
bool genwqe_need_err_masking(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
}
static void genwqe_tweak_hardware(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
/* Mask FIRs for development images */
if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
dev_warn(&pci_dev->dev,
"FIRs masked due to bitstream %016llx.%016llx\n",
cd->slu_unitcfg, cd->app_unitcfg);
__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
0xFFFFFFFFFFFFFFFFull);
__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
0x0000000000000000ull);
}
}
/**
* genwqe_recovery_on_fatal_gfir_required() - Version depended actions
* @cd: GenWQE device information
*
* Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
* be ignored. This is e.g. true for the bitstream we gave to the card
* manufacturer, but also for some old bitstreams we released to our
* test-lab.
*/
int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
}
int genwqe_flash_readback_fails(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
}
/**
* genwqe_T_psec() - Calculate PF/VF timeout register content
* @cd: GenWQE device information
*
* Note: From a design perspective it turned out to be a bad idea to
* use codes here to specifiy the frequency/speed values. An old
* driver cannot understand new codes and is therefore always a
* problem. Better is to measure out the value or put the
* speed/frequency directly into a register which is always a valid
* value for old as well as for new software.
*/
/* T = 1/f */
static int genwqe_T_psec(struct genwqe_dev *cd)
{
u16 speed; /* 1/f -> 250, 200, 166, 175 */
static const int T[] = { 4000, 5000, 6000, 5714 };
speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
if (speed >= ARRAY_SIZE(T))
return -1; /* illegal value */
return T[speed];
}
/**
* genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
* @cd: GenWQE device information
*
* Do this _after_ card_reset() is called. Otherwise the values will
* vanish. The settings need to be done when the queues are inactive.
*
* The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
* The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
*/
static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
{
u32 T = genwqe_T_psec(cd);
u64 x;
if (GENWQE_PF_JOBTIMEOUT_MSEC == 0)
return false;
/* PF: large value needed, flash update 2sec per block */
x = ilog2(GENWQE_PF_JOBTIMEOUT_MSEC *
16000000000uL/(T * 15)) - 10;
genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
0xff00 | (x & 0xff), 0);
return true;
}
/**
* genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
* @cd: GenWQE device information
*/
static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
unsigned int vf;
u32 T = genwqe_T_psec(cd);
u64 x;
int totalvfs;
totalvfs = pci_sriov_get_totalvfs(pci_dev);
if (totalvfs <= 0)
return false;
for (vf = 0; vf < totalvfs; vf++) {
if (cd->vf_jobtimeout_msec[vf] == 0)
continue;
x = ilog2(cd->vf_jobtimeout_msec[vf] *
16000000000uL/(T * 15)) - 10;
genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
0xff00 | (x & 0xff), vf + 1);
}
return true;
}
static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
{
unsigned int type, e = 0;
for (type = 0; type < GENWQE_DBG_UNITS; type++) {
switch (type) {
case GENWQE_DBG_UNIT0:
e = genwqe_ffdc_buff_size(cd, 0);
break;
case GENWQE_DBG_UNIT1:
e = genwqe_ffdc_buff_size(cd, 1);
break;
case GENWQE_DBG_UNIT2:
e = genwqe_ffdc_buff_size(cd, 2);
break;
case GENWQE_DBG_REGS:
e = GENWQE_FFDC_REGS;
break;
}
/* currently support only the debug units mentioned here */
cd->ffdc[type].entries = e;
cd->ffdc[type].regs =
kmalloc_array(e, sizeof(struct genwqe_reg),
GFP_KERNEL);
/*
* regs == NULL is ok, the using code treats this as no regs,
* Printing warning is ok in this case.
*/
}
return 0;
}
static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
{
unsigned int type;
for (type = 0; type < GENWQE_DBG_UNITS; type++) {
kfree(cd->ffdc[type].regs);
cd->ffdc[type].regs = NULL;
}
}
static int genwqe_read_ids(struct genwqe_dev *cd)
{
int err = 0;
int slu_id;
struct pci_dev *pci_dev = cd->pci_dev;
cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"err: SLUID=%016llx\n", cd->slu_unitcfg);
err = -EIO;
goto out_err;
}
slu_id = genwqe_get_slu_id(cd);
if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
dev_err(&pci_dev->dev,
"err: incompatible SLU Architecture %u\n", slu_id);
err = -ENOENT;
goto out_err;
}
cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"err: APPID=%016llx\n", cd->app_unitcfg);
err = -EIO;
goto out_err;
}
genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
/*
* Is access to all registers possible? If we are a VF the
* answer is obvious. If we run fully virtualized, we need to
* check if we can access all registers. If we do not have
* full access we will cause an UR and some informational FIRs
* in the PF, but that should not harm.
*/
if (pci_dev->is_virtfn)
cd->is_privileged = 0;
else
cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
!= IO_ILLEGAL_VALUE);
out_err:
return err;
}
static int genwqe_start(struct genwqe_dev *cd)
{
int err;
struct pci_dev *pci_dev = cd->pci_dev;
err = genwqe_read_ids(cd);
if (err)
return err;
if (genwqe_is_privileged(cd)) {
/* do this after the tweaks. alloc fail is acceptable */
genwqe_ffdc_buffs_alloc(cd);
genwqe_stop_traps(cd);
/* Collect registers e.g. FIRs, UNITIDs, traces ... */
genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
cd->ffdc[GENWQE_DBG_REGS].entries, 0);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
cd->ffdc[GENWQE_DBG_UNIT0].regs,
cd->ffdc[GENWQE_DBG_UNIT0].entries);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
cd->ffdc[GENWQE_DBG_UNIT1].regs,
cd->ffdc[GENWQE_DBG_UNIT1].entries);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
cd->ffdc[GENWQE_DBG_UNIT2].regs,
cd->ffdc[GENWQE_DBG_UNIT2].entries);
genwqe_start_traps(cd);
if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
dev_warn(&pci_dev->dev,
"[%s] chip reload/recovery!\n", __func__);
/*
* Stealth Mode: Reload chip on either hot
* reset or PERST.
*/
cd->softreset = 0x7Cull;
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
cd->softreset);
err = genwqe_bus_reset(cd);
if (err != 0) {
dev_err(&pci_dev->dev,
"[%s] err: bus reset failed!\n",
__func__);
goto out;
}
/*
* Re-read the IDs because
* it could happen that the bitstream load
* failed!
*/
err = genwqe_read_ids(cd);
if (err)
goto out;
}
}
err = genwqe_setup_service_layer(cd); /* does a reset to the card */
if (err != 0) {
dev_err(&pci_dev->dev,
"[%s] err: could not setup servicelayer!\n", __func__);
err = -ENODEV;
goto out;
}
if (genwqe_is_privileged(cd)) { /* code is running _after_ reset */
genwqe_tweak_hardware(cd);
genwqe_setup_pf_jtimer(cd);
genwqe_setup_vf_jtimer(cd);
}
err = genwqe_device_create(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: chdev init failed! (err=%d)\n", err);
goto out_release_service_layer;
}
return 0;
out_release_service_layer:
genwqe_release_service_layer(cd);
out:
if (genwqe_is_privileged(cd))
genwqe_ffdc_buffs_free(cd);
return -EIO;
}
/**
* genwqe_stop() - Stop card operation
* @cd: GenWQE device information
*
* Recovery notes:
* As long as genwqe_thread runs we might access registers during
* error data capture. Same is with the genwqe_health_thread.
* When genwqe_bus_reset() fails this function might called two times:
* first by the genwqe_health_thread() and later by genwqe_remove() to
* unbind the device. We must be able to survive that.
*
* This function must be robust enough to be called twice.
*/
static int genwqe_stop(struct genwqe_dev *cd)
{
genwqe_finish_queue(cd); /* no register access */
genwqe_device_remove(cd); /* device removed, procs killed */
genwqe_release_service_layer(cd); /* here genwqe_thread is stopped */
if (genwqe_is_privileged(cd)) {
pci_disable_sriov(cd->pci_dev); /* access pci config space */
genwqe_ffdc_buffs_free(cd);
}
return 0;
}
/**
* genwqe_recover_card() - Try to recover the card if it is possible
* @cd: GenWQE device information
* @fatal_err: Indicate whether to attempt soft reset
*
* If fatal_err is set no register access is possible anymore. It is
* likely that genwqe_start fails in that situation. Proper error
* handling is required in this case.
*
* genwqe_bus_reset() will cause the pci code to call genwqe_remove()
* and later genwqe_probe() for all virtual functions.
*/
static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
{
int rc;
struct pci_dev *pci_dev = cd->pci_dev;
genwqe_stop(cd);
/*
* Make sure chip is not reloaded to maintain FFDC. Write SLU
* Reset Register, CPLDReset field to 0.
*/
if (!fatal_err) {
cd->softreset = 0x70ull;
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
}
rc = genwqe_bus_reset(cd);
if (rc != 0) {
dev_err(&pci_dev->dev,
"[%s] err: card recovery impossible!\n", __func__);
return rc;
}
rc = genwqe_start(cd);
if (rc < 0) {
dev_err(&pci_dev->dev,
"[%s] err: failed to launch device!\n", __func__);
return rc;
}
return 0;
}
static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
{
*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
return (*gfir & GFIR_ERR_TRIGGER) &&
genwqe_recovery_on_fatal_gfir_required(cd);
}
/**
* genwqe_fir_checking() - Check the fault isolation registers of the card
* @cd: GenWQE device information
*
* If this code works ok, can be tried out with help of the genwqe_poke tool:
* sudo ./tools/genwqe_poke 0x8 0xfefefefefef
*
* Now the relevant FIRs/sFIRs should be printed out and the driver should
* invoke recovery (devices are removed and readded).
*/
static u64 genwqe_fir_checking(struct genwqe_dev *cd)
{
int j, iterations = 0;
u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
struct pci_dev *pci_dev = cd->pci_dev;
healthMonitor:
iterations++;
if (iterations > 16) {
dev_err(&pci_dev->dev, "* exit looping after %d times\n",
iterations);
goto fatal_error;
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir != 0x0)
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
IO_SLC_CFGREG_GFIR, gfir);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
/*
* Avoid printing when to GFIR bit is on prevents contignous
* printout e.g. for the following bug:
* FIR set without a 2ndary FIR/FIR cannot be cleared
* Comment out the following if to get the prints:
*/
if (gfir == 0)
return 0;
gfir_masked = gfir & GFIR_ERR_TRIGGER; /* fatal errors */
for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
/* read the primary FIR (pfir) */
fir_addr = (uid << 24) + 0x08;
fir = __genwqe_readq(cd, fir_addr);
if (fir == 0x0)
continue; /* no error in this unit */
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
if (fir == IO_ILLEGAL_VALUE)
goto fatal_error;
/* read primary FEC */
fec_addr = (uid << 24) + 0x18;
fec = __genwqe_readq(cd, fec_addr);
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
if (fec == IO_ILLEGAL_VALUE)
goto fatal_error;
for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
/* secondary fir empty, skip it */
if ((fir & mask) == 0x0)
continue;
sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
sfir = __genwqe_readq(cd, sfir_addr);
if (sfir == IO_ILLEGAL_VALUE)
goto fatal_error;
dev_err(&pci_dev->dev,
"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
sfec = __genwqe_readq(cd, sfec_addr);
if (sfec == IO_ILLEGAL_VALUE)
goto fatal_error;
dev_err(&pci_dev->dev,
"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
/* gfir turned on during routine! get out and
start over. */
if ((gfir_masked == 0x0) &&
(gfir & GFIR_ERR_TRIGGER)) {
goto healthMonitor;
}
/* do not clear if we entered with a fatal gfir */
if (gfir_masked == 0x0) {
/* NEW clear by mask the logged bits */
sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
__genwqe_writeq(cd, sfir_addr, sfir);
dev_dbg(&pci_dev->dev,
"[HM] Clearing 2ndary FIR 0x%08x with 0x%016llx\n",
sfir_addr, sfir);
/*
* note, these cannot be error-Firs
* since gfir_masked is 0 after sfir
* was read. Also, it is safe to do
* this write if sfir=0. Still need to
* clear the primary. This just means
* there is no secondary FIR.
*/
/* clear by mask the logged bit. */
fir_clr_addr = (uid << 24) + 0x10;
__genwqe_writeq(cd, fir_clr_addr, mask);
dev_dbg(&pci_dev->dev,
"[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
fir_clr_addr, mask);
}
}
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
/*
* Check once more that it didn't go on after all the
* FIRS were cleared.
*/
dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
iterations);
goto healthMonitor;
}
return gfir_masked;
fatal_error:
return IO_ILLEGAL_VALUE;
}
/**
* genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
* @pci_dev: PCI device information struct
*
* Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
* reset method will not work in all cases.
*
* Return: 0 on success or error code from pci_set_pcie_reset_state()
*/
static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
{
int rc;
/*
* lock pci config space access from userspace,
* save state and issue PCIe fundamental reset
*/
pci_cfg_access_lock(pci_dev);
pci_save_state(pci_dev);
rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
if (!rc) {
/* keep PCIe reset asserted for 250ms */
msleep(250);
pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
/* Wait for 2s to reload flash and train the link */
msleep(2000);
}
pci_restore_state(pci_dev);
pci_cfg_access_unlock(pci_dev);
return rc;
}
static int genwqe_platform_recovery(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
int rc;
dev_info(&pci_dev->dev,
"[%s] resetting card for error recovery\n", __func__);
/* Clear out error injection flags */
cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
GENWQE_INJECT_GFIR_FATAL |
GENWQE_INJECT_GFIR_INFO);
genwqe_stop(cd);
/* Try recoverying the card with fundamental reset */
rc = genwqe_pci_fundamental_reset(pci_dev);
if (!rc) {
rc = genwqe_start(cd);
if (!rc)
dev_info(&pci_dev->dev,
"[%s] card recovered\n", __func__);
else
dev_err(&pci_dev->dev,
"[%s] err: cannot start card services! (err=%d)\n",
__func__, rc);
} else {
dev_err(&pci_dev->dev,
"[%s] card reset failed\n", __func__);
}
return rc;
}
/**
* genwqe_reload_bistream() - reload card bitstream
* @cd: GenWQE device information
*
* Set the appropriate register and call fundamental reset to reaload the card
* bitstream.
*
* Return: 0 on success, error code otherwise
*/
static int genwqe_reload_bistream(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
int rc;
dev_info(&pci_dev->dev,
"[%s] resetting card for bitstream reload\n",
__func__);
genwqe_stop(cd);
/*
* Cause a CPLD reprogram with the 'next_bitstream'
* partition on PCIe hot or fundamental reset
*/
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
(cd->softreset & 0xcull) | 0x70ull);
rc = genwqe_pci_fundamental_reset(pci_dev);
if (rc) {
/*
* A fundamental reset failure can be caused
* by lack of support on the arch, so we just
* log the error and try to start the card
* again.
*/
dev_err(&pci_dev->dev,
"[%s] err: failed to reset card for bitstream reload\n",
__func__);
}
rc = genwqe_start(cd);
if (rc) {
dev_err(&pci_dev->dev,
"[%s] err: cannot start card services! (err=%d)\n",
__func__, rc);
return rc;
}
dev_info(&pci_dev->dev,
"[%s] card reloaded\n", __func__);
return 0;
}
/**
* genwqe_health_thread() - Health checking thread
* @data: GenWQE device information
*
* This thread is only started for the PF of the card.
*
* This thread monitors the health of the card. A critical situation
* is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
* this case we need to be recovered from outside. Writing to
* registers will very likely not work either.
*
* This thread must only exit if kthread_should_stop() becomes true.
*
* Condition for the health-thread to trigger:
* a) when a kthread_stop() request comes in or
* b) a critical GFIR occured
*
* Informational GFIRs are checked and potentially printed in
* GENWQE_HEALTH_CHECK_INTERVAL seconds.
*/
static int genwqe_health_thread(void *data)
{
int rc, should_stop = 0;
struct genwqe_dev *cd = data;
struct pci_dev *pci_dev = cd->pci_dev;
u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
health_thread_begin:
while (!kthread_should_stop()) {
rc = wait_event_interruptible_timeout(cd->health_waitq,
(genwqe_health_check_cond(cd, &gfir) ||
(should_stop = kthread_should_stop())),
GENWQE_HEALTH_CHECK_INTERVAL * HZ);
if (should_stop)
break;
if (gfir == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] GFIR=%016llx\n", __func__, gfir);
goto fatal_error;
}
slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
if (slu_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] SLU_UNITCFG=%016llx\n",
__func__, slu_unitcfg);
goto fatal_error;
}
app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
if (app_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] APP_UNITCFG=%016llx\n",
__func__, app_unitcfg);
goto fatal_error;
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] %s: GFIR=%016llx\n", __func__,
(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
gfir);
goto fatal_error;
}
gfir_masked = genwqe_fir_checking(cd);
if (gfir_masked == IO_ILLEGAL_VALUE)
goto fatal_error;
/*
* GFIR ErrorTrigger bits set => reset the card!
* Never do this for old/manufacturing images!
*/
if ((gfir_masked) && !cd->skip_recovery &&
genwqe_recovery_on_fatal_gfir_required(cd)) {
cd->card_state = GENWQE_CARD_FATAL_ERROR;
rc = genwqe_recover_card(cd, 0);
if (rc < 0) {
/* FIXME Card is unusable and needs unbind! */
goto fatal_error;
}
}
if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
/* Userspace requested card bitstream reload */
rc = genwqe_reload_bistream(cd);
if (rc)
goto fatal_error;
}
cd->last_gfir = gfir;
cond_resched();
}
return 0;
fatal_error:
if (cd->use_platform_recovery) {
/*
* Since we use raw accessors, EEH errors won't be detected
* by the platform until we do a non-raw MMIO or config space
* read
*/
readq(cd->mmio + IO_SLC_CFGREG_GFIR);
/* We do nothing if the card is going over PCI recovery */
if (pci_channel_offline(pci_dev))
return -EIO;
/*
* If it's supported by the platform, we try a fundamental reset
* to recover from a fatal error. Otherwise, we continue to wait
* for an external recovery procedure to take care of it.
*/
rc = genwqe_platform_recovery(cd);
if (!rc)
goto health_thread_begin;
}
dev_err(&pci_dev->dev,
"[%s] card unusable. Please trigger unbind!\n", __func__);
/* Bring down logical devices to inform user space via udev remove. */
cd->card_state = GENWQE_CARD_FATAL_ERROR;
genwqe_stop(cd);
/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
while (!kthread_should_stop())
cond_resched();
return -EIO;
}
static int genwqe_health_check_start(struct genwqe_dev *cd)
{
int rc;
if (GENWQE_HEALTH_CHECK_INTERVAL <= 0)
return 0; /* valid for disabling the service */
/* moved before request_irq() */
/* init_waitqueue_head(&cd->health_waitq); */
cd->health_thread = kthread_run(genwqe_health_thread, cd,
GENWQE_DEVNAME "%d_health",
cd->card_idx);
if (IS_ERR(cd->health_thread)) {
rc = PTR_ERR(cd->health_thread);
cd->health_thread = NULL;
return rc;
}
return 0;
}
static int genwqe_health_thread_running(struct genwqe_dev *cd)
{
return cd->health_thread != NULL;
}
static int genwqe_health_check_stop(struct genwqe_dev *cd)
{
if (!genwqe_health_thread_running(cd))
return -EIO;
kthread_stop(cd->health_thread);
cd->health_thread = NULL;
return 0;
}
/**
* genwqe_pci_setup() - Allocate PCIe related resources for our card
* @cd: GenWQE device information
*/
static int genwqe_pci_setup(struct genwqe_dev *cd)
{
int err;
struct pci_dev *pci_dev = cd->pci_dev;
err = pci_enable_device_mem(pci_dev);
if (err) {
dev_err(&pci_dev->dev,
"err: failed to enable pci memory (err=%d)\n", err);
goto err_out;
}
/* Reserve PCI I/O and memory resources */
err = pci_request_mem_regions(pci_dev, genwqe_driver_name);
if (err) {
dev_err(&pci_dev->dev,
"[%s] err: request bars failed (%d)\n", __func__, err);
err = -EIO;
goto err_disable_device;
}
/* check for 64-bit DMA address supported (DAC) */
/* check for 32-bit DMA address supported (SAC) */
if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
dev_err(&pci_dev->dev,
"err: neither DMA32 nor DMA64 supported\n");
err = -EIO;
goto out_release_resources;
}
pci_set_master(pci_dev);
pci_enable_pcie_error_reporting(pci_dev);
/* EEH recovery requires PCIe fundamental reset */
pci_dev->needs_freset = 1;
/* request complete BAR-0 space (length = 0) */
cd->mmio_len = pci_resource_len(pci_dev, 0);
cd->mmio = pci_iomap(pci_dev, 0, 0);
if (cd->mmio == NULL) {
dev_err(&pci_dev->dev,
"[%s] err: mapping BAR0 failed\n", __func__);
err = -ENOMEM;
goto out_release_resources;
}
cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
if (cd->num_vfs < 0)
cd->num_vfs = 0;
err = genwqe_read_ids(cd);
if (err)
goto out_iounmap;
return 0;
out_iounmap:
pci_iounmap(pci_dev, cd->mmio);
out_release_resources:
pci_release_mem_regions(pci_dev);
err_disable_device:
pci_disable_device(pci_dev);
err_out:
return err;
}
/**
* genwqe_pci_remove() - Free PCIe related resources for our card
* @cd: GenWQE device information
*/
static void genwqe_pci_remove(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
if (cd->mmio)
pci_iounmap(pci_dev, cd->mmio);
pci_release_mem_regions(pci_dev);
pci_disable_device(pci_dev);
}
/**
* genwqe_probe() - Device initialization
* @pci_dev: PCI device information struct
* @id: PCI device ID
*
* Callable for multiple cards. This function is called on bind.
*
* Return: 0 if succeeded, < 0 when failed
*/
static int genwqe_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
int err;
struct genwqe_dev *cd;
genwqe_init_crc32();
cd = genwqe_dev_alloc();
if (IS_ERR(cd)) {
dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
(int)PTR_ERR(cd));
return PTR_ERR(cd);
}
dev_set_drvdata(&pci_dev->dev, cd);
cd->pci_dev = pci_dev;
err = genwqe_pci_setup(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: problems with PCI setup (err=%d)\n", err);
goto out_free_dev;
}
err = genwqe_start(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: cannot start card services! (err=%d)\n", err);
goto out_pci_remove;
}
if (genwqe_is_privileged(cd)) {
err = genwqe_health_check_start(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: cannot start health checking! (err=%d)\n",
err);
goto out_stop_services;
}
}
return 0;
out_stop_services:
genwqe_stop(cd);
out_pci_remove:
genwqe_pci_remove(cd);
out_free_dev:
genwqe_dev_free(cd);
return err;
}
/**
* genwqe_remove() - Called when device is removed (hot-plugable)
* @pci_dev: PCI device information struct
*
* Or when driver is unloaded respecitively when unbind is done.
*/
static void genwqe_remove(struct pci_dev *pci_dev)
{
struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
genwqe_health_check_stop(cd);
/*
* genwqe_stop() must survive if it is called twice
* sequentially. This happens when the health thread calls it
* and fails on genwqe_bus_reset().
*/
genwqe_stop(cd);
genwqe_pci_remove(cd);
genwqe_dev_free(cd);
}
/**
* genwqe_err_error_detected() - Error detection callback
* @pci_dev: PCI device information struct
* @state: PCI channel state
*
* This callback is called by the PCI subsystem whenever a PCI bus
* error is detected.
*/
static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
pci_channel_state_t state)
{
struct genwqe_dev *cd;
dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
cd = dev_get_drvdata(&pci_dev->dev);
if (cd == NULL)
return PCI_ERS_RESULT_DISCONNECT;
/* Stop the card */
genwqe_health_check_stop(cd);
genwqe_stop(cd);
/*
* On permanent failure, the PCI code will call device remove
* after the return of this function.
* genwqe_stop() can be called twice.
*/
if (state == pci_channel_io_perm_failure) {
return PCI_ERS_RESULT_DISCONNECT;
} else {
genwqe_pci_remove(cd);
return PCI_ERS_RESULT_NEED_RESET;
}
}
static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
{
int rc;
struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
rc = genwqe_pci_setup(cd);
if (!rc) {
return PCI_ERS_RESULT_RECOVERED;
} else {
dev_err(&pci_dev->dev,
"err: problems with PCI setup (err=%d)\n", rc);
return PCI_ERS_RESULT_DISCONNECT;
}
}
static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
{
return PCI_ERS_RESULT_NONE;
}
static void genwqe_err_resume(struct pci_dev *pci_dev)
{
int rc;
struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
rc = genwqe_start(cd);
if (!rc) {
rc = genwqe_health_check_start(cd);
if (rc)
dev_err(&pci_dev->dev,
"err: cannot start health checking! (err=%d)\n",
rc);
} else {
dev_err(&pci_dev->dev,
"err: cannot start card services! (err=%d)\n", rc);
}
}
static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
{
int rc;
struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
if (numvfs > 0) {
genwqe_setup_vf_jtimer(cd);
rc = pci_enable_sriov(dev, numvfs);
if (rc < 0)
return rc;
return numvfs;
}
if (numvfs == 0) {
pci_disable_sriov(dev);
return 0;
}
return 0;
}
static const struct pci_error_handlers genwqe_err_handler = {
.error_detected = genwqe_err_error_detected,
.mmio_enabled = genwqe_err_result_none,
.slot_reset = genwqe_err_slot_reset,
.resume = genwqe_err_resume,
};
static struct pci_driver genwqe_driver = {
.name = genwqe_driver_name,
.id_table = genwqe_device_table,
.probe = genwqe_probe,
.remove = genwqe_remove,
.sriov_configure = genwqe_sriov_configure,
.err_handler = &genwqe_err_handler,
};
/**
* genwqe_devnode() - Set default access mode for genwqe devices.
* @dev: Pointer to device (unused)
* @mode: Carrier to pass-back given mode (permissions)
*
* Default mode should be rw for everybody. Do not change default
* device name.
*/
static char *genwqe_devnode(const struct device *dev, umode_t *mode)
{
if (mode)
*mode = 0666;
return NULL;
}
/**
* genwqe_init_module() - Driver registration and initialization
*/
static int __init genwqe_init_module(void)
{
int rc;
class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
if (IS_ERR(class_genwqe)) {
pr_err("[%s] create class failed\n", __func__);
return -ENOMEM;
}
class_genwqe->devnode = genwqe_devnode;
debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
rc = pci_register_driver(&genwqe_driver);
if (rc != 0) {
pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
goto err_out0;
}
return rc;
err_out0:
debugfs_remove(debugfs_genwqe);
class_destroy(class_genwqe);
return rc;
}
/**
* genwqe_exit_module() - Driver exit
*/
static void __exit genwqe_exit_module(void)
{
pci_unregister_driver(&genwqe_driver);
debugfs_remove(debugfs_genwqe);
class_destroy(class_genwqe);
}
module_init(genwqe_init_module);
module_exit(genwqe_exit_module);