| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2019-2022 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/bitfield.h> |
| #include <linux/if_rmnet.h> |
| #include <linux/dma-direction.h> |
| |
| #include "gsi.h" |
| #include "gsi_trans.h" |
| #include "ipa.h" |
| #include "ipa_data.h" |
| #include "ipa_endpoint.h" |
| #include "ipa_cmd.h" |
| #include "ipa_mem.h" |
| #include "ipa_modem.h" |
| #include "ipa_table.h" |
| #include "ipa_gsi.h" |
| #include "ipa_power.h" |
| |
| /* Hardware is told about receive buffers once a "batch" has been queued */ |
| #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ |
| |
| /* The amount of RX buffer space consumed by standard skb overhead */ |
| #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) |
| |
| /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ |
| #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ |
| |
| #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 |
| |
| /** enum ipa_status_opcode - status element opcode hardware values */ |
| enum ipa_status_opcode { |
| IPA_STATUS_OPCODE_PACKET = 0x01, |
| IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, |
| IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, |
| IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, |
| }; |
| |
| /** enum ipa_status_exception - status element exception type */ |
| enum ipa_status_exception { |
| /* 0 means no exception */ |
| IPA_STATUS_EXCEPTION_DEAGGR = 0x01, |
| }; |
| |
| /* Status element provided by hardware */ |
| struct ipa_status { |
| u8 opcode; /* enum ipa_status_opcode */ |
| u8 exception; /* enum ipa_status_exception */ |
| __le16 mask; |
| __le16 pkt_len; |
| u8 endp_src_idx; |
| u8 endp_dst_idx; |
| __le32 metadata; |
| __le32 flags1; |
| __le64 flags2; |
| __le32 flags3; |
| __le32 flags4; |
| }; |
| |
| /* Field masks for struct ipa_status structure fields */ |
| #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4) |
| #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0) |
| #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) |
| #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) |
| #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16) |
| |
| /* Compute the aggregation size value to use for a given buffer size */ |
| static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) |
| { |
| /* A hard aggregation limit will not be crossed; aggregation closes |
| * if saving incoming data would cross the hard byte limit boundary. |
| * |
| * With a soft limit, aggregation closes *after* the size boundary |
| * has been crossed. In that case the limit must leave enough space |
| * after that limit to receive a full MTU of data plus overhead. |
| */ |
| if (!aggr_hard_limit) |
| rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| |
| /* The byte limit is encoded as a number of kilobytes */ |
| |
| return rx_buffer_size / SZ_1K; |
| } |
| |
| static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *all_data, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| const struct ipa_gsi_endpoint_data *other_data; |
| struct device *dev = &ipa->pdev->dev; |
| enum ipa_endpoint_name other_name; |
| |
| if (ipa_gsi_endpoint_data_empty(data)) |
| return true; |
| |
| if (!data->toward_ipa) { |
| const struct ipa_endpoint_rx *rx_config; |
| const struct ipa_reg *reg; |
| u32 buffer_size; |
| u32 aggr_size; |
| u32 limit; |
| |
| if (data->endpoint.filter_support) { |
| dev_err(dev, "filtering not supported for " |
| "RX endpoint %u\n", |
| data->endpoint_id); |
| return false; |
| } |
| |
| /* Nothing more to check for non-AP RX */ |
| if (data->ee_id != GSI_EE_AP) |
| return true; |
| |
| rx_config = &data->endpoint.config.rx; |
| |
| /* The buffer size must hold an MTU plus overhead */ |
| buffer_size = rx_config->buffer_size; |
| limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| if (buffer_size < limit) { |
| dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", |
| data->endpoint_id, buffer_size, limit); |
| return false; |
| } |
| |
| if (!data->endpoint.config.aggregation) { |
| bool result = true; |
| |
| /* No aggregation; check for bogus aggregation data */ |
| if (rx_config->aggr_time_limit) { |
| dev_err(dev, |
| "time limit with no aggregation for RX endpoint %u\n", |
| data->endpoint_id); |
| result = false; |
| } |
| |
| if (rx_config->aggr_hard_limit) { |
| dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n", |
| data->endpoint_id); |
| result = false; |
| } |
| |
| if (rx_config->aggr_close_eof) { |
| dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n", |
| data->endpoint_id); |
| result = false; |
| } |
| |
| return result; /* Nothing more to check */ |
| } |
| |
| /* For an endpoint supporting receive aggregation, the byte |
| * limit defines the point at which aggregation closes. This |
| * check ensures the receive buffer size doesn't result in a |
| * limit that exceeds what's representable in the aggregation |
| * byte limit field. |
| */ |
| aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, |
| rx_config->aggr_hard_limit); |
| reg = ipa_reg(ipa, ENDP_INIT_AGGR); |
| |
| limit = ipa_reg_field_max(reg, BYTE_LIMIT); |
| if (aggr_size > limit) { |
| dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n", |
| data->endpoint_id, aggr_size, limit); |
| |
| return false; |
| } |
| |
| return true; /* Nothing more to check for RX */ |
| } |
| |
| /* Starting with IPA v4.5 sequencer replication is obsolete */ |
| if (ipa->version >= IPA_VERSION_4_5) { |
| if (data->endpoint.config.tx.seq_rep_type) { |
| dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n", |
| data->endpoint_id); |
| return false; |
| } |
| } |
| |
| if (data->endpoint.config.status_enable) { |
| other_name = data->endpoint.config.tx.status_endpoint; |
| if (other_name >= count) { |
| dev_err(dev, "status endpoint name %u out of range " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| /* Status endpoint must be defined... */ |
| other_data = &all_data[other_name]; |
| if (ipa_gsi_endpoint_data_empty(other_data)) { |
| dev_err(dev, "DMA endpoint name %u undefined " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| /* ...and has to be an RX endpoint... */ |
| if (other_data->toward_ipa) { |
| dev_err(dev, |
| "status endpoint for endpoint %u not RX\n", |
| data->endpoint_id); |
| return false; |
| } |
| |
| /* ...and if it's to be an AP endpoint... */ |
| if (other_data->ee_id == GSI_EE_AP) { |
| /* ...make sure it has status enabled. */ |
| if (!other_data->endpoint.config.status_enable) { |
| dev_err(dev, |
| "status not enabled for endpoint %u\n", |
| other_data->endpoint_id); |
| return false; |
| } |
| } |
| } |
| |
| if (data->endpoint.config.dma_mode) { |
| other_name = data->endpoint.config.dma_endpoint; |
| if (other_name >= count) { |
| dev_err(dev, "DMA endpoint name %u out of range " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| other_data = &all_data[other_name]; |
| if (ipa_gsi_endpoint_data_empty(other_data)) { |
| dev_err(dev, "DMA endpoint name %u undefined " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Validate endpoint configuration data. Return max defined endpoint ID */ |
| static u32 ipa_endpoint_max(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| const struct ipa_gsi_endpoint_data *dp = data; |
| struct device *dev = &ipa->pdev->dev; |
| enum ipa_endpoint_name name; |
| u32 max; |
| |
| if (count > IPA_ENDPOINT_COUNT) { |
| dev_err(dev, "too many endpoints specified (%u > %u)\n", |
| count, IPA_ENDPOINT_COUNT); |
| return 0; |
| } |
| |
| /* Make sure needed endpoints have defined data */ |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { |
| dev_err(dev, "command TX endpoint not defined\n"); |
| return 0; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { |
| dev_err(dev, "LAN RX endpoint not defined\n"); |
| return 0; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { |
| dev_err(dev, "AP->modem TX endpoint not defined\n"); |
| return 0; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { |
| dev_err(dev, "AP<-modem RX endpoint not defined\n"); |
| return 0; |
| } |
| |
| max = 0; |
| for (name = 0; name < count; name++, dp++) { |
| if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) |
| return 0; |
| max = max_t(u32, max, dp->endpoint_id); |
| } |
| |
| return max; |
| } |
| |
| /* Allocate a transaction to use on a non-command endpoint */ |
| static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, |
| u32 tre_count) |
| { |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| u32 channel_id = endpoint->channel_id; |
| enum dma_data_direction direction; |
| |
| direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| |
| return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); |
| } |
| |
| /* suspend_delay represents suspend for RX, delay for TX endpoints. |
| * Note that suspend is not supported starting with IPA v4.0, and |
| * delay mode should not be used starting with IPA v4.2. |
| */ |
| static bool |
| ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) |
| { |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 field_id; |
| u32 offset; |
| bool state; |
| u32 mask; |
| u32 val; |
| |
| if (endpoint->toward_ipa) |
| WARN_ON(ipa->version >= IPA_VERSION_4_2); |
| else |
| WARN_ON(ipa->version >= IPA_VERSION_4_0); |
| |
| reg = ipa_reg(ipa, ENDP_INIT_CTRL); |
| offset = ipa_reg_n_offset(reg, endpoint->endpoint_id); |
| val = ioread32(ipa->reg_virt + offset); |
| |
| field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND; |
| mask = ipa_reg_bit(reg, field_id); |
| |
| state = !!(val & mask); |
| |
| /* Don't bother if it's already in the requested state */ |
| if (suspend_delay != state) { |
| val ^= mask; |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| return state; |
| } |
| |
| /* We don't care what the previous state was for delay mode */ |
| static void |
| ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) |
| { |
| /* Delay mode should not be used for IPA v4.2+ */ |
| WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); |
| WARN_ON(!endpoint->toward_ipa); |
| |
| (void)ipa_endpoint_init_ctrl(endpoint, enable); |
| } |
| |
| static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| u32 unit = endpoint_id / 32; |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| WARN_ON(!test_bit(endpoint_id, ipa->available)); |
| |
| reg = ipa_reg(ipa, STATE_AGGR_ACTIVE); |
| val = ioread32(ipa->reg_virt + ipa_reg_n_offset(reg, unit)); |
| |
| return !!(val & BIT(endpoint_id % 32)); |
| } |
| |
| static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| u32 mask = BIT(endpoint_id % 32); |
| struct ipa *ipa = endpoint->ipa; |
| u32 unit = endpoint_id / 32; |
| const struct ipa_reg *reg; |
| |
| WARN_ON(!test_bit(endpoint_id, ipa->available)); |
| |
| reg = ipa_reg(ipa, AGGR_FORCE_CLOSE); |
| iowrite32(mask, ipa->reg_virt + ipa_reg_n_offset(reg, unit)); |
| } |
| |
| /** |
| * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt |
| * @endpoint: Endpoint on which to emulate a suspend |
| * |
| * Emulate suspend IPA interrupt to unsuspend an endpoint suspended |
| * with an open aggregation frame. This is to work around a hardware |
| * issue in IPA version 3.5.1 where the suspend interrupt will not be |
| * generated when it should be. |
| */ |
| static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) |
| { |
| struct ipa *ipa = endpoint->ipa; |
| |
| if (!endpoint->config.aggregation) |
| return; |
| |
| /* Nothing to do if the endpoint doesn't have aggregation open */ |
| if (!ipa_endpoint_aggr_active(endpoint)) |
| return; |
| |
| /* Force close aggregation */ |
| ipa_endpoint_force_close(endpoint); |
| |
| ipa_interrupt_simulate_suspend(ipa->interrupt); |
| } |
| |
| /* Returns previous suspend state (true means suspend was enabled) */ |
| static bool |
| ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) |
| { |
| bool suspended; |
| |
| if (endpoint->ipa->version >= IPA_VERSION_4_0) |
| return enable; /* For IPA v4.0+, no change made */ |
| |
| WARN_ON(endpoint->toward_ipa); |
| |
| suspended = ipa_endpoint_init_ctrl(endpoint, enable); |
| |
| /* A client suspended with an open aggregation frame will not |
| * generate a SUSPEND IPA interrupt. If enabling suspend, have |
| * ipa_endpoint_suspend_aggr() handle this. |
| */ |
| if (enable && !suspended) |
| ipa_endpoint_suspend_aggr(endpoint); |
| |
| return suspended; |
| } |
| |
| /* Put all modem RX endpoints into suspend mode, and stop transmission |
| * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is |
| * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow |
| * control instead. |
| */ |
| void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) |
| { |
| u32 endpoint_id = 0; |
| |
| while (endpoint_id < ipa->endpoint_count) { |
| struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; |
| |
| if (endpoint->ee_id != GSI_EE_MODEM) |
| continue; |
| |
| if (!endpoint->toward_ipa) |
| (void)ipa_endpoint_program_suspend(endpoint, enable); |
| else if (ipa->version < IPA_VERSION_4_2) |
| ipa_endpoint_program_delay(endpoint, enable); |
| else |
| gsi_modem_channel_flow_control(&ipa->gsi, |
| endpoint->channel_id, |
| enable); |
| } |
| } |
| |
| /* Reset all modem endpoints to use the default exception endpoint */ |
| int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) |
| { |
| struct gsi_trans *trans; |
| u32 endpoint_id; |
| u32 count; |
| |
| /* We need one command per modem TX endpoint, plus the commands |
| * that clear the pipeline. |
| */ |
| count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); |
| trans = ipa_cmd_trans_alloc(ipa, count); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, |
| "no transaction to reset modem exception endpoints\n"); |
| return -EBUSY; |
| } |
| |
| for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { |
| struct ipa_endpoint *endpoint; |
| const struct ipa_reg *reg; |
| u32 offset; |
| |
| /* We only reset modem TX endpoints */ |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) |
| continue; |
| |
| reg = ipa_reg(ipa, ENDP_STATUS); |
| offset = ipa_reg_n_offset(reg, endpoint_id); |
| |
| /* Value written is 0, and all bits are updated. That |
| * means status is disabled on the endpoint, and as a |
| * result all other fields in the register are ignored. |
| */ |
| ipa_cmd_register_write_add(trans, offset, 0, ~0, false); |
| } |
| |
| ipa_cmd_pipeline_clear_add(trans); |
| |
| gsi_trans_commit_wait(trans); |
| |
| ipa_cmd_pipeline_clear_wait(ipa); |
| |
| return 0; |
| } |
| |
| static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| enum ipa_cs_offload_en enabled; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_CFG); |
| /* FRAG_OFFLOAD_EN is 0 */ |
| if (endpoint->config.checksum) { |
| enum ipa_version version = ipa->version; |
| |
| if (endpoint->toward_ipa) { |
| u32 off; |
| |
| /* Checksum header offset is in 4-byte units */ |
| off = sizeof(struct rmnet_map_header) / sizeof(u32); |
| val |= ipa_reg_encode(reg, CS_METADATA_HDR_OFFSET, off); |
| |
| enabled = version < IPA_VERSION_4_5 |
| ? IPA_CS_OFFLOAD_UL |
| : IPA_CS_OFFLOAD_INLINE; |
| } else { |
| enabled = version < IPA_VERSION_4_5 |
| ? IPA_CS_OFFLOAD_DL |
| : IPA_CS_OFFLOAD_INLINE; |
| } |
| } else { |
| enabled = IPA_CS_OFFLOAD_NONE; |
| } |
| val |= ipa_reg_encode(reg, CS_OFFLOAD_EN, enabled); |
| /* CS_GEN_QMB_MASTER_SEL is 0 */ |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| if (!endpoint->toward_ipa) |
| return; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_NAT); |
| val = ipa_reg_encode(reg, NAT_EN, IPA_NAT_BYPASS); |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static u32 |
| ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) |
| { |
| u32 header_size = sizeof(struct rmnet_map_header); |
| |
| /* Without checksum offload, we just have the MAP header */ |
| if (!endpoint->config.checksum) |
| return header_size; |
| |
| if (version < IPA_VERSION_4_5) { |
| /* Checksum header inserted for AP TX endpoints only */ |
| if (endpoint->toward_ipa) |
| header_size += sizeof(struct rmnet_map_ul_csum_header); |
| } else { |
| /* Checksum header is used in both directions */ |
| header_size += sizeof(struct rmnet_map_v5_csum_header); |
| } |
| |
| return header_size; |
| } |
| |
| /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */ |
| static u32 ipa_header_size_encode(enum ipa_version version, |
| const struct ipa_reg *reg, u32 header_size) |
| { |
| u32 field_max = ipa_reg_field_max(reg, HDR_LEN); |
| u32 val; |
| |
| /* We know field_max can be used as a mask (2^n - 1) */ |
| val = ipa_reg_encode(reg, HDR_LEN, header_size & field_max); |
| if (version < IPA_VERSION_4_5) { |
| WARN_ON(header_size > field_max); |
| return val; |
| } |
| |
| /* IPA v4.5 adds a few more most-significant bits */ |
| header_size >>= hweight32(field_max); |
| WARN_ON(header_size > ipa_reg_field_max(reg, HDR_LEN_MSB)); |
| val |= ipa_reg_encode(reg, HDR_LEN_MSB, header_size); |
| |
| return val; |
| } |
| |
| /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */ |
| static u32 ipa_metadata_offset_encode(enum ipa_version version, |
| const struct ipa_reg *reg, u32 offset) |
| { |
| u32 field_max = ipa_reg_field_max(reg, HDR_OFST_METADATA); |
| u32 val; |
| |
| /* We know field_max can be used as a mask (2^n - 1) */ |
| val = ipa_reg_encode(reg, HDR_OFST_METADATA, offset); |
| if (version < IPA_VERSION_4_5) { |
| WARN_ON(offset > field_max); |
| return val; |
| } |
| |
| /* IPA v4.5 adds a few more most-significant bits */ |
| offset >>= hweight32(field_max); |
| WARN_ON(offset > ipa_reg_field_max(reg, HDR_OFST_METADATA_MSB)); |
| val |= ipa_reg_encode(reg, HDR_OFST_METADATA_MSB, offset); |
| |
| return val; |
| } |
| |
| /** |
| * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register |
| * @endpoint: Endpoint pointer |
| * |
| * We program QMAP endpoints so each packet received is preceded by a QMAP |
| * header structure. The QMAP header contains a 1-byte mux_id and 2-byte |
| * packet size field, and we have the IPA hardware populate both for each |
| * received packet. The header is configured (in the HDR_EXT register) |
| * to use big endian format. |
| * |
| * The packet size is written into the QMAP header's pkt_len field. That |
| * location is defined here using the HDR_OFST_PKT_SIZE field. |
| * |
| * The mux_id comes from a 4-byte metadata value supplied with each packet |
| * by the modem. It is *not* a QMAP header, but it does contain the mux_id |
| * value that we want, in its low-order byte. A bitmask defined in the |
| * endpoint's METADATA_MASK register defines which byte within the modem |
| * metadata contains the mux_id. And the OFST_METADATA field programmed |
| * here indicates where the extracted byte should be placed within the QMAP |
| * header. |
| */ |
| static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_HDR); |
| if (endpoint->config.qmap) { |
| enum ipa_version version = ipa->version; |
| size_t header_size; |
| |
| header_size = ipa_qmap_header_size(version, endpoint); |
| val = ipa_header_size_encode(version, reg, header_size); |
| |
| /* Define how to fill fields in a received QMAP header */ |
| if (!endpoint->toward_ipa) { |
| u32 off; /* Field offset within header */ |
| |
| /* Where IPA will write the metadata value */ |
| off = offsetof(struct rmnet_map_header, mux_id); |
| val |= ipa_metadata_offset_encode(version, reg, off); |
| |
| /* Where IPA will write the length */ |
| off = offsetof(struct rmnet_map_header, pkt_len); |
| /* Upper bits are stored in HDR_EXT with IPA v4.5 */ |
| if (version >= IPA_VERSION_4_5) |
| off &= ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE); |
| |
| val |= ipa_reg_bit(reg, HDR_OFST_PKT_SIZE_VALID); |
| val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE, off); |
| } |
| /* For QMAP TX, metadata offset is 0 (modem assumes this) */ |
| val |= ipa_reg_bit(reg, HDR_OFST_METADATA_VALID); |
| |
| /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ |
| /* HDR_A5_MUX is 0 */ |
| /* HDR_LEN_INC_DEAGG_HDR is 0 */ |
| /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ |
| } |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) |
| { |
| u32 pad_align = endpoint->config.rx.pad_align; |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT); |
| if (endpoint->config.qmap) { |
| /* We have a header, so we must specify its endianness */ |
| val |= ipa_reg_bit(reg, HDR_ENDIANNESS); /* big endian */ |
| |
| /* A QMAP header contains a 6 bit pad field at offset 0. |
| * The RMNet driver assumes this field is meaningful in |
| * packets it receives, and assumes the header's payload |
| * length includes that padding. The RMNet driver does |
| * *not* pad packets it sends, however, so the pad field |
| * (although 0) should be ignored. |
| */ |
| if (!endpoint->toward_ipa) { |
| val |= ipa_reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID); |
| /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ |
| val |= ipa_reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING); |
| /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ |
| } |
| } |
| |
| /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ |
| if (!endpoint->toward_ipa) |
| val |= ipa_reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align); |
| |
| /* IPA v4.5 adds some most-significant bits to a few fields, |
| * two of which are defined in the HDR (not HDR_EXT) register. |
| */ |
| if (ipa->version >= IPA_VERSION_4_5) { |
| /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ |
| if (endpoint->config.qmap && !endpoint->toward_ipa) { |
| u32 mask = ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE); |
| u32 off; /* Field offset within header */ |
| |
| off = offsetof(struct rmnet_map_header, pkt_len); |
| /* Low bits are in the ENDP_INIT_HDR register */ |
| off >>= hweight32(mask); |
| val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off); |
| /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ |
| } |
| } |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| u32 offset; |
| |
| if (endpoint->toward_ipa) |
| return; /* Register not valid for TX endpoints */ |
| |
| reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK); |
| offset = ipa_reg_n_offset(reg, endpoint_id); |
| |
| /* Note that HDR_ENDIANNESS indicates big endian header fields */ |
| if (endpoint->config.qmap) |
| val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) |
| { |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 offset; |
| u32 val; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| reg = ipa_reg(ipa, ENDP_INIT_MODE); |
| if (endpoint->config.dma_mode) { |
| enum ipa_endpoint_name name = endpoint->config.dma_endpoint; |
| u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id; |
| |
| val = ipa_reg_encode(reg, ENDP_MODE, IPA_DMA); |
| val |= ipa_reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id); |
| } else { |
| val = ipa_reg_encode(reg, ENDP_MODE, IPA_BASIC); |
| } |
| /* All other bits unspecified (and 0) */ |
| |
| offset = ipa_reg_n_offset(reg, endpoint->endpoint_id); |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /* For IPA v4.5+, times are expressed using Qtime. The AP uses one of two |
| * pulse generators (0 and 1) to measure elapsed time. In ipa_qtime_config() |
| * they're configured to have granularity 100 usec and 1 msec, respectively. |
| * |
| * The return value is the positive or negative Qtime value to use to |
| * express the (microsecond) time provided. A positive return value |
| * means pulse generator 0 can be used; otherwise use pulse generator 1. |
| */ |
| static int ipa_qtime_val(u32 microseconds, u32 max) |
| { |
| u32 val; |
| |
| /* Use 100 microsecond granularity if possible */ |
| val = DIV_ROUND_CLOSEST(microseconds, 100); |
| if (val <= max) |
| return (int)val; |
| |
| /* Have to use pulse generator 1 (millisecond granularity) */ |
| val = DIV_ROUND_CLOSEST(microseconds, 1000); |
| WARN_ON(val > max); |
| |
| return (int)-val; |
| } |
| |
| /* Encode the aggregation timer limit (microseconds) based on IPA version */ |
| static u32 aggr_time_limit_encode(struct ipa *ipa, const struct ipa_reg *reg, |
| u32 microseconds) |
| { |
| u32 max; |
| u32 val; |
| |
| if (!microseconds) |
| return 0; /* Nothing to compute if time limit is 0 */ |
| |
| max = ipa_reg_field_max(reg, TIME_LIMIT); |
| if (ipa->version >= IPA_VERSION_4_5) { |
| u32 gran_sel; |
| int ret; |
| |
| /* Compute the Qtime limit value to use */ |
| ret = ipa_qtime_val(microseconds, max); |
| if (ret < 0) { |
| val = -ret; |
| gran_sel = ipa_reg_bit(reg, AGGR_GRAN_SEL); |
| } else { |
| val = ret; |
| gran_sel = 0; |
| } |
| |
| return gran_sel | ipa_reg_encode(reg, TIME_LIMIT, val); |
| } |
| |
| /* We program aggregation granularity in ipa_hardware_config() */ |
| val = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY); |
| WARN(val > max, "aggr_time_limit too large (%u > %u usec)\n", |
| microseconds, max * IPA_AGGR_GRANULARITY); |
| |
| return ipa_reg_encode(reg, TIME_LIMIT, val); |
| } |
| |
| static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_AGGR); |
| if (endpoint->config.aggregation) { |
| if (!endpoint->toward_ipa) { |
| const struct ipa_endpoint_rx *rx_config; |
| u32 buffer_size; |
| u32 limit; |
| |
| rx_config = &endpoint->config.rx; |
| val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR); |
| val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_GENERIC); |
| |
| buffer_size = rx_config->buffer_size; |
| limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, |
| rx_config->aggr_hard_limit); |
| val |= ipa_reg_encode(reg, BYTE_LIMIT, limit); |
| |
| limit = rx_config->aggr_time_limit; |
| val |= aggr_time_limit_encode(ipa, reg, limit); |
| |
| /* AGGR_PKT_LIMIT is 0 (unlimited) */ |
| |
| if (rx_config->aggr_close_eof) |
| val |= ipa_reg_bit(reg, SW_EOF_ACTIVE); |
| } else { |
| val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR); |
| val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_QCMAP); |
| /* other fields ignored */ |
| } |
| /* AGGR_FORCE_CLOSE is 0 */ |
| /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ |
| } else { |
| val |= ipa_reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR); |
| /* other fields ignored */ |
| } |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| /* The head-of-line blocking timer is defined as a tick count. For |
| * IPA version 4.5 the tick count is based on the Qtimer, which is |
| * derived from the 19.2 MHz SoC XO clock. For older IPA versions |
| * each tick represents 128 cycles of the IPA core clock. |
| * |
| * Return the encoded value representing the timeout period provided |
| * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register. |
| */ |
| static u32 hol_block_timer_encode(struct ipa *ipa, const struct ipa_reg *reg, |
| u32 microseconds) |
| { |
| u32 width; |
| u32 scale; |
| u64 ticks; |
| u64 rate; |
| u32 high; |
| u32 val; |
| |
| if (!microseconds) |
| return 0; /* Nothing to compute if timer period is 0 */ |
| |
| if (ipa->version >= IPA_VERSION_4_5) { |
| u32 max = ipa_reg_field_max(reg, TIMER_LIMIT); |
| u32 gran_sel; |
| int ret; |
| |
| /* Compute the Qtime limit value to use */ |
| ret = ipa_qtime_val(microseconds, max); |
| if (ret < 0) { |
| val = -ret; |
| gran_sel = ipa_reg_bit(reg, TIMER_GRAN_SEL); |
| } else { |
| val = ret; |
| gran_sel = 0; |
| } |
| |
| return gran_sel | ipa_reg_encode(reg, TIMER_LIMIT, val); |
| } |
| |
| /* Use 64 bit arithmetic to avoid overflow */ |
| rate = ipa_core_clock_rate(ipa); |
| ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); |
| |
| /* We still need the result to fit into the field */ |
| WARN_ON(ticks > ipa_reg_field_max(reg, TIMER_BASE_VALUE)); |
| |
| /* IPA v3.5.1 through v4.1 just record the tick count */ |
| if (ipa->version < IPA_VERSION_4_2) |
| return ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks); |
| |
| /* For IPA v4.2, the tick count is represented by base and |
| * scale fields within the 32-bit timer register, where: |
| * ticks = base << scale; |
| * The best precision is achieved when the base value is as |
| * large as possible. Find the highest set bit in the tick |
| * count, and extract the number of bits in the base field |
| * such that high bit is included. |
| */ |
| high = fls(ticks); /* 1..32 (or warning above) */ |
| width = hweight32(ipa_reg_fmask(reg, TIMER_BASE_VALUE)); |
| scale = high > width ? high - width : 0; |
| if (scale) { |
| /* If we're scaling, round up to get a closer result */ |
| ticks += 1 << (scale - 1); |
| /* High bit was set, so rounding might have affected it */ |
| if (fls(ticks) != high) |
| scale++; |
| } |
| |
| val = ipa_reg_encode(reg, TIMER_SCALE, scale); |
| val |= ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale); |
| |
| return val; |
| } |
| |
| /* If microseconds is 0, timeout is immediate */ |
| static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, |
| u32 microseconds) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| /* This should only be changed when HOL_BLOCK_EN is disabled */ |
| reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER); |
| val = hol_block_timer_encode(ipa, reg, microseconds); |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void |
| ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 offset; |
| u32 val; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN); |
| offset = ipa_reg_n_offset(reg, endpoint_id); |
| val = enable ? ipa_reg_bit(reg, HOL_BLOCK_EN) : 0; |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| |
| /* When enabling, the register must be written twice for IPA v4.5+ */ |
| if (enable && ipa->version >= IPA_VERSION_4_5) |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /* Assumes HOL_BLOCK is in disabled state */ |
| static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, |
| u32 microseconds) |
| { |
| ipa_endpoint_init_hol_block_timer(endpoint, microseconds); |
| ipa_endpoint_init_hol_block_en(endpoint, true); |
| } |
| |
| static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) |
| { |
| ipa_endpoint_init_hol_block_en(endpoint, false); |
| } |
| |
| void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) |
| { |
| u32 endpoint_id = 0; |
| |
| while (endpoint_id < ipa->endpoint_count) { |
| struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; |
| |
| if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) |
| continue; |
| |
| ipa_endpoint_init_hol_block_disable(endpoint); |
| ipa_endpoint_init_hol_block_enable(endpoint, 0); |
| } |
| } |
| |
| static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| reg = ipa_reg(ipa, ENDP_INIT_DEAGGR); |
| /* DEAGGR_HDR_LEN is 0 */ |
| /* PACKET_OFFSET_VALID is 0 */ |
| /* PACKET_OFFSET_LOCATION is ignored (not valid) */ |
| /* MAX_PACKET_LEN is 0 (not enforced) */ |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) |
| { |
| u32 resource_group = endpoint->config.resource_group; |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP); |
| val = ipa_reg_encode(reg, ENDP_RSRC_GRP, resource_group); |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| reg = ipa_reg(ipa, ENDP_INIT_SEQ); |
| |
| /* Low-order byte configures primary packet processing */ |
| val = ipa_reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type); |
| |
| /* Second byte (if supported) configures replicated packet processing */ |
| if (ipa->version < IPA_VERSION_4_5) |
| val |= ipa_reg_encode(reg, SEQ_REP_TYPE, |
| endpoint->config.tx.seq_rep_type); |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| /** |
| * ipa_endpoint_skb_tx() - Transmit a socket buffer |
| * @endpoint: Endpoint pointer |
| * @skb: Socket buffer to send |
| * |
| * Returns: 0 if successful, or a negative error code |
| */ |
| int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) |
| { |
| struct gsi_trans *trans; |
| u32 nr_frags; |
| int ret; |
| |
| /* Make sure source endpoint's TLV FIFO has enough entries to |
| * hold the linear portion of the skb and all its fragments. |
| * If not, see if we can linearize it before giving up. |
| */ |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| if (nr_frags > endpoint->skb_frag_max) { |
| if (skb_linearize(skb)) |
| return -E2BIG; |
| nr_frags = 0; |
| } |
| |
| trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); |
| if (!trans) |
| return -EBUSY; |
| |
| ret = gsi_trans_skb_add(trans, skb); |
| if (ret) |
| goto err_trans_free; |
| trans->data = skb; /* transaction owns skb now */ |
| |
| gsi_trans_commit(trans, !netdev_xmit_more()); |
| |
| return 0; |
| |
| err_trans_free: |
| gsi_trans_free(trans); |
| |
| return -ENOMEM; |
| } |
| |
| static void ipa_endpoint_status(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| const struct ipa_reg *reg; |
| u32 val = 0; |
| |
| reg = ipa_reg(ipa, ENDP_STATUS); |
| if (endpoint->config.status_enable) { |
| val |= ipa_reg_bit(reg, STATUS_EN); |
| if (endpoint->toward_ipa) { |
| enum ipa_endpoint_name name; |
| u32 status_endpoint_id; |
| |
| name = endpoint->config.tx.status_endpoint; |
| status_endpoint_id = ipa->name_map[name]->endpoint_id; |
| |
| val |= ipa_reg_encode(reg, STATUS_ENDP, |
| status_endpoint_id); |
| } |
| /* STATUS_LOCATION is 0, meaning status element precedes |
| * packet (not present for IPA v4.5+) |
| */ |
| /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */ |
| } |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_n_offset(reg, endpoint_id)); |
| } |
| |
| static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| struct page *page; |
| u32 buffer_size; |
| u32 offset; |
| u32 len; |
| int ret; |
| |
| buffer_size = endpoint->config.rx.buffer_size; |
| page = dev_alloc_pages(get_order(buffer_size)); |
| if (!page) |
| return -ENOMEM; |
| |
| /* Offset the buffer to make space for skb headroom */ |
| offset = NET_SKB_PAD; |
| len = buffer_size - offset; |
| |
| ret = gsi_trans_page_add(trans, page, len, offset); |
| if (ret) |
| put_page(page); |
| else |
| trans->data = page; /* transaction owns page now */ |
| |
| return ret; |
| } |
| |
| /** |
| * ipa_endpoint_replenish() - Replenish endpoint receive buffers |
| * @endpoint: Endpoint to be replenished |
| * |
| * The IPA hardware can hold a fixed number of receive buffers for an RX |
| * endpoint, based on the number of entries in the underlying channel ring |
| * buffer. If an endpoint's "backlog" is non-zero, it indicates how many |
| * more receive buffers can be supplied to the hardware. Replenishing for |
| * an endpoint can be disabled, in which case buffers are not queued to |
| * the hardware. |
| */ |
| static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) |
| { |
| struct gsi_trans *trans; |
| |
| if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) |
| return; |
| |
| /* Skip it if it's already active */ |
| if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) |
| return; |
| |
| while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { |
| bool doorbell; |
| |
| if (ipa_endpoint_replenish_one(endpoint, trans)) |
| goto try_again_later; |
| |
| |
| /* Ring the doorbell if we've got a full batch */ |
| doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); |
| gsi_trans_commit(trans, doorbell); |
| } |
| |
| clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| |
| return; |
| |
| try_again_later: |
| gsi_trans_free(trans); |
| clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| |
| /* Whenever a receive buffer transaction completes we'll try to |
| * replenish again. It's unlikely, but if we fail to supply even |
| * one buffer, nothing will trigger another replenish attempt. |
| * If the hardware has no receive buffers queued, schedule work to |
| * try replenishing again. |
| */ |
| if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) |
| schedule_delayed_work(&endpoint->replenish_work, |
| msecs_to_jiffies(1)); |
| } |
| |
| static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) |
| { |
| set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| |
| /* Start replenishing if hardware currently has no buffers */ |
| if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) |
| ipa_endpoint_replenish(endpoint); |
| } |
| |
| static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) |
| { |
| clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| } |
| |
| static void ipa_endpoint_replenish_work(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct ipa_endpoint *endpoint; |
| |
| endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); |
| |
| ipa_endpoint_replenish(endpoint); |
| } |
| |
| static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, |
| void *data, u32 len, u32 extra) |
| { |
| struct sk_buff *skb; |
| |
| if (!endpoint->netdev) |
| return; |
| |
| skb = __dev_alloc_skb(len, GFP_ATOMIC); |
| if (skb) { |
| /* Copy the data into the socket buffer and receive it */ |
| skb_put(skb, len); |
| memcpy(skb->data, data, len); |
| skb->truesize += extra; |
| } |
| |
| ipa_modem_skb_rx(endpoint->netdev, skb); |
| } |
| |
| static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, |
| struct page *page, u32 len) |
| { |
| u32 buffer_size = endpoint->config.rx.buffer_size; |
| struct sk_buff *skb; |
| |
| /* Nothing to do if there's no netdev */ |
| if (!endpoint->netdev) |
| return false; |
| |
| WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); |
| |
| skb = build_skb(page_address(page), buffer_size); |
| if (skb) { |
| /* Reserve the headroom and account for the data */ |
| skb_reserve(skb, NET_SKB_PAD); |
| skb_put(skb, len); |
| } |
| |
| /* Receive the buffer (or record drop if unable to build it) */ |
| ipa_modem_skb_rx(endpoint->netdev, skb); |
| |
| return skb != NULL; |
| } |
| |
| /* The format of a packet status element is the same for several status |
| * types (opcodes). Other types aren't currently supported. |
| */ |
| static bool ipa_status_format_packet(enum ipa_status_opcode opcode) |
| { |
| switch (opcode) { |
| case IPA_STATUS_OPCODE_PACKET: |
| case IPA_STATUS_OPCODE_DROPPED_PACKET: |
| case IPA_STATUS_OPCODE_SUSPENDED_PACKET: |
| case IPA_STATUS_OPCODE_PACKET_2ND_PASS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, |
| const struct ipa_status *status) |
| { |
| u32 endpoint_id; |
| |
| if (!ipa_status_format_packet(status->opcode)) |
| return true; |
| if (!status->pkt_len) |
| return true; |
| endpoint_id = u8_get_bits(status->endp_dst_idx, |
| IPA_STATUS_DST_IDX_FMASK); |
| if (endpoint_id != endpoint->endpoint_id) |
| return true; |
| |
| return false; /* Don't skip this packet, process it */ |
| } |
| |
| static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint, |
| const struct ipa_status *status) |
| { |
| struct ipa_endpoint *command_endpoint; |
| struct ipa *ipa = endpoint->ipa; |
| u32 endpoint_id; |
| |
| if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK)) |
| return false; /* No valid tag */ |
| |
| /* The status contains a valid tag. We know the packet was sent to |
| * this endpoint (already verified by ipa_endpoint_status_skip()). |
| * If the packet came from the AP->command TX endpoint we know |
| * this packet was sent as part of the pipeline clear process. |
| */ |
| endpoint_id = u8_get_bits(status->endp_src_idx, |
| IPA_STATUS_SRC_IDX_FMASK); |
| command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| if (endpoint_id == command_endpoint->endpoint_id) { |
| complete(&ipa->completion); |
| } else { |
| dev_err(&ipa->pdev->dev, |
| "unexpected tagged packet from endpoint %u\n", |
| endpoint_id); |
| } |
| |
| return true; |
| } |
| |
| /* Return whether the status indicates the packet should be dropped */ |
| static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, |
| const struct ipa_status *status) |
| { |
| u32 val; |
| |
| /* If the status indicates a tagged transfer, we'll drop the packet */ |
| if (ipa_endpoint_status_tag(endpoint, status)) |
| return true; |
| |
| /* Deaggregation exceptions we drop; all other types we consume */ |
| if (status->exception) |
| return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; |
| |
| /* Drop the packet if it fails to match a routing rule; otherwise no */ |
| val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| |
| return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| } |
| |
| static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, |
| struct page *page, u32 total_len) |
| { |
| u32 buffer_size = endpoint->config.rx.buffer_size; |
| void *data = page_address(page) + NET_SKB_PAD; |
| u32 unused = buffer_size - total_len; |
| u32 resid = total_len; |
| |
| while (resid) { |
| const struct ipa_status *status = data; |
| u32 align; |
| u32 len; |
| |
| if (resid < sizeof(*status)) { |
| dev_err(&endpoint->ipa->pdev->dev, |
| "short message (%u bytes < %zu byte status)\n", |
| resid, sizeof(*status)); |
| break; |
| } |
| |
| /* Skip over status packets that lack packet data */ |
| if (ipa_endpoint_status_skip(endpoint, status)) { |
| data += sizeof(*status); |
| resid -= sizeof(*status); |
| continue; |
| } |
| |
| /* Compute the amount of buffer space consumed by the packet, |
| * including the status element. If the hardware is configured |
| * to pad packet data to an aligned boundary, account for that. |
| * And if checksum offload is enabled a trailer containing |
| * computed checksum information will be appended. |
| */ |
| align = endpoint->config.rx.pad_align ? : 1; |
| len = le16_to_cpu(status->pkt_len); |
| len = sizeof(*status) + ALIGN(len, align); |
| if (endpoint->config.checksum) |
| len += sizeof(struct rmnet_map_dl_csum_trailer); |
| |
| if (!ipa_endpoint_status_drop(endpoint, status)) { |
| void *data2; |
| u32 extra; |
| u32 len2; |
| |
| /* Client receives only packet data (no status) */ |
| data2 = data + sizeof(*status); |
| len2 = le16_to_cpu(status->pkt_len); |
| |
| /* Have the true size reflect the extra unused space in |
| * the original receive buffer. Distribute the "cost" |
| * proportionately across all aggregated packets in the |
| * buffer. |
| */ |
| extra = DIV_ROUND_CLOSEST(unused * len, total_len); |
| ipa_endpoint_skb_copy(endpoint, data2, len2, extra); |
| } |
| |
| /* Consume status and the full packet it describes */ |
| data += len; |
| resid -= len; |
| } |
| } |
| |
| void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| struct page *page; |
| |
| if (endpoint->toward_ipa) |
| return; |
| |
| if (trans->cancelled) |
| goto done; |
| |
| /* Parse or build a socket buffer using the actual received length */ |
| page = trans->data; |
| if (endpoint->config.status_enable) |
| ipa_endpoint_status_parse(endpoint, page, trans->len); |
| else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) |
| trans->data = NULL; /* Pages have been consumed */ |
| done: |
| ipa_endpoint_replenish(endpoint); |
| } |
| |
| void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| if (endpoint->toward_ipa) { |
| struct ipa *ipa = endpoint->ipa; |
| |
| /* Nothing to do for command transactions */ |
| if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { |
| struct sk_buff *skb = trans->data; |
| |
| if (skb) |
| dev_kfree_skb_any(skb); |
| } |
| } else { |
| struct page *page = trans->data; |
| |
| if (page) |
| put_page(page); |
| } |
| } |
| |
| void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) |
| { |
| const struct ipa_reg *reg; |
| u32 val; |
| |
| reg = ipa_reg(ipa, ROUTE); |
| /* ROUTE_DIS is 0 */ |
| val = ipa_reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id); |
| val |= ipa_reg_bit(reg, ROUTE_DEF_HDR_TABLE); |
| /* ROUTE_DEF_HDR_OFST is 0 */ |
| val |= ipa_reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id); |
| val |= ipa_reg_bit(reg, ROUTE_DEF_RETAIN_HDR); |
| |
| iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); |
| } |
| |
| void ipa_endpoint_default_route_clear(struct ipa *ipa) |
| { |
| ipa_endpoint_default_route_set(ipa, 0); |
| } |
| |
| /** |
| * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active |
| * @endpoint: Endpoint to be reset |
| * |
| * If aggregation is active on an RX endpoint when a reset is performed |
| * on its underlying GSI channel, a special sequence of actions must be |
| * taken to ensure the IPA pipeline is properly cleared. |
| * |
| * Return: 0 if successful, or a negative error code |
| */ |
| static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| bool suspended = false; |
| dma_addr_t addr; |
| u32 retries; |
| u32 len = 1; |
| void *virt; |
| int ret; |
| |
| virt = kzalloc(len, GFP_KERNEL); |
| if (!virt) |
| return -ENOMEM; |
| |
| addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev, addr)) { |
| ret = -ENOMEM; |
| goto out_kfree; |
| } |
| |
| /* Force close aggregation before issuing the reset */ |
| ipa_endpoint_force_close(endpoint); |
| |
| /* Reset and reconfigure the channel with the doorbell engine |
| * disabled. Then poll until we know aggregation is no longer |
| * active. We'll re-enable the doorbell (if appropriate) when |
| * we reset again below. |
| */ |
| gsi_channel_reset(gsi, endpoint->channel_id, false); |
| |
| /* Make sure the channel isn't suspended */ |
| suspended = ipa_endpoint_program_suspend(endpoint, false); |
| |
| /* Start channel and do a 1 byte read */ |
| ret = gsi_channel_start(gsi, endpoint->channel_id); |
| if (ret) |
| goto out_suspend_again; |
| |
| ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); |
| if (ret) |
| goto err_endpoint_stop; |
| |
| /* Wait for aggregation to be closed on the channel */ |
| retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; |
| do { |
| if (!ipa_endpoint_aggr_active(endpoint)) |
| break; |
| usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); |
| } while (retries--); |
| |
| /* Check one last time */ |
| if (ipa_endpoint_aggr_active(endpoint)) |
| dev_err(dev, "endpoint %u still active during reset\n", |
| endpoint->endpoint_id); |
| |
| gsi_trans_read_byte_done(gsi, endpoint->channel_id); |
| |
| ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| if (ret) |
| goto out_suspend_again; |
| |
| /* Finally, reset and reconfigure the channel again (re-enabling |
| * the doorbell engine if appropriate). Sleep for 1 millisecond to |
| * complete the channel reset sequence. Finish by suspending the |
| * channel again (if necessary). |
| */ |
| gsi_channel_reset(gsi, endpoint->channel_id, true); |
| |
| usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); |
| |
| goto out_suspend_again; |
| |
| err_endpoint_stop: |
| (void)gsi_channel_stop(gsi, endpoint->channel_id); |
| out_suspend_again: |
| if (suspended) |
| (void)ipa_endpoint_program_suspend(endpoint, true); |
| dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); |
| out_kfree: |
| kfree(virt); |
| |
| return ret; |
| } |
| |
| static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) |
| { |
| u32 channel_id = endpoint->channel_id; |
| struct ipa *ipa = endpoint->ipa; |
| bool special; |
| int ret = 0; |
| |
| /* On IPA v3.5.1, if an RX endpoint is reset while aggregation |
| * is active, we need to handle things specially to recover. |
| * All other cases just need to reset the underlying GSI channel. |
| */ |
| special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && |
| endpoint->config.aggregation; |
| if (special && ipa_endpoint_aggr_active(endpoint)) |
| ret = ipa_endpoint_reset_rx_aggr(endpoint); |
| else |
| gsi_channel_reset(&ipa->gsi, channel_id, true); |
| |
| if (ret) |
| dev_err(&ipa->pdev->dev, |
| "error %d resetting channel %u for endpoint %u\n", |
| ret, endpoint->channel_id, endpoint->endpoint_id); |
| } |
| |
| static void ipa_endpoint_program(struct ipa_endpoint *endpoint) |
| { |
| if (endpoint->toward_ipa) { |
| /* Newer versions of IPA use GSI channel flow control |
| * instead of endpoint DELAY mode to prevent sending data. |
| * Flow control is disabled for newly-allocated channels, |
| * and we can assume flow control is not (ever) enabled |
| * for AP TX channels. |
| */ |
| if (endpoint->ipa->version < IPA_VERSION_4_2) |
| ipa_endpoint_program_delay(endpoint, false); |
| } else { |
| /* Ensure suspend mode is off on all AP RX endpoints */ |
| (void)ipa_endpoint_program_suspend(endpoint, false); |
| } |
| ipa_endpoint_init_cfg(endpoint); |
| ipa_endpoint_init_nat(endpoint); |
| ipa_endpoint_init_hdr(endpoint); |
| ipa_endpoint_init_hdr_ext(endpoint); |
| ipa_endpoint_init_hdr_metadata_mask(endpoint); |
| ipa_endpoint_init_mode(endpoint); |
| ipa_endpoint_init_aggr(endpoint); |
| if (!endpoint->toward_ipa) { |
| if (endpoint->config.rx.holb_drop) |
| ipa_endpoint_init_hol_block_enable(endpoint, 0); |
| else |
| ipa_endpoint_init_hol_block_disable(endpoint); |
| } |
| ipa_endpoint_init_deaggr(endpoint); |
| ipa_endpoint_init_rsrc_grp(endpoint); |
| ipa_endpoint_init_seq(endpoint); |
| ipa_endpoint_status(endpoint); |
| } |
| |
| int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| int ret; |
| |
| ret = gsi_channel_start(gsi, endpoint->channel_id); |
| if (ret) { |
| dev_err(&ipa->pdev->dev, |
| "error %d starting %cX channel %u for endpoint %u\n", |
| ret, endpoint->toward_ipa ? 'T' : 'R', |
| endpoint->channel_id, endpoint_id); |
| return ret; |
| } |
| |
| if (!endpoint->toward_ipa) { |
| ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id); |
| ipa_endpoint_replenish_enable(endpoint); |
| } |
| |
| __set_bit(endpoint_id, ipa->enabled); |
| |
| return 0; |
| } |
| |
| void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| int ret; |
| |
| if (!test_bit(endpoint_id, ipa->enabled)) |
| return; |
| |
| __clear_bit(endpoint_id, endpoint->ipa->enabled); |
| |
| if (!endpoint->toward_ipa) { |
| ipa_endpoint_replenish_disable(endpoint); |
| ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id); |
| } |
| |
| /* Note that if stop fails, the channel's state is not well-defined */ |
| ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| if (ret) |
| dev_err(&ipa->pdev->dev, |
| "error %d attempting to stop endpoint %u\n", ret, |
| endpoint_id); |
| } |
| |
| void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| int ret; |
| |
| if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) |
| return; |
| |
| if (!endpoint->toward_ipa) { |
| ipa_endpoint_replenish_disable(endpoint); |
| (void)ipa_endpoint_program_suspend(endpoint, true); |
| } |
| |
| ret = gsi_channel_suspend(gsi, endpoint->channel_id); |
| if (ret) |
| dev_err(dev, "error %d suspending channel %u\n", ret, |
| endpoint->channel_id); |
| } |
| |
| void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| int ret; |
| |
| if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) |
| return; |
| |
| if (!endpoint->toward_ipa) |
| (void)ipa_endpoint_program_suspend(endpoint, false); |
| |
| ret = gsi_channel_resume(gsi, endpoint->channel_id); |
| if (ret) |
| dev_err(dev, "error %d resuming channel %u\n", ret, |
| endpoint->channel_id); |
| else if (!endpoint->toward_ipa) |
| ipa_endpoint_replenish_enable(endpoint); |
| } |
| |
| void ipa_endpoint_suspend(struct ipa *ipa) |
| { |
| if (!ipa->setup_complete) |
| return; |
| |
| if (ipa->modem_netdev) |
| ipa_modem_suspend(ipa->modem_netdev); |
| |
| ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| } |
| |
| void ipa_endpoint_resume(struct ipa *ipa) |
| { |
| if (!ipa->setup_complete) |
| return; |
| |
| ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| |
| if (ipa->modem_netdev) |
| ipa_modem_resume(ipa->modem_netdev); |
| } |
| |
| static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) |
| { |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| u32 channel_id = endpoint->channel_id; |
| |
| /* Only AP endpoints get set up */ |
| if (endpoint->ee_id != GSI_EE_AP) |
| return; |
| |
| endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; |
| if (!endpoint->toward_ipa) { |
| /* RX transactions require a single TRE, so the maximum |
| * backlog is the same as the maximum outstanding TREs. |
| */ |
| clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); |
| clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); |
| INIT_DELAYED_WORK(&endpoint->replenish_work, |
| ipa_endpoint_replenish_work); |
| } |
| |
| ipa_endpoint_program(endpoint); |
| |
| __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up); |
| } |
| |
| static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) |
| { |
| __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up); |
| |
| if (!endpoint->toward_ipa) |
| cancel_delayed_work_sync(&endpoint->replenish_work); |
| |
| ipa_endpoint_reset(endpoint); |
| } |
| |
| void ipa_endpoint_setup(struct ipa *ipa) |
| { |
| u32 endpoint_id; |
| |
| for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) |
| ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); |
| } |
| |
| void ipa_endpoint_teardown(struct ipa *ipa) |
| { |
| u32 endpoint_id; |
| |
| for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count) |
| ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); |
| } |
| |
| void ipa_endpoint_deconfig(struct ipa *ipa) |
| { |
| ipa->available_count = 0; |
| bitmap_free(ipa->available); |
| ipa->available = NULL; |
| } |
| |
| int ipa_endpoint_config(struct ipa *ipa) |
| { |
| struct device *dev = &ipa->pdev->dev; |
| const struct ipa_reg *reg; |
| u32 endpoint_id; |
| u32 tx_count; |
| u32 rx_count; |
| u32 rx_base; |
| u32 limit; |
| u32 val; |
| |
| /* Prior to IPA v3.5, the FLAVOR_0 register was not supported. |
| * Furthermore, the endpoints were not grouped such that TX |
| * endpoint numbers started with 0 and RX endpoints had numbers |
| * higher than all TX endpoints, so we can't do the simple |
| * direction check used for newer hardware below. |
| * |
| * For hardware that doesn't support the FLAVOR_0 register, |
| * just set the available mask to support any endpoint, and |
| * assume the configuration is valid. |
| */ |
| if (ipa->version < IPA_VERSION_3_5) { |
| ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL); |
| if (!ipa->available) |
| return -ENOMEM; |
| ipa->available_count = IPA_ENDPOINT_MAX; |
| |
| bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX); |
| |
| return 0; |
| } |
| |
| /* Find out about the endpoints supplied by the hardware, and ensure |
| * the highest one doesn't exceed the number supported by software. |
| */ |
| reg = ipa_reg(ipa, FLAVOR_0); |
| val = ioread32(ipa->reg_virt + ipa_reg_offset(reg)); |
| |
| /* Our RX is an IPA producer; our TX is an IPA consumer. */ |
| tx_count = ipa_reg_decode(reg, MAX_CONS_PIPES, val); |
| rx_count = ipa_reg_decode(reg, MAX_PROD_PIPES, val); |
| rx_base = ipa_reg_decode(reg, PROD_LOWEST, val); |
| |
| limit = rx_base + rx_count; |
| if (limit > IPA_ENDPOINT_MAX) { |
| dev_err(dev, "too many endpoints, %u > %u\n", |
| limit, IPA_ENDPOINT_MAX); |
| return -EINVAL; |
| } |
| |
| /* Allocate and initialize the available endpoint bitmap */ |
| ipa->available = bitmap_zalloc(limit, GFP_KERNEL); |
| if (!ipa->available) |
| return -ENOMEM; |
| ipa->available_count = limit; |
| |
| /* Mark all supported RX and TX endpoints as available */ |
| bitmap_set(ipa->available, 0, tx_count); |
| bitmap_set(ipa->available, rx_base, rx_count); |
| |
| for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { |
| struct ipa_endpoint *endpoint; |
| |
| if (endpoint_id >= limit) { |
| dev_err(dev, "invalid endpoint id, %u > %u\n", |
| endpoint_id, limit - 1); |
| goto err_free_bitmap; |
| } |
| |
| if (!test_bit(endpoint_id, ipa->available)) { |
| dev_err(dev, "unavailable endpoint id %u\n", |
| endpoint_id); |
| goto err_free_bitmap; |
| } |
| |
| /* Make sure it's pointing in the right direction */ |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if (endpoint->toward_ipa) { |
| if (endpoint_id < tx_count) |
| continue; |
| } else if (endpoint_id >= rx_base) { |
| continue; |
| } |
| |
| dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id); |
| goto err_free_bitmap; |
| } |
| |
| return 0; |
| |
| err_free_bitmap: |
| ipa_endpoint_deconfig(ipa); |
| |
| return -EINVAL; |
| } |
| |
| static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| struct ipa_endpoint *endpoint; |
| |
| endpoint = &ipa->endpoint[data->endpoint_id]; |
| |
| if (data->ee_id == GSI_EE_AP) |
| ipa->channel_map[data->channel_id] = endpoint; |
| ipa->name_map[name] = endpoint; |
| |
| endpoint->ipa = ipa; |
| endpoint->ee_id = data->ee_id; |
| endpoint->channel_id = data->channel_id; |
| endpoint->endpoint_id = data->endpoint_id; |
| endpoint->toward_ipa = data->toward_ipa; |
| endpoint->config = data->endpoint.config; |
| |
| __set_bit(endpoint->endpoint_id, ipa->defined); |
| } |
| |
| static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) |
| { |
| __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined); |
| |
| memset(endpoint, 0, sizeof(*endpoint)); |
| } |
| |
| void ipa_endpoint_exit(struct ipa *ipa) |
| { |
| u32 endpoint_id; |
| |
| ipa->filtered = 0; |
| |
| for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) |
| ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); |
| |
| bitmap_free(ipa->enabled); |
| ipa->enabled = NULL; |
| bitmap_free(ipa->set_up); |
| ipa->set_up = NULL; |
| bitmap_free(ipa->defined); |
| ipa->defined = NULL; |
| |
| memset(ipa->name_map, 0, sizeof(ipa->name_map)); |
| memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); |
| } |
| |
| /* Returns a bitmask of endpoints that support filtering, or 0 on error */ |
| int ipa_endpoint_init(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| enum ipa_endpoint_name name; |
| u32 filtered; |
| |
| BUILD_BUG_ON(!IPA_REPLENISH_BATCH); |
| |
| /* Number of endpoints is one more than the maximum ID */ |
| ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1; |
| if (!ipa->endpoint_count) |
| return -EINVAL; |
| |
| /* Initialize endpoint state bitmaps */ |
| ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); |
| if (!ipa->defined) |
| return -ENOMEM; |
| |
| ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); |
| if (!ipa->set_up) |
| goto err_free_defined; |
| |
| ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); |
| if (!ipa->enabled) |
| goto err_free_set_up; |
| |
| filtered = 0; |
| for (name = 0; name < count; name++, data++) { |
| if (ipa_gsi_endpoint_data_empty(data)) |
| continue; /* Skip over empty slots */ |
| |
| ipa_endpoint_init_one(ipa, name, data); |
| |
| if (data->endpoint.filter_support) |
| filtered |= BIT(data->endpoint_id); |
| if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) |
| ipa->modem_tx_count++; |
| } |
| |
| /* Make sure the set of filtered endpoints is valid */ |
| if (!ipa_filtered_valid(ipa, filtered)) { |
| ipa_endpoint_exit(ipa); |
| |
| return -EINVAL; |
| } |
| |
| ipa->filtered = filtered; |
| |
| return 0; |
| |
| err_free_set_up: |
| bitmap_free(ipa->set_up); |
| ipa->set_up = NULL; |
| err_free_defined: |
| bitmap_free(ipa->defined); |
| ipa->defined = NULL; |
| |
| return -ENOMEM; |
| } |