blob: c61b6022575e1abe24a4a7bbf67729a0ad140315 [file] [log] [blame]
/*
* Copyright(c) 2015 - 2018 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/spinlock.h>
#include <linux/seqlock.h>
#include <linux/netdevice.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include "hfi.h"
#include "common.h"
#include "qp.h"
#include "sdma.h"
#include "iowait.h"
#include "trace.h"
/* must be a power of 2 >= 64 <= 32768 */
#define SDMA_DESCQ_CNT 2048
#define SDMA_DESC_INTR 64
#define INVALID_TAIL 0xffff
#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
module_param(sdma_descq_cnt, uint, S_IRUGO);
MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
static uint sdma_idle_cnt = 250;
module_param(sdma_idle_cnt, uint, S_IRUGO);
MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
uint mod_num_sdma;
module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
static uint sdma_desct_intr = SDMA_DESC_INTR;
module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
#define SDMA_WAIT_BATCH_SIZE 20
/* max wait time for a SDMA engine to indicate it has halted */
#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
/* all SDMA engine errors that cause a halt */
#define SD(name) SEND_DMA_##name
#define ALL_SDMA_ENG_HALT_ERRS \
(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
/* sdma_sendctrl operations */
#define SDMA_SENDCTRL_OP_ENABLE BIT(0)
#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
#define SDMA_SENDCTRL_OP_HALT BIT(2)
#define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
/* handle long defines */
#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
static const char * const sdma_state_names[] = {
[sdma_state_s00_hw_down] = "s00_HwDown",
[sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
[sdma_state_s20_idle] = "s20_Idle",
[sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
[sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
[sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
[sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
[sdma_state_s80_hw_freeze] = "s80_HwFreeze",
[sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
[sdma_state_s99_running] = "s99_Running",
};
#ifdef CONFIG_SDMA_VERBOSITY
static const char * const sdma_event_names[] = {
[sdma_event_e00_go_hw_down] = "e00_GoHwDown",
[sdma_event_e10_go_hw_start] = "e10_GoHwStart",
[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
[sdma_event_e30_go_running] = "e30_GoRunning",
[sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
[sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
[sdma_event_e60_hw_halted] = "e60_HwHalted",
[sdma_event_e70_go_idle] = "e70_GoIdle",
[sdma_event_e80_hw_freeze] = "e80_HwFreeze",
[sdma_event_e81_hw_frozen] = "e81_HwFrozen",
[sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
[sdma_event_e85_link_down] = "e85_LinkDown",
[sdma_event_e90_sw_halted] = "e90_SwHalted",
};
#endif
static const struct sdma_set_state_action sdma_action_table[] = {
[sdma_state_s00_hw_down] = {
.go_s99_running_tofalse = 1,
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s10_hw_start_up_halt_wait] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 1,
.op_cleanup = 0,
},
[sdma_state_s15_hw_start_up_clean_wait] = {
.op_enable = 0,
.op_intenable = 1,
.op_halt = 0,
.op_cleanup = 1,
},
[sdma_state_s20_idle] = {
.op_enable = 0,
.op_intenable = 1,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s30_sw_clean_up_wait] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s40_hw_clean_up_wait] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 1,
},
[sdma_state_s50_hw_halt_wait] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s60_idle_halt_wait] = {
.go_s99_running_tofalse = 1,
.op_enable = 0,
.op_intenable = 0,
.op_halt = 1,
.op_cleanup = 0,
},
[sdma_state_s80_hw_freeze] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s82_freeze_sw_clean] = {
.op_enable = 0,
.op_intenable = 0,
.op_halt = 0,
.op_cleanup = 0,
},
[sdma_state_s99_running] = {
.op_enable = 1,
.op_intenable = 1,
.op_halt = 0,
.op_cleanup = 0,
.go_s99_running_totrue = 1,
},
};
#define SDMA_TAIL_UPDATE_THRESH 0x1F
/* declare all statics here rather than keep sorting */
static void sdma_complete(struct kref *);
static void sdma_finalput(struct sdma_state *);
static void sdma_get(struct sdma_state *);
static void sdma_hw_clean_up_task(unsigned long);
static void sdma_put(struct sdma_state *);
static void sdma_set_state(struct sdma_engine *, enum sdma_states);
static void sdma_start_hw_clean_up(struct sdma_engine *);
static void sdma_sw_clean_up_task(unsigned long);
static void sdma_sendctrl(struct sdma_engine *, unsigned);
static void init_sdma_regs(struct sdma_engine *, u32, uint);
static void sdma_process_event(
struct sdma_engine *sde,
enum sdma_events event);
static void __sdma_process_event(
struct sdma_engine *sde,
enum sdma_events event);
static void dump_sdma_state(struct sdma_engine *sde);
static void sdma_make_progress(struct sdma_engine *sde, u64 status);
static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
static void sdma_flush_descq(struct sdma_engine *sde);
/**
* sdma_state_name() - return state string from enum
* @state: state
*/
static const char *sdma_state_name(enum sdma_states state)
{
return sdma_state_names[state];
}
static void sdma_get(struct sdma_state *ss)
{
kref_get(&ss->kref);
}
static void sdma_complete(struct kref *kref)
{
struct sdma_state *ss =
container_of(kref, struct sdma_state, kref);
complete(&ss->comp);
}
static void sdma_put(struct sdma_state *ss)
{
kref_put(&ss->kref, sdma_complete);
}
static void sdma_finalput(struct sdma_state *ss)
{
sdma_put(ss);
wait_for_completion(&ss->comp);
}
static inline void write_sde_csr(
struct sdma_engine *sde,
u32 offset0,
u64 value)
{
write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
}
static inline u64 read_sde_csr(
struct sdma_engine *sde,
u32 offset0)
{
return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
}
/*
* sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
* sdma engine 'sde' to drop to 0.
*/
static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
int pause)
{
u64 off = 8 * sde->this_idx;
struct hfi1_devdata *dd = sde->dd;
int lcnt = 0;
u64 reg_prev;
u64 reg = 0;
while (1) {
reg_prev = reg;
reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
if (reg == 0)
break;
/* counter is reest if accupancy count changes */
if (reg != reg_prev)
lcnt = 0;
if (lcnt++ > 500) {
/* timed out - bounce the link */
dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
__func__, sde->this_idx, (u32)reg);
queue_work(dd->pport->link_wq,
&dd->pport->link_bounce_work);
break;
}
udelay(1);
}
}
/*
* sdma_wait() - wait for packet egress to complete for all SDMA engines,
* and pause for credit return.
*/
void sdma_wait(struct hfi1_devdata *dd)
{
int i;
for (i = 0; i < dd->num_sdma; i++) {
struct sdma_engine *sde = &dd->per_sdma[i];
sdma_wait_for_packet_egress(sde, 0);
}
}
static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
{
u64 reg;
if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
return;
reg = cnt;
reg &= SD(DESC_CNT_CNT_MASK);
reg <<= SD(DESC_CNT_CNT_SHIFT);
write_sde_csr(sde, SD(DESC_CNT), reg);
}
static inline void complete_tx(struct sdma_engine *sde,
struct sdma_txreq *tx,
int res)
{
/* protect against complete modifying */
struct iowait *wait = tx->wait;
callback_t complete = tx->complete;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
trace_hfi1_sdma_out_sn(sde, tx->sn);
if (WARN_ON_ONCE(sde->head_sn != tx->sn))
dd_dev_err(sde->dd, "expected %llu got %llu\n",
sde->head_sn, tx->sn);
sde->head_sn++;
#endif
__sdma_txclean(sde->dd, tx);
if (complete)
(*complete)(tx, res);
if (iowait_sdma_dec(wait))
iowait_drain_wakeup(wait);
}
/*
* Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
*
* Depending on timing there can be txreqs in two places:
* - in the descq ring
* - in the flush list
*
* To avoid ordering issues the descq ring needs to be flushed
* first followed by the flush list.
*
* This routine is called from two places
* - From a work queue item
* - Directly from the state machine just before setting the
* state to running
*
* Must be called with head_lock held
*
*/
static void sdma_flush(struct sdma_engine *sde)
{
struct sdma_txreq *txp, *txp_next;
LIST_HEAD(flushlist);
unsigned long flags;
uint seq;
/* flush from head to tail */
sdma_flush_descq(sde);
spin_lock_irqsave(&sde->flushlist_lock, flags);
/* copy flush list */
list_splice_init(&sde->flushlist, &flushlist);
spin_unlock_irqrestore(&sde->flushlist_lock, flags);
/* flush from flush list */
list_for_each_entry_safe(txp, txp_next, &flushlist, list)
complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
/* wakeup QPs orphaned on the dmawait list */
do {
struct iowait *w, *nw;
seq = read_seqbegin(&sde->waitlock);
if (!list_empty(&sde->dmawait)) {
write_seqlock(&sde->waitlock);
list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
if (w->wakeup) {
w->wakeup(w, SDMA_AVAIL_REASON);
list_del_init(&w->list);
}
}
write_sequnlock(&sde->waitlock);
}
} while (read_seqretry(&sde->waitlock, seq));
}
/*
* Fields a work request for flushing the descq ring
* and the flush list
*
* If the engine has been brought to running during
* the scheduling delay, the flush is ignored, assuming
* that the process of bringing the engine to running
* would have done this flush prior to going to running.
*
*/
static void sdma_field_flush(struct work_struct *work)
{
unsigned long flags;
struct sdma_engine *sde =
container_of(work, struct sdma_engine, flush_worker);
write_seqlock_irqsave(&sde->head_lock, flags);
if (!__sdma_running(sde))
sdma_flush(sde);
write_sequnlock_irqrestore(&sde->head_lock, flags);
}
static void sdma_err_halt_wait(struct work_struct *work)
{
struct sdma_engine *sde = container_of(work, struct sdma_engine,
err_halt_worker);
u64 statuscsr;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
while (1) {
statuscsr = read_sde_csr(sde, SD(STATUS));
statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
if (statuscsr)
break;
if (time_after(jiffies, timeout)) {
dd_dev_err(sde->dd,
"SDMA engine %d - timeout waiting for engine to halt\n",
sde->this_idx);
/*
* Continue anyway. This could happen if there was
* an uncorrectable error in the wrong spot.
*/
break;
}
usleep_range(80, 120);
}
sdma_process_event(sde, sdma_event_e15_hw_halt_done);
}
static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
{
if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
unsigned index;
struct hfi1_devdata *dd = sde->dd;
for (index = 0; index < dd->num_sdma; index++) {
struct sdma_engine *curr_sdma = &dd->per_sdma[index];
if (curr_sdma != sde)
curr_sdma->progress_check_head =
curr_sdma->descq_head;
}
dd_dev_err(sde->dd,
"SDMA engine %d - check scheduled\n",
sde->this_idx);
mod_timer(&sde->err_progress_check_timer, jiffies + 10);
}
}
static void sdma_err_progress_check(struct timer_list *t)
{
unsigned index;
struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
dd_dev_err(sde->dd, "SDE progress check event\n");
for (index = 0; index < sde->dd->num_sdma; index++) {
struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
unsigned long flags;
/* check progress on each engine except the current one */
if (curr_sde == sde)
continue;
/*
* We must lock interrupts when acquiring sde->lock,
* to avoid a deadlock if interrupt triggers and spins on
* the same lock on same CPU
*/
spin_lock_irqsave(&curr_sde->tail_lock, flags);
write_seqlock(&curr_sde->head_lock);
/* skip non-running queues */
if (curr_sde->state.current_state != sdma_state_s99_running) {
write_sequnlock(&curr_sde->head_lock);
spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
continue;
}
if ((curr_sde->descq_head != curr_sde->descq_tail) &&
(curr_sde->descq_head ==
curr_sde->progress_check_head))
__sdma_process_event(curr_sde,
sdma_event_e90_sw_halted);
write_sequnlock(&curr_sde->head_lock);
spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
}
schedule_work(&sde->err_halt_worker);
}
static void sdma_hw_clean_up_task(unsigned long opaque)
{
struct sdma_engine *sde = (struct sdma_engine *)opaque;
u64 statuscsr;
while (1) {
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
sde->this_idx, slashstrip(__FILE__), __LINE__,
__func__);
#endif
statuscsr = read_sde_csr(sde, SD(STATUS));
statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
if (statuscsr)
break;
udelay(10);
}
sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
}
static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
{
return sde->tx_ring[sde->tx_head & sde->sdma_mask];
}
/*
* flush ring for recovery
*/
static void sdma_flush_descq(struct sdma_engine *sde)
{
u16 head, tail;
int progress = 0;
struct sdma_txreq *txp = get_txhead(sde);
/* The reason for some of the complexity of this code is that
* not all descriptors have corresponding txps. So, we have to
* be able to skip over descs until we wander into the range of
* the next txp on the list.
*/
head = sde->descq_head & sde->sdma_mask;
tail = sde->descq_tail & sde->sdma_mask;
while (head != tail) {
/* advance head, wrap if needed */
head = ++sde->descq_head & sde->sdma_mask;
/* if now past this txp's descs, do the callback */
if (txp && txp->next_descq_idx == head) {
/* remove from list */
sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
trace_hfi1_sdma_progress(sde, head, tail, txp);
txp = get_txhead(sde);
}
progress++;
}
if (progress)
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
}
static void sdma_sw_clean_up_task(unsigned long opaque)
{
struct sdma_engine *sde = (struct sdma_engine *)opaque;
unsigned long flags;
spin_lock_irqsave(&sde->tail_lock, flags);
write_seqlock(&sde->head_lock);
/*
* At this point, the following should always be true:
* - We are halted, so no more descriptors are getting retired.
* - We are not running, so no one is submitting new work.
* - Only we can send the e40_sw_cleaned, so we can't start
* running again until we say so. So, the active list and
* descq are ours to play with.
*/
/*
* In the error clean up sequence, software clean must be called
* before the hardware clean so we can use the hardware head in
* the progress routine. A hardware clean or SPC unfreeze will
* reset the hardware head.
*
* Process all retired requests. The progress routine will use the
* latest physical hardware head - we are not running so speed does
* not matter.
*/
sdma_make_progress(sde, 0);
sdma_flush(sde);
/*
* Reset our notion of head and tail.
* Note that the HW registers have been reset via an earlier
* clean up.
*/
sde->descq_tail = 0;
sde->descq_head = 0;
sde->desc_avail = sdma_descq_freecnt(sde);
*sde->head_dma = 0;
__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
write_sequnlock(&sde->head_lock);
spin_unlock_irqrestore(&sde->tail_lock, flags);
}
static void sdma_sw_tear_down(struct sdma_engine *sde)
{
struct sdma_state *ss = &sde->state;
/* Releasing this reference means the state machine has stopped. */
sdma_put(ss);
/* stop waiting for all unfreeze events to complete */
atomic_set(&sde->dd->sdma_unfreeze_count, -1);
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
}
static void sdma_start_hw_clean_up(struct sdma_engine *sde)
{
tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
}
static void sdma_set_state(struct sdma_engine *sde,
enum sdma_states next_state)
{
struct sdma_state *ss = &sde->state;
const struct sdma_set_state_action *action = sdma_action_table;
unsigned op = 0;
trace_hfi1_sdma_state(
sde,
sdma_state_names[ss->current_state],
sdma_state_names[next_state]);
/* debugging bookkeeping */
ss->previous_state = ss->current_state;
ss->previous_op = ss->current_op;
ss->current_state = next_state;
if (ss->previous_state != sdma_state_s99_running &&
next_state == sdma_state_s99_running)
sdma_flush(sde);
if (action[next_state].op_enable)
op |= SDMA_SENDCTRL_OP_ENABLE;
if (action[next_state].op_intenable)
op |= SDMA_SENDCTRL_OP_INTENABLE;
if (action[next_state].op_halt)
op |= SDMA_SENDCTRL_OP_HALT;
if (action[next_state].op_cleanup)
op |= SDMA_SENDCTRL_OP_CLEANUP;
if (action[next_state].go_s99_running_tofalse)
ss->go_s99_running = 0;
if (action[next_state].go_s99_running_totrue)
ss->go_s99_running = 1;
ss->current_op = op;
sdma_sendctrl(sde, ss->current_op);
}
/**
* sdma_get_descq_cnt() - called when device probed
*
* Return a validated descq count.
*
* This is currently only used in the verbs initialization to build the tx
* list.
*
* This will probably be deleted in favor of a more scalable approach to
* alloc tx's.
*
*/
u16 sdma_get_descq_cnt(void)
{
u16 count = sdma_descq_cnt;
if (!count)
return SDMA_DESCQ_CNT;
/* count must be a power of 2 greater than 64 and less than
* 32768. Otherwise return default.
*/
if (!is_power_of_2(count))
return SDMA_DESCQ_CNT;
if (count < 64 || count > 32768)
return SDMA_DESCQ_CNT;
return count;
}
/**
* sdma_engine_get_vl() - return vl for a given sdma engine
* @sde: sdma engine
*
* This function returns the vl mapped to a given engine, or an error if
* the mapping can't be found. The mapping fields are protected by RCU.
*/
int sdma_engine_get_vl(struct sdma_engine *sde)
{
struct hfi1_devdata *dd = sde->dd;
struct sdma_vl_map *m;
u8 vl;
if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
return -EINVAL;
rcu_read_lock();
m = rcu_dereference(dd->sdma_map);
if (unlikely(!m)) {
rcu_read_unlock();
return -EINVAL;
}
vl = m->engine_to_vl[sde->this_idx];
rcu_read_unlock();
return vl;
}
/**
* sdma_select_engine_vl() - select sdma engine
* @dd: devdata
* @selector: a spreading factor
* @vl: this vl
*
*
* This function returns an engine based on the selector and a vl. The
* mapping fields are protected by RCU.
*/
struct sdma_engine *sdma_select_engine_vl(
struct hfi1_devdata *dd,
u32 selector,
u8 vl)
{
struct sdma_vl_map *m;
struct sdma_map_elem *e;
struct sdma_engine *rval;
/* NOTE This should only happen if SC->VL changed after the initial
* checks on the QP/AH
* Default will return engine 0 below
*/
if (vl >= num_vls) {
rval = NULL;
goto done;
}
rcu_read_lock();
m = rcu_dereference(dd->sdma_map);
if (unlikely(!m)) {
rcu_read_unlock();
return &dd->per_sdma[0];
}
e = m->map[vl & m->mask];
rval = e->sde[selector & e->mask];
rcu_read_unlock();
done:
rval = !rval ? &dd->per_sdma[0] : rval;
trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
return rval;
}
/**
* sdma_select_engine_sc() - select sdma engine
* @dd: devdata
* @selector: a spreading factor
* @sc5: the 5 bit sc
*
*
* This function returns an engine based on the selector and an sc.
*/
struct sdma_engine *sdma_select_engine_sc(
struct hfi1_devdata *dd,
u32 selector,
u8 sc5)
{
u8 vl = sc_to_vlt(dd, sc5);
return sdma_select_engine_vl(dd, selector, vl);
}
struct sdma_rht_map_elem {
u32 mask;
u8 ctr;
struct sdma_engine *sde[0];
};
struct sdma_rht_node {
unsigned long cpu_id;
struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
struct rhash_head node;
};
#define NR_CPUS_HINT 192
static const struct rhashtable_params sdma_rht_params = {
.nelem_hint = NR_CPUS_HINT,
.head_offset = offsetof(struct sdma_rht_node, node),
.key_offset = offsetof(struct sdma_rht_node, cpu_id),
.key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
.max_size = NR_CPUS,
.min_size = 8,
.automatic_shrinking = true,
};
/*
* sdma_select_user_engine() - select sdma engine based on user setup
* @dd: devdata
* @selector: a spreading factor
* @vl: this vl
*
* This function returns an sdma engine for a user sdma request.
* User defined sdma engine affinity setting is honored when applicable,
* otherwise system default sdma engine mapping is used. To ensure correct
* ordering, the mapping from <selector, vl> to sde must remain unchanged.
*/
struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
u32 selector, u8 vl)
{
struct sdma_rht_node *rht_node;
struct sdma_engine *sde = NULL;
unsigned long cpu_id;
/*
* To ensure that always the same sdma engine(s) will be
* selected make sure the process is pinned to this CPU only.
*/
if (current->nr_cpus_allowed != 1)
goto out;
cpu_id = smp_processor_id();
rcu_read_lock();
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
sdma_rht_params);
if (rht_node && rht_node->map[vl]) {
struct sdma_rht_map_elem *map = rht_node->map[vl];
sde = map->sde[selector & map->mask];
}
rcu_read_unlock();
if (sde)
return sde;
out:
return sdma_select_engine_vl(dd, selector, vl);
}
static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
{
int i;
for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
map->sde[map->ctr + i] = map->sde[i];
}
static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
struct sdma_engine *sde)
{
unsigned int i, pow;
/* only need to check the first ctr entries for a match */
for (i = 0; i < map->ctr; i++) {
if (map->sde[i] == sde) {
memmove(&map->sde[i], &map->sde[i + 1],
(map->ctr - i - 1) * sizeof(map->sde[0]));
map->ctr--;
pow = roundup_pow_of_two(map->ctr ? : 1);
map->mask = pow - 1;
sdma_populate_sde_map(map);
break;
}
}
}
/*
* Prevents concurrent reads and writes of the sdma engine cpu_mask
*/
static DEFINE_MUTEX(process_to_sde_mutex);
ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
size_t count)
{
struct hfi1_devdata *dd = sde->dd;
cpumask_var_t mask, new_mask;
unsigned long cpu;
int ret, vl, sz;
struct sdma_rht_node *rht_node;
vl = sdma_engine_get_vl(sde);
if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
return -EINVAL;
ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
if (!ret)
return -ENOMEM;
ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
if (!ret) {
free_cpumask_var(mask);
return -ENOMEM;
}
ret = cpulist_parse(buf, mask);
if (ret)
goto out_free;
if (!cpumask_subset(mask, cpu_online_mask)) {
dd_dev_warn(sde->dd, "Invalid CPU mask\n");
ret = -EINVAL;
goto out_free;
}
sz = sizeof(struct sdma_rht_map_elem) +
(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
mutex_lock(&process_to_sde_mutex);
for_each_cpu(cpu, mask) {
/* Check if we have this already mapped */
if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
cpumask_set_cpu(cpu, new_mask);
continue;
}
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
sdma_rht_params);
if (!rht_node) {
rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
if (!rht_node) {
ret = -ENOMEM;
goto out;
}
rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
if (!rht_node->map[vl]) {
kfree(rht_node);
ret = -ENOMEM;
goto out;
}
rht_node->cpu_id = cpu;
rht_node->map[vl]->mask = 0;
rht_node->map[vl]->ctr = 1;
rht_node->map[vl]->sde[0] = sde;
ret = rhashtable_insert_fast(dd->sdma_rht,
&rht_node->node,
sdma_rht_params);
if (ret) {
kfree(rht_node->map[vl]);
kfree(rht_node);
dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
cpu);
goto out;
}
} else {
int ctr, pow;
/* Add new user mappings */
if (!rht_node->map[vl])
rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
if (!rht_node->map[vl]) {
ret = -ENOMEM;
goto out;
}
rht_node->map[vl]->ctr++;
ctr = rht_node->map[vl]->ctr;
rht_node->map[vl]->sde[ctr - 1] = sde;
pow = roundup_pow_of_two(ctr);
rht_node->map[vl]->mask = pow - 1;
/* Populate the sde map table */
sdma_populate_sde_map(rht_node->map[vl]);
}
cpumask_set_cpu(cpu, new_mask);
}
/* Clean up old mappings */
for_each_cpu(cpu, cpu_online_mask) {
struct sdma_rht_node *rht_node;
/* Don't cleanup sdes that are set in the new mask */
if (cpumask_test_cpu(cpu, mask))
continue;
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
sdma_rht_params);
if (rht_node) {
bool empty = true;
int i;
/* Remove mappings for old sde */
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
if (rht_node->map[i])
sdma_cleanup_sde_map(rht_node->map[i],
sde);
/* Free empty hash table entries */
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
if (!rht_node->map[i])
continue;
if (rht_node->map[i]->ctr) {
empty = false;
break;
}
}
if (empty) {
ret = rhashtable_remove_fast(dd->sdma_rht,
&rht_node->node,
sdma_rht_params);
WARN_ON(ret);
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
kfree(rht_node->map[i]);
kfree(rht_node);
}
}
}
cpumask_copy(&sde->cpu_mask, new_mask);
out:
mutex_unlock(&process_to_sde_mutex);
out_free:
free_cpumask_var(mask);
free_cpumask_var(new_mask);
return ret ? : strnlen(buf, PAGE_SIZE);
}
ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
{
mutex_lock(&process_to_sde_mutex);
if (cpumask_empty(&sde->cpu_mask))
snprintf(buf, PAGE_SIZE, "%s\n", "empty");
else
cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
mutex_unlock(&process_to_sde_mutex);
return strnlen(buf, PAGE_SIZE);
}
static void sdma_rht_free(void *ptr, void *arg)
{
struct sdma_rht_node *rht_node = ptr;
int i;
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
kfree(rht_node->map[i]);
kfree(rht_node);
}
/**
* sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
* @s: seq file
* @dd: hfi1_devdata
* @cpuid: cpu id
*
* This routine dumps the process to sde mappings per cpu
*/
void sdma_seqfile_dump_cpu_list(struct seq_file *s,
struct hfi1_devdata *dd,
unsigned long cpuid)
{
struct sdma_rht_node *rht_node;
int i, j;
rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
sdma_rht_params);
if (!rht_node)
return;
seq_printf(s, "cpu%3lu: ", cpuid);
for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
if (!rht_node->map[i] || !rht_node->map[i]->ctr)
continue;
seq_printf(s, " vl%d: [", i);
for (j = 0; j < rht_node->map[i]->ctr; j++) {
if (!rht_node->map[i]->sde[j])
continue;
if (j > 0)
seq_puts(s, ",");
seq_printf(s, " sdma%2d",
rht_node->map[i]->sde[j]->this_idx);
}
seq_puts(s, " ]");
}
seq_puts(s, "\n");
}
/*
* Free the indicated map struct
*/
static void sdma_map_free(struct sdma_vl_map *m)
{
int i;
for (i = 0; m && i < m->actual_vls; i++)
kfree(m->map[i]);
kfree(m);
}
/*
* Handle RCU callback
*/
static void sdma_map_rcu_callback(struct rcu_head *list)
{
struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
sdma_map_free(m);
}
/**
* sdma_map_init - called when # vls change
* @dd: hfi1_devdata
* @port: port number
* @num_vls: number of vls
* @vl_engines: per vl engine mapping (optional)
*
* This routine changes the mapping based on the number of vls.
*
* vl_engines is used to specify a non-uniform vl/engine loading. NULL
* implies auto computing the loading and giving each VLs a uniform
* distribution of engines per VL.
*
* The auto algorithm computes the sde_per_vl and the number of extra
* engines. Any extra engines are added from the last VL on down.
*
* rcu locking is used here to control access to the mapping fields.
*
* If either the num_vls or num_sdma are non-power of 2, the array sizes
* in the struct sdma_vl_map and the struct sdma_map_elem are rounded
* up to the next highest power of 2 and the first entry is reused
* in a round robin fashion.
*
* If an error occurs the map change is not done and the mapping is
* not changed.
*
*/
int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
{
int i, j;
int extra, sde_per_vl;
int engine = 0;
u8 lvl_engines[OPA_MAX_VLS];
struct sdma_vl_map *oldmap, *newmap;
if (!(dd->flags & HFI1_HAS_SEND_DMA))
return 0;
if (!vl_engines) {
/* truncate divide */
sde_per_vl = dd->num_sdma / num_vls;
/* extras */
extra = dd->num_sdma % num_vls;
vl_engines = lvl_engines;
/* add extras from last vl down */
for (i = num_vls - 1; i >= 0; i--, extra--)
vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
}
/* build new map */
newmap = kzalloc(
sizeof(struct sdma_vl_map) +
roundup_pow_of_two(num_vls) *
sizeof(struct sdma_map_elem *),
GFP_KERNEL);
if (!newmap)
goto bail;
newmap->actual_vls = num_vls;
newmap->vls = roundup_pow_of_two(num_vls);
newmap->mask = (1 << ilog2(newmap->vls)) - 1;
/* initialize back-map */
for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
newmap->engine_to_vl[i] = -1;
for (i = 0; i < newmap->vls; i++) {
/* save for wrap around */
int first_engine = engine;
if (i < newmap->actual_vls) {
int sz = roundup_pow_of_two(vl_engines[i]);
/* only allocate once */
newmap->map[i] = kzalloc(
sizeof(struct sdma_map_elem) +
sz * sizeof(struct sdma_engine *),
GFP_KERNEL);
if (!newmap->map[i])
goto bail;
newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
/* assign engines */
for (j = 0; j < sz; j++) {
newmap->map[i]->sde[j] =
&dd->per_sdma[engine];
if (++engine >= first_engine + vl_engines[i])
/* wrap back to first engine */
engine = first_engine;
}
/* assign back-map */
for (j = 0; j < vl_engines[i]; j++)
newmap->engine_to_vl[first_engine + j] = i;
} else {
/* just re-use entry without allocating */
newmap->map[i] = newmap->map[i % num_vls];
}
engine = first_engine + vl_engines[i];
}
/* newmap in hand, save old map */
spin_lock_irq(&dd->sde_map_lock);
oldmap = rcu_dereference_protected(dd->sdma_map,
lockdep_is_held(&dd->sde_map_lock));
/* publish newmap */
rcu_assign_pointer(dd->sdma_map, newmap);
spin_unlock_irq(&dd->sde_map_lock);
/* success, free any old map after grace period */
if (oldmap)
call_rcu(&oldmap->list, sdma_map_rcu_callback);
return 0;
bail:
/* free any partial allocation */
sdma_map_free(newmap);
return -ENOMEM;
}
/**
* sdma_clean() Clean up allocated memory
* @dd: struct hfi1_devdata
* @num_engines: num sdma engines
*
* This routine can be called regardless of the success of
* sdma_init()
*/
void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
{
size_t i;
struct sdma_engine *sde;
if (dd->sdma_pad_dma) {
dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
(void *)dd->sdma_pad_dma,
dd->sdma_pad_phys);
dd->sdma_pad_dma = NULL;
dd->sdma_pad_phys = 0;
}
if (dd->sdma_heads_dma) {
dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
(void *)dd->sdma_heads_dma,
dd->sdma_heads_phys);
dd->sdma_heads_dma = NULL;
dd->sdma_heads_phys = 0;
}
for (i = 0; dd->per_sdma && i < num_engines; ++i) {
sde = &dd->per_sdma[i];
sde->head_dma = NULL;
sde->head_phys = 0;
if (sde->descq) {
dma_free_coherent(
&dd->pcidev->dev,
sde->descq_cnt * sizeof(u64[2]),
sde->descq,
sde->descq_phys
);
sde->descq = NULL;
sde->descq_phys = 0;
}
kvfree(sde->tx_ring);
sde->tx_ring = NULL;
}
spin_lock_irq(&dd->sde_map_lock);
sdma_map_free(rcu_access_pointer(dd->sdma_map));
RCU_INIT_POINTER(dd->sdma_map, NULL);
spin_unlock_irq(&dd->sde_map_lock);
synchronize_rcu();
kfree(dd->per_sdma);
dd->per_sdma = NULL;
if (dd->sdma_rht) {
rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
kfree(dd->sdma_rht);
dd->sdma_rht = NULL;
}
}
/**
* sdma_init() - called when device probed
* @dd: hfi1_devdata
* @port: port number (currently only zero)
*
* Initializes each sde and its csrs.
* Interrupts are not required to be enabled.
*
* Returns:
* 0 - success, -errno on failure
*/
int sdma_init(struct hfi1_devdata *dd, u8 port)
{
unsigned this_idx;
struct sdma_engine *sde;
struct rhashtable *tmp_sdma_rht;
u16 descq_cnt;
void *curr_head;
struct hfi1_pportdata *ppd = dd->pport + port;
u32 per_sdma_credits;
uint idle_cnt = sdma_idle_cnt;
size_t num_engines = chip_sdma_engines(dd);
int ret = -ENOMEM;
if (!HFI1_CAP_IS_KSET(SDMA)) {
HFI1_CAP_CLEAR(SDMA_AHG);
return 0;
}
if (mod_num_sdma &&
/* can't exceed chip support */
mod_num_sdma <= chip_sdma_engines(dd) &&
/* count must be >= vls */
mod_num_sdma >= num_vls)
num_engines = mod_num_sdma;
dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
chip_sdma_mem_size(dd));
per_sdma_credits =
chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
/* set up freeze waitqueue */
init_waitqueue_head(&dd->sdma_unfreeze_wq);
atomic_set(&dd->sdma_unfreeze_count, 0);
descq_cnt = sdma_get_descq_cnt();
dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
num_engines, descq_cnt);
/* alloc memory for array of send engines */
dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
GFP_KERNEL, dd->node);
if (!dd->per_sdma)
return ret;
idle_cnt = ns_to_cclock(dd, idle_cnt);
if (idle_cnt)
dd->default_desc1 =
SDMA_DESC1_HEAD_TO_HOST_FLAG;
else
dd->default_desc1 =
SDMA_DESC1_INT_REQ_FLAG;
if (!sdma_desct_intr)
sdma_desct_intr = SDMA_DESC_INTR;
/* Allocate memory for SendDMA descriptor FIFOs */
for (this_idx = 0; this_idx < num_engines; ++this_idx) {
sde = &dd->per_sdma[this_idx];
sde->dd = dd;
sde->ppd = ppd;
sde->this_idx = this_idx;
sde->descq_cnt = descq_cnt;
sde->desc_avail = sdma_descq_freecnt(sde);
sde->sdma_shift = ilog2(descq_cnt);
sde->sdma_mask = (1 << sde->sdma_shift) - 1;
/* Create a mask specifically for each interrupt source */
sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
this_idx);
sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
this_idx);
sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
this_idx);
/* Create a combined mask to cover all 3 interrupt sources */
sde->imask = sde->int_mask | sde->progress_mask |
sde->idle_mask;
spin_lock_init(&sde->tail_lock);
seqlock_init(&sde->head_lock);
spin_lock_init(&sde->senddmactrl_lock);
spin_lock_init(&sde->flushlist_lock);
seqlock_init(&sde->waitlock);
/* insure there is always a zero bit */
sde->ahg_bits = 0xfffffffe00000000ULL;
sdma_set_state(sde, sdma_state_s00_hw_down);
/* set up reference counting */
kref_init(&sde->state.kref);
init_completion(&sde->state.comp);
INIT_LIST_HEAD(&sde->flushlist);
INIT_LIST_HEAD(&sde->dmawait);
sde->tail_csr =
get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
(unsigned long)sde);
tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
(unsigned long)sde);
INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
INIT_WORK(&sde->flush_worker, sdma_field_flush);
sde->progress_check_head = 0;
timer_setup(&sde->err_progress_check_timer,
sdma_err_progress_check, 0);
sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
descq_cnt * sizeof(u64[2]),
&sde->descq_phys, GFP_KERNEL);
if (!sde->descq)
goto bail;
sde->tx_ring =
kvzalloc_node(array_size(descq_cnt,
sizeof(struct sdma_txreq *)),
GFP_KERNEL, dd->node);
if (!sde->tx_ring)
goto bail;
}
dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
/* Allocate memory for DMA of head registers to memory */
dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
dd->sdma_heads_size,
&dd->sdma_heads_phys,
GFP_KERNEL);
if (!dd->sdma_heads_dma) {
dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
goto bail;
}
/* Allocate memory for pad */
dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
&dd->sdma_pad_phys, GFP_KERNEL);
if (!dd->sdma_pad_dma) {
dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
goto bail;
}
/* assign each engine to different cacheline and init registers */
curr_head = (void *)dd->sdma_heads_dma;
for (this_idx = 0; this_idx < num_engines; ++this_idx) {
unsigned long phys_offset;
sde = &dd->per_sdma[this_idx];
sde->head_dma = curr_head;
curr_head += L1_CACHE_BYTES;
phys_offset = (unsigned long)sde->head_dma -
(unsigned long)dd->sdma_heads_dma;
sde->head_phys = dd->sdma_heads_phys + phys_offset;
init_sdma_regs(sde, per_sdma_credits, idle_cnt);
}
dd->flags |= HFI1_HAS_SEND_DMA;
dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
dd->num_sdma = num_engines;
ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
if (ret < 0)
goto bail;
tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
if (!tmp_sdma_rht) {
ret = -ENOMEM;
goto bail;
}
ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
if (ret < 0) {
kfree(tmp_sdma_rht);
goto bail;
}
dd->sdma_rht = tmp_sdma_rht;
dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
return 0;
bail:
sdma_clean(dd, num_engines);
return ret;
}
/**
* sdma_all_running() - called when the link goes up
* @dd: hfi1_devdata
*
* This routine moves all engines to the running state.
*/
void sdma_all_running(struct hfi1_devdata *dd)
{
struct sdma_engine *sde;
unsigned int i;
/* move all engines to running */
for (i = 0; i < dd->num_sdma; ++i) {
sde = &dd->per_sdma[i];
sdma_process_event(sde, sdma_event_e30_go_running);
}
}
/**
* sdma_all_idle() - called when the link goes down
* @dd: hfi1_devdata
*
* This routine moves all engines to the idle state.
*/
void sdma_all_idle(struct hfi1_devdata *dd)
{
struct sdma_engine *sde;
unsigned int i;
/* idle all engines */
for (i = 0; i < dd->num_sdma; ++i) {
sde = &dd->per_sdma[i];
sdma_process_event(sde, sdma_event_e70_go_idle);
}
}
/**
* sdma_start() - called to kick off state processing for all engines
* @dd: hfi1_devdata
*
* This routine is for kicking off the state processing for all required
* sdma engines. Interrupts need to be working at this point.
*
*/
void sdma_start(struct hfi1_devdata *dd)
{
unsigned i;
struct sdma_engine *sde;
/* kick off the engines state processing */
for (i = 0; i < dd->num_sdma; ++i) {
sde = &dd->per_sdma[i];
sdma_process_event(sde, sdma_event_e10_go_hw_start);
}
}
/**
* sdma_exit() - used when module is removed
* @dd: hfi1_devdata
*/
void sdma_exit(struct hfi1_devdata *dd)
{
unsigned this_idx;
struct sdma_engine *sde;
for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
++this_idx) {
sde = &dd->per_sdma[this_idx];
if (!list_empty(&sde->dmawait))
dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
sde->this_idx);
sdma_process_event(sde, sdma_event_e00_go_hw_down);
del_timer_sync(&sde->err_progress_check_timer);
/*
* This waits for the state machine to exit so it is not
* necessary to kill the sdma_sw_clean_up_task to make sure
* it is not running.
*/
sdma_finalput(&sde->state);
}
}
/*
* unmap the indicated descriptor
*/
static inline void sdma_unmap_desc(
struct hfi1_devdata *dd,
struct sdma_desc *descp)
{
switch (sdma_mapping_type(descp)) {
case SDMA_MAP_SINGLE:
dma_unmap_single(
&dd->pcidev->dev,
sdma_mapping_addr(descp),
sdma_mapping_len(descp),
DMA_TO_DEVICE);
break;
case SDMA_MAP_PAGE:
dma_unmap_page(
&dd->pcidev->dev,
sdma_mapping_addr(descp),
sdma_mapping_len(descp),
DMA_TO_DEVICE);
break;
}
}
/*
* return the mode as indicated by the first
* descriptor in the tx.
*/
static inline u8 ahg_mode(struct sdma_txreq *tx)
{
return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
>> SDMA_DESC1_HEADER_MODE_SHIFT;
}
/**
* __sdma_txclean() - clean tx of mappings, descp *kmalloc's
* @dd: hfi1_devdata for unmapping
* @tx: tx request to clean
*
* This is used in the progress routine to clean the tx or
* by the ULP to toss an in-process tx build.
*
* The code can be called multiple times without issue.
*
*/
void __sdma_txclean(
struct hfi1_devdata *dd,
struct sdma_txreq *tx)
{
u16 i;
if (tx->num_desc) {
u8 skip = 0, mode = ahg_mode(tx);
/* unmap first */
sdma_unmap_desc(dd, &tx->descp[0]);
/* determine number of AHG descriptors to skip */
if (mode > SDMA_AHG_APPLY_UPDATE1)
skip = mode >> 1;
for (i = 1 + skip; i < tx->num_desc; i++)
sdma_unmap_desc(dd, &tx->descp[i]);
tx->num_desc = 0;
}
kfree(tx->coalesce_buf);
tx->coalesce_buf = NULL;
/* kmalloc'ed descp */
if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
tx->desc_limit = ARRAY_SIZE(tx->descs);
kfree(tx->descp);
}
}
static inline u16 sdma_gethead(struct sdma_engine *sde)
{
struct hfi1_devdata *dd = sde->dd;
int use_dmahead;
u16 hwhead;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
#endif
retry:
use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
hwhead = use_dmahead ?
(u16)le64_to_cpu(*sde->head_dma) :
(u16)read_sde_csr(sde, SD(HEAD));
if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
u16 cnt;
u16 swtail;
u16 swhead;
int sane;
swhead = sde->descq_head & sde->sdma_mask;
/* this code is really bad for cache line trading */
swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
cnt = sde->descq_cnt;
if (swhead < swtail)
/* not wrapped */
sane = (hwhead >= swhead) & (hwhead <= swtail);
else if (swhead > swtail)
/* wrapped around */
sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
(hwhead <= swtail);
else
/* empty */
sane = (hwhead == swhead);
if (unlikely(!sane)) {
dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
sde->this_idx,
use_dmahead ? "dma" : "kreg",
hwhead, swhead, swtail, cnt);
if (use_dmahead) {
/* try one more time, using csr */
use_dmahead = 0;
goto retry;
}
/* proceed as if no progress */
hwhead = swhead;
}
}
return hwhead;
}
/*
* This is called when there are send DMA descriptors that might be
* available.
*
* This is called with head_lock held.
*/
static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
{
struct iowait *wait, *nw, *twait;
struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
uint i, n = 0, seq, tidx = 0;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
slashstrip(__FILE__), __LINE__, __func__);
dd_dev_err(sde->dd, "avail: %u\n", avail);
#endif
do {
seq = read_seqbegin(&sde->waitlock);
if (!list_empty(&sde->dmawait)) {
/* at least one item */
write_seqlock(&sde->waitlock);
/* Harvest waiters wanting DMA descriptors */
list_for_each_entry_safe(
wait,
nw,
&sde->dmawait,
list) {
u32 num_desc;
if (!wait->wakeup)
continue;
if (n == ARRAY_SIZE(waits))
break;
iowait_init_priority(wait);
num_desc = iowait_get_all_desc(wait);
if (num_desc > avail)
break;
avail -= num_desc;
/* Find the top-priority wait memeber */
if (n) {
twait = waits[tidx];
tidx =
iowait_priority_update_top(wait,
twait,
n,
tidx);
}
list_del_init(&wait->list);
waits[n++] = wait;
}
write_sequnlock(&sde->waitlock);
break;
}
} while (read_seqretry(&sde->waitlock, seq));
/* Schedule the top-priority entry first */
if (n)
waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
for (i = 0; i < n; i++)
if (i != tidx)
waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
}
/* head_lock must be held */
static void sdma_make_progress(struct sdma_engine *sde, u64 status)
{
struct sdma_txreq *txp = NULL;
int progress = 0;
u16 hwhead, swhead;
int idle_check_done = 0;
hwhead = sdma_gethead(sde);
/* The reason for some of the complexity of this code is that
* not all descriptors have corresponding txps. So, we have to
* be able to skip over descs until we wander into the range of
* the next txp on the list.
*/
retry:
txp = get_txhead(sde);
swhead = sde->descq_head & sde->sdma_mask;
trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
while (swhead != hwhead) {
/* advance head, wrap if needed */
swhead = ++sde->descq_head & sde->sdma_mask;
/* if now past this txp's descs, do the callback */
if (txp && txp->next_descq_idx == swhead) {
/* remove from list */
sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
complete_tx(sde, txp, SDMA_TXREQ_S_OK);
/* see if there is another txp */
txp = get_txhead(sde);
}
trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
progress++;
}
/*
* The SDMA idle interrupt is not guaranteed to be ordered with respect
* to updates to the the dma_head location in host memory. The head
* value read might not be fully up to date. If there are pending
* descriptors and the SDMA idle interrupt fired then read from the
* CSR SDMA head instead to get the latest value from the hardware.
* The hardware SDMA head should be read at most once in this invocation
* of sdma_make_progress(..) which is ensured by idle_check_done flag
*/
if ((status & sde->idle_mask) && !idle_check_done) {
u16 swtail;
swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
if (swtail != hwhead) {
hwhead = (u16)read_sde_csr(sde, SD(HEAD));
idle_check_done = 1;
goto retry;
}
}
sde->last_status = status;
if (progress)
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
}
/*
* sdma_engine_interrupt() - interrupt handler for engine
* @sde: sdma engine
* @status: sdma interrupt reason
*
* Status is a mask of the 3 possible interrupts for this engine. It will
* contain bits _only_ for this SDMA engine. It will contain at least one
* bit, it may contain more.
*/
void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
{
trace_hfi1_sdma_engine_interrupt(sde, status);
write_seqlock(&sde->head_lock);
sdma_set_desc_cnt(sde, sdma_desct_intr);
if (status & sde->idle_mask)
sde->idle_int_cnt++;
else if (status & sde->progress_mask)
sde->progress_int_cnt++;
else if (status & sde->int_mask)
sde->sdma_int_cnt++;
sdma_make_progress(sde, status);
write_sequnlock(&sde->head_lock);
}
/**
* sdma_engine_error() - error handler for engine
* @sde: sdma engine
* @status: sdma interrupt reason
*/
void sdma_engine_error(struct sdma_engine *sde, u64 status)
{
unsigned long flags;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
sde->this_idx,
(unsigned long long)status,
sdma_state_names[sde->state.current_state]);
#endif
spin_lock_irqsave(&sde->tail_lock, flags);
write_seqlock(&sde->head_lock);
if (status & ALL_SDMA_ENG_HALT_ERRS)
__sdma_process_event(sde, sdma_event_e60_hw_halted);
if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
dd_dev_err(sde->dd,
"SDMA (%u) engine error: 0x%llx state %s\n",
sde->this_idx,
(unsigned long long)status,
sdma_state_names[sde->state.current_state]);
dump_sdma_state(sde);
}
write_sequnlock(&sde->head_lock);
spin_unlock_irqrestore(&sde->tail_lock, flags);
}
static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
{
u64 set_senddmactrl = 0;
u64 clr_senddmactrl = 0;
unsigned long flags;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
sde->this_idx,
(op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
(op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
(op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
(op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
#endif
if (op & SDMA_SENDCTRL_OP_ENABLE)
set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
else
clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
if (op & SDMA_SENDCTRL_OP_INTENABLE)
set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
else
clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
if (op & SDMA_SENDCTRL_OP_HALT)
set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
else
clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
spin_lock_irqsave(&sde->senddmactrl_lock, flags);
sde->p_senddmactrl |= set_senddmactrl;
sde->p_senddmactrl &= ~clr_senddmactrl;
if (op & SDMA_SENDCTRL_OP_CLEANUP)
write_sde_csr(sde, SD(CTRL),
sde->p_senddmactrl |
SD(CTRL_SDMA_CLEANUP_SMASK));
else
write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
#ifdef CONFIG_SDMA_VERBOSITY
sdma_dumpstate(sde);
#endif
}
static void sdma_setlengen(struct sdma_engine *sde)
{
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
#endif
/*
* Set SendDmaLenGen and clear-then-set the MSB of the generation
* count to enable generation checking and load the internal
* generation counter.
*/
write_sde_csr(sde, SD(LEN_GEN),
(sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
write_sde_csr(sde, SD(LEN_GEN),
((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
(4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
}
static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
{
/* Commit writes to memory and advance the tail on the chip */
smp_wmb(); /* see get_txhead() */
writeq(tail, sde->tail_csr);
}
/*
* This is called when changing to state s10_hw_start_up_halt_wait as
* a result of send buffer errors or send DMA descriptor errors.
*/
static void sdma_hw_start_up(struct sdma_engine *sde)
{
u64 reg;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
#endif
sdma_setlengen(sde);
sdma_update_tail(sde, 0); /* Set SendDmaTail */
*sde->head_dma = 0;
reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
}
/*
* set_sdma_integrity
*
* Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
*/
static void set_sdma_integrity(struct sdma_engine *sde)
{
struct hfi1_devdata *dd = sde->dd;
write_sde_csr(sde, SD(CHECK_ENABLE),
hfi1_pkt_base_sdma_integrity(dd));
}
static void init_sdma_regs(
struct sdma_engine *sde,
u32 credits,
uint idle_cnt)
{
u8 opval, opmask;
#ifdef CONFIG_SDMA_VERBOSITY
struct hfi1_devdata *dd = sde->dd;
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
#endif
write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
sdma_setlengen(sde);
sdma_update_tail(sde, 0); /* Set SendDmaTail */
write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
write_sde_csr(sde, SD(DESC_CNT), 0);
write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
write_sde_csr(sde, SD(MEMORY),
((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
((u64)(credits * sde->this_idx) <<
SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
set_sdma_integrity(sde);
opmask = OPCODE_CHECK_MASK_DISABLED;
opval = OPCODE_CHECK_VAL_DISABLED;
write_sde_csr(sde, SD(CHECK_OPCODE),
(opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
(opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
}
#ifdef CONFIG_SDMA_VERBOSITY
#define sdma_dumpstate_helper0(reg) do { \
csr = read_csr(sde->dd, reg); \
dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
} while (0)
#define sdma_dumpstate_helper(reg) do { \
csr = read_sde_csr(sde, reg); \
dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
#reg, sde->this_idx, csr); \
} while (0)
#define sdma_dumpstate_helper2(reg) do { \
csr = read_csr(sde->dd, reg + (8 * i)); \
dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
#reg, i, csr); \
} while (0)
void sdma_dumpstate(struct sdma_engine *sde)
{
u64 csr;
unsigned i;
sdma_dumpstate_helper(SD(CTRL));
sdma_dumpstate_helper(SD(STATUS));
sdma_dumpstate_helper0(SD(ERR_STATUS));
sdma_dumpstate_helper0(SD(ERR_MASK));
sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
sdma_dumpstate_helper(SD(ENG_ERR_MASK));
for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
sdma_dumpstate_helper2(CCE_INT_STATUS);
sdma_dumpstate_helper2(CCE_INT_MASK);
sdma_dumpstate_helper2(CCE_INT_BLOCKED);
}
sdma_dumpstate_helper(SD(TAIL));
sdma_dumpstate_helper(SD(HEAD));
sdma_dumpstate_helper(SD(PRIORITY_THLD));
sdma_dumpstate_helper(SD(IDLE_CNT));
sdma_dumpstate_helper(SD(RELOAD_CNT));
sdma_dumpstate_helper(SD(DESC_CNT));
sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
sdma_dumpstate_helper(SD(MEMORY));
sdma_dumpstate_helper0(SD(ENGINES));
sdma_dumpstate_helper0(SD(MEM_SIZE));
/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
sdma_dumpstate_helper(SD(BASE_ADDR));
sdma_dumpstate_helper(SD(LEN_GEN));
sdma_dumpstate_helper(SD(HEAD_ADDR));
sdma_dumpstate_helper(SD(CHECK_ENABLE));
sdma_dumpstate_helper(SD(CHECK_VL));
sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
sdma_dumpstate_helper(SD(CHECK_SLID));
sdma_dumpstate_helper(SD(CHECK_OPCODE));
}
#endif
static void dump_sdma_state(struct sdma_engine *sde)
{
struct hw_sdma_desc *descqp;
u64 desc[2];
u64 addr;
u8 gen;
u16 len;
u16 head, tail, cnt;
head = sde->descq_head & sde->sdma_mask;
tail = sde->descq_tail & sde->sdma_mask;
cnt = sdma_descq_freecnt(sde);
dd_dev_err(sde->dd,
"SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
sde->this_idx, head, tail, cnt,
!list_empty(&sde->flushlist));
/* print info for each entry in the descriptor queue */
while (head != tail) {
char flags[6] = { 'x', 'x', 'x', 'x', 0 };
descqp = &sde->descq[head];
desc[0] = le64_to_cpu(descqp->qw[0]);
desc[1] = le64_to_cpu(descqp->qw[1]);
flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
'H' : '-';
flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
& SDMA_DESC0_PHY_ADDR_MASK;
gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
& SDMA_DESC1_GENERATION_MASK;
len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
& SDMA_DESC0_BYTE_COUNT_MASK;
dd_dev_err(sde->dd,
"SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
head, flags, addr, gen, len);
dd_dev_err(sde->dd,
"\tdesc0:0x%016llx desc1 0x%016llx\n",
desc[0], desc[1]);
if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
dd_dev_err(sde->dd,
"\taidx: %u amode: %u alen: %u\n",
(u8)((desc[1] &
SDMA_DESC1_HEADER_INDEX_SMASK) >>
SDMA_DESC1_HEADER_INDEX_SHIFT),
(u8)((desc[1] &
SDMA_DESC1_HEADER_MODE_SMASK) >>
SDMA_DESC1_HEADER_MODE_SHIFT),
(u8)((desc[1] &
SDMA_DESC1_HEADER_DWS_SMASK) >>
SDMA_DESC1_HEADER_DWS_SHIFT));
head++;
head &= sde->sdma_mask;
}
}
#define SDE_FMT \
"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
/**
* sdma_seqfile_dump_sde() - debugfs dump of sde
* @s: seq file
* @sde: send dma engine to dump
*
* This routine dumps the sde to the indicated seq file.
*/
void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
{
u16 head, tail;
struct hw_sdma_desc *descqp;
u64 desc[2];
u64 addr;
u8 gen;
u16 len;
head = sde->descq_head & sde->sdma_mask;
tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
seq_printf(s, SDE_FMT, sde->this_idx,
sde->cpu,
sdma_state_name(sde->state.current_state),
(unsigned long long)read_sde_csr(sde, SD(CTRL)),
(unsigned long long)read_sde_csr(sde, SD(STATUS)),
(unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
(unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
(unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
(unsigned long long)le64_to_cpu(*sde->head_dma),
(unsigned long long)read_sde_csr(sde, SD(MEMORY)),
(unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
(unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
(unsigned long long)sde->last_status,
(unsigned long long)sde->ahg_bits,
sde->tx_tail,
sde->tx_head,
sde->descq_tail,
sde->descq_head,
!list_empty(&sde->flushlist),
sde->descq_full_count,
(unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
/* print info for each entry in the descriptor queue */
while (head != tail) {
char flags[6] = { 'x', 'x', 'x', 'x', 0 };
descqp = &sde->descq[head];
desc[0] = le64_to_cpu(descqp->qw[0]);
desc[1] = le64_to_cpu(descqp->qw[1]);
flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
'H' : '-';
flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
& SDMA_DESC0_PHY_ADDR_MASK;
gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
& SDMA_DESC1_GENERATION_MASK;
len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
& SDMA_DESC0_BYTE_COUNT_MASK;
seq_printf(s,
"\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
head, flags, addr, gen, len);
if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
(u8)((desc[1] &
SDMA_DESC1_HEADER_INDEX_SMASK) >>
SDMA_DESC1_HEADER_INDEX_SHIFT),
(u8)((desc[1] &
SDMA_DESC1_HEADER_MODE_SMASK) >>
SDMA_DESC1_HEADER_MODE_SHIFT));
head = (head + 1) & sde->sdma_mask;
}
}
/*
* add the generation number into
* the qw1 and return
*/
static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
{
u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
<< SDMA_DESC1_GENERATION_SHIFT;
return qw1;
}
/*
* This routine submits the indicated tx
*
* Space has already been guaranteed and
* tail side of ring is locked.
*
* The hardware tail update is done
* in the caller and that is facilitated
* by returning the new tail.
*
* There is special case logic for ahg
* to not add the generation number for
* up to 2 descriptors that follow the
* first descriptor.
*
*/
static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
{
int i;
u16 tail;
struct sdma_desc *descp = tx->descp;
u8 skip = 0, mode = ahg_mode(tx);
tail = sde->descq_tail & sde->sdma_mask;
sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
tail, &sde->descq[tail]);
tail = ++sde->descq_tail & sde->sdma_mask;
descp++;
if (mode > SDMA_AHG_APPLY_UPDATE1)
skip = mode >> 1;
for (i = 1; i < tx->num_desc; i++, descp++) {
u64 qw1;
sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
if (skip) {
/* edits don't have generation */
qw1 = descp->qw[1];
skip--;
} else {
/* replace generation with real one for non-edits */
qw1 = add_gen(sde, descp->qw[1]);
}
sde->descq[tail].qw[1] = cpu_to_le64(qw1);
trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
tail, &sde->descq[tail]);
tail = ++sde->descq_tail & sde->sdma_mask;
}
tx->next_descq_idx = tail;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
tx->sn = sde->tail_sn++;
trace_hfi1_sdma_in_sn(sde, tx->sn);
WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
#endif
sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
sde->desc_avail -= tx->num_desc;
return tail;
}
/*
* Check for progress
*/
static int sdma_check_progress(
struct sdma_engine *sde,
struct iowait_work *wait,
struct sdma_txreq *tx,
bool pkts_sent)
{
int ret;
sde->desc_avail = sdma_descq_freecnt(sde);
if (tx->num_desc <= sde->desc_avail)
return -EAGAIN;
/* pulse the head_lock */
if (wait && iowait_ioww_to_iow(wait)->sleep) {
unsigned seq;
seq = raw_seqcount_begin(
(const seqcount_t *)&sde->head_lock.seqcount);
ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
if (ret == -EAGAIN)
sde->desc_avail = sdma_descq_freecnt(sde);
} else {
ret = -EBUSY;
}
return ret;
}
/**
* sdma_send_txreq() - submit a tx req to ring
* @sde: sdma engine to use
* @wait: SE wait structure to use when full (may be NULL)
* @tx: sdma_txreq to submit
* @pkts_sent: has any packet been sent yet?
*
* The call submits the tx into the ring. If a iowait structure is non-NULL
* the packet will be queued to the list in wait.
*
* Return:
* 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
* ring (wait == NULL)
* -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
*/
int sdma_send_txreq(struct sdma_engine *sde,
struct iowait_work *wait,
struct sdma_txreq *tx,
bool pkts_sent)
{
int ret = 0;
u16 tail;
unsigned long flags;
/* user should have supplied entire packet */
if (unlikely(tx->tlen))
return -EINVAL;
tx->wait = iowait_ioww_to_iow(wait);
spin_lock_irqsave(&sde->tail_lock, flags);
retry:
if (unlikely(!__sdma_running(sde)))
goto unlock_noconn;
if (unlikely(tx->num_desc > sde->desc_avail))
goto nodesc;
tail = submit_tx(sde, tx);
if (wait)
iowait_sdma_inc(iowait_ioww_to_iow(wait));
sdma_update_tail(sde, tail);
unlock:
spin_unlock_irqrestore(&sde->tail_lock, flags);
return ret;
unlock_noconn:
if (wait)
iowait_sdma_inc(iowait_ioww_to_iow(wait));
tx->next_descq_idx = 0;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
tx->sn = sde->tail_sn++;
trace_hfi1_sdma_in_sn(sde, tx->sn);
#endif
spin_lock(&sde->flushlist_lock);
list_add_tail(&tx->list, &sde->flushlist);
spin_unlock(&sde->flushlist_lock);
iowait_inc_wait_count(wait, tx->num_desc);
queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
ret = -ECOMM;
goto unlock;
nodesc:
ret = sdma_check_progress(sde, wait, tx, pkts_sent);
if (ret == -EAGAIN) {
ret = 0;
goto retry;
}
sde->descq_full_count++;
goto unlock;
}
/**
* sdma_send_txlist() - submit a list of tx req to ring
* @sde: sdma engine to use
* @wait: SE wait structure to use when full (may be NULL)
* @tx_list: list of sdma_txreqs to submit
* @count: pointer to a u16 which, after return will contain the total number of
* sdma_txreqs removed from the tx_list. This will include sdma_txreqs
* whose SDMA descriptors are submitted to the ring and the sdma_txreqs
* which are added to SDMA engine flush list if the SDMA engine state is
* not running.
*
* The call submits the list into the ring.
*
* If the iowait structure is non-NULL and not equal to the iowait list
* the unprocessed part of the list will be appended to the list in wait.
*
* In all cases, the tx_list will be updated so the head of the tx_list is
* the list of descriptors that have yet to be transmitted.
*
* The intent of this call is to provide a more efficient
* way of submitting multiple packets to SDMA while holding the tail
* side locking.
*
* Return:
* 0 - Success,
* -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
* -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
*/
int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
struct list_head *tx_list, u16 *count_out)
{
struct sdma_txreq *tx, *tx_next;
int ret = 0;
unsigned long flags;
u16 tail = INVALID_TAIL;
u32 submit_count = 0, flush_count = 0, total_count;
spin_lock_irqsave(&sde->tail_lock, flags);
retry:
list_for_each_entry_safe(tx, tx_next, tx_list, list) {
tx->wait = iowait_ioww_to_iow(wait);
if (unlikely(!__sdma_running(sde)))
goto unlock_noconn;
if (unlikely(tx->num_desc > sde->desc_avail))
goto nodesc;
if (unlikely(tx->tlen)) {
ret = -EINVAL;
goto update_tail;
}
list_del_init(&tx->list);
tail = submit_tx(sde, tx);
submit_count++;
if (tail != INVALID_TAIL &&
(submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
sdma_update_tail(sde, tail);
tail = INVALID_TAIL;
}
}
update_tail:
total_count = submit_count + flush_count;
if (wait) {
iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
iowait_starve_clear(submit_count > 0,
iowait_ioww_to_iow(wait));
}
if (tail != INVALID_TAIL)
sdma_update_tail(sde, tail);
spin_unlock_irqrestore(&sde->tail_lock, flags);
*count_out = total_count;
return ret;
unlock_noconn:
spin_lock(&sde->flushlist_lock);
list_for_each_entry_safe(tx, tx_next, tx_list, list) {
tx->wait = iowait_ioww_to_iow(wait);
list_del_init(&tx->list);
tx->next_descq_idx = 0;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
tx->sn = sde->tail_sn++;
trace_hfi1_sdma_in_sn(sde, tx->sn);
#endif
list_add_tail(&tx->list, &sde->flushlist);
flush_count++;
iowait_inc_wait_count(wait, tx->num_desc);
}
spin_unlock(&sde->flushlist_lock);
queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
ret = -ECOMM;
goto update_tail;
nodesc:
ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
if (ret == -EAGAIN) {
ret = 0;
goto retry;
}
sde->descq_full_count++;
goto update_tail;
}
static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
{
unsigned long flags;
spin_lock_irqsave(&sde->tail_lock, flags);
write_seqlock(&sde->head_lock);
__sdma_process_event(sde, event);
if (sde->state.current_state == sdma_state_s99_running)
sdma_desc_avail(sde, sdma_descq_freecnt(sde));
write_sequnlock(&sde->head_lock);
spin_unlock_irqrestore(&sde->tail_lock, flags);
}
static void __sdma_process_event(struct sdma_engine *sde,
enum sdma_events event)
{
struct sdma_state *ss = &sde->state;
int need_progress = 0;
/* CONFIG SDMA temporary */
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
sdma_state_names[ss->current_state],
sdma_event_names[event]);
#endif
switch (ss->current_state) {
case sdma_state_s00_hw_down:
switch (event) {
case sdma_event_e00_go_hw_down:
break;
case sdma_event_e30_go_running:
/*
* If down, but running requested (usually result
* of link up, then we need to start up.
* This can happen when hw down is requested while
* bringing the link up with traffic active on
* 7220, e.g.
*/
ss->go_s99_running = 1;
/* fall through -- and start dma engine */
case sdma_event_e10_go_hw_start:
/* This reference means the state machine is started */
sdma_get(&sde->state);
sdma_set_state(sde,
sdma_state_s10_hw_start_up_halt_wait);
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e40_sw_cleaned:
sdma_sw_tear_down(sde);
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s10_hw_start_up_halt_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
sdma_sw_tear_down(sde);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
sdma_set_state(sde,
sdma_state_s15_hw_start_up_clean_wait);
sdma_start_hw_clean_up(sde);
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
schedule_work(&sde->err_halt_worker);
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s15_hw_start_up_clean_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
sdma_sw_tear_down(sde);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
sdma_hw_start_up(sde);
sdma_set_state(sde, ss->go_s99_running ?
sdma_state_s99_running :
sdma_state_s20_idle);
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s20_idle:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
sdma_sw_tear_down(sde);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
sdma_set_state(sde, sdma_state_s99_running);
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
schedule_work(&sde->err_halt_worker);
break;
case sdma_event_e70_go_idle:
break;
case sdma_event_e85_link_down:
/* fall through */
case sdma_event_e80_hw_freeze:
sdma_set_state(sde, sdma_state_s80_hw_freeze);
atomic_dec(&sde->dd->sdma_unfreeze_count);
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s30_sw_clean_up_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
sdma_start_hw_clean_up(sde);
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
ss->go_s99_running = 0;
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s40_hw_clean_up_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
sdma_hw_start_up(sde);
sdma_set_state(sde, ss->go_s99_running ?
sdma_state_s99_running :
sdma_state_s20_idle);
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
ss->go_s99_running = 0;
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s50_hw_halt_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
schedule_work(&sde->err_halt_worker);
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
ss->go_s99_running = 0;
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s60_idle_halt_wait:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
schedule_work(&sde->err_halt_worker);
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s80_hw_freeze:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e82_hw_unfreeze:
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s82_freeze_sw_clean:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case sdma_event_e40_sw_cleaned:
/* notify caller this engine is done cleaning */
atomic_dec(&sde->dd->sdma_unfreeze_count);
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
break;
case sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case sdma_event_e80_hw_freeze:
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
sdma_hw_start_up(sde);
sdma_set_state(sde, ss->go_s99_running ?
sdma_state_s99_running :
sdma_state_s20_idle);
break;
case sdma_event_e85_link_down:
break;
case sdma_event_e90_sw_halted:
break;
}
break;
case sdma_state_s99_running:
switch (event) {
case sdma_event_e00_go_hw_down:
sdma_set_state(sde, sdma_state_s00_hw_down);
tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
break;
case sdma_event_e10_go_hw_start:
break;
case sdma_event_e15_hw_halt_done:
break;
case sdma_event_e25_hw_clean_up_done:
break;
case sdma_event_e30_go_running:
break;
case sdma_event_e40_sw_cleaned:
break;
case sdma_event_e50_hw_cleaned:
break;
case sdma_event_e60_hw_halted:
need_progress = 1;
sdma_err_progress_check_schedule(sde);
/* fall through */
case sdma_event_e90_sw_halted:
/*
* SW initiated halt does not perform engines
* progress check
*/
sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
schedule_work(&sde->err_halt_worker);
break;
case sdma_event_e70_go_idle:
sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
break;
case sdma_event_e85_link_down:
ss->go_s99_running = 0;
/* fall through */
case sdma_event_e80_hw_freeze:
sdma_set_state(sde, sdma_state_s80_hw_freeze);
atomic_dec(&sde->dd->sdma_unfreeze_count);
wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
break;
case sdma_event_e81_hw_frozen:
break;
case sdma_event_e82_hw_unfreeze:
break;
}
break;
}
ss->last_event = event;
if (need_progress)
sdma_make_progress(sde, 0);
}
/*
* _extend_sdma_tx_descs() - helper to extend txreq
*
* This is called once the initial nominal allocation
* of descriptors in the sdma_txreq is exhausted.
*
* The code will bump the allocation up to the max
* of MAX_DESC (64) descriptors. There doesn't seem
* much point in an interim step. The last descriptor
* is reserved for coalesce buffer in order to support
* cases where input packet has >MAX_DESC iovecs.
*
*/
static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
{
int i;
/* Handle last descriptor */
if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
/* if tlen is 0, it is for padding, release last descriptor */
if (!tx->tlen) {
tx->desc_limit = MAX_DESC;
} else if (!tx->coalesce_buf) {
/* allocate coalesce buffer with space for padding */
tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
GFP_ATOMIC);
if (!tx->coalesce_buf)
goto enomem;
tx->coalesce_idx = 0;
}
return 0;
}
if (unlikely(tx->num_desc == MAX_DESC))
goto enomem;
tx->descp = kmalloc_array(
MAX_DESC,
sizeof(struct sdma_desc),
GFP_ATOMIC);
if (!tx->descp)
goto enomem;
/* reserve last descriptor for coalescing */
tx->desc_limit = MAX_DESC - 1;
/* copy ones already built */
for (i = 0; i < tx->num_desc; i++)
tx->descp[i] = tx->descs[i];
return 0;
enomem:
__sdma_txclean(dd, tx);
return -ENOMEM;
}
/*
* ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
*
* This is called once the initial nominal allocation of descriptors
* in the sdma_txreq is exhausted.
*
* This function calls _extend_sdma_tx_descs to extend or allocate
* coalesce buffer. If there is a allocated coalesce buffer, it will
* copy the input packet data into the coalesce buffer. It also adds
* coalesce buffer descriptor once when whole packet is received.
*
* Return:
* <0 - error
* 0 - coalescing, don't populate descriptor
* 1 - continue with populating descriptor
*/
int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
int type, void *kvaddr, struct page *page,
unsigned long offset, u16 len)
{
int pad_len, rval;
dma_addr_t addr;
rval = _extend_sdma_tx_descs(dd, tx);
if (rval) {
__sdma_txclean(dd, tx);
return rval;
}
/* If coalesce buffer is allocated, copy data into it */
if (tx->coalesce_buf) {
if (type == SDMA_MAP_NONE) {
__sdma_txclean(dd, tx);
return -EINVAL;
}
if (type == SDMA_MAP_PAGE) {
kvaddr = kmap(page);
kvaddr += offset;
} else if (WARN_ON(!kvaddr)) {
__sdma_txclean(dd, tx);
return -EINVAL;
}
memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
tx->coalesce_idx += len;
if (type == SDMA_MAP_PAGE)
kunmap(page);
/* If there is more data, return */
if (tx->tlen - tx->coalesce_idx)
return 0;
/* Whole packet is received; add any padding */
pad_len = tx->packet_len & (sizeof(u32) - 1);
if (pad_len) {
pad_len = sizeof(u32) - pad_len;
memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
/* padding is taken care of for coalescing case */
tx->packet_len += pad_len;
tx->tlen += pad_len;
}
/* dma map the coalesce buffer */
addr = dma_map_single(&dd->pcidev->dev,
tx->coalesce_buf,
tx->tlen,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
__sdma_txclean(dd, tx);
return -ENOSPC;
}
/* Add descriptor for coalesce buffer */
tx->desc_limit = MAX_DESC;
return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
addr, tx->tlen);
}
return 1;
}
/* Update sdes when the lmc changes */
void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
{
struct sdma_engine *sde;
int i;
u64 sreg;
sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
SD(CHECK_SLID_MASK_SHIFT)) |
(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
SD(CHECK_SLID_VALUE_SHIFT));
for (i = 0; i < dd->num_sdma; i++) {
hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
i, (u32)sreg);
sde = &dd->per_sdma[i];
write_sde_csr(sde, SD(CHECK_SLID), sreg);
}
}
/* tx not dword sized - pad */
int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
{
int rval = 0;
tx->num_desc++;
if ((unlikely(tx->num_desc == tx->desc_limit))) {
rval = _extend_sdma_tx_descs(dd, tx);
if (rval) {
__sdma_txclean(dd, tx);
return rval;
}
}
/* finish the one just added */
make_tx_sdma_desc(
tx,
SDMA_MAP_NONE,
dd->sdma_pad_phys,
sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
_sdma_close_tx(dd, tx);
return rval;
}
/*
* Add ahg to the sdma_txreq
*
* The logic will consume up to 3
* descriptors at the beginning of
* sdma_txreq.
*/
void _sdma_txreq_ahgadd(
struct sdma_txreq *tx,
u8 num_ahg,
u8 ahg_entry,
u32 *ahg,
u8 ahg_hlen)
{
u32 i, shift = 0, desc = 0;
u8 mode;
WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
/* compute mode */
if (num_ahg == 1)
mode = SDMA_AHG_APPLY_UPDATE1;
else if (num_ahg <= 5)
mode = SDMA_AHG_APPLY_UPDATE2;
else
mode = SDMA_AHG_APPLY_UPDATE3;
tx->num_desc++;
/* initialize to consumed descriptors to zero */
switch (mode) {
case SDMA_AHG_APPLY_UPDATE3:
tx->num_desc++;
tx->descs[2].qw[0] = 0;
tx->descs[2].qw[1] = 0;
/* FALLTHROUGH */
case SDMA_AHG_APPLY_UPDATE2:
tx->num_desc++;
tx->descs[1].qw[0] = 0;
tx->descs[1].qw[1] = 0;
break;
}
ahg_hlen >>= 2;
tx->descs[0].qw[1] |=
(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
<< SDMA_DESC1_HEADER_DWS_SHIFT) |
(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
<< SDMA_DESC1_HEADER_MODE_SHIFT) |
(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
for (i = 0; i < (num_ahg - 1); i++) {
if (!shift && !(i & 2))
desc++;
tx->descs[desc].qw[!!(i & 2)] |=
(((u64)ahg[i + 1])
<< shift);
shift = (shift + 32) & 63;
}
}
/**
* sdma_ahg_alloc - allocate an AHG entry
* @sde: engine to allocate from
*
* Return:
* 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
* -ENOSPC if an entry is not available
*/
int sdma_ahg_alloc(struct sdma_engine *sde)
{
int nr;
int oldbit;
if (!sde) {
trace_hfi1_ahg_allocate(sde, -EINVAL);
return -EINVAL;
}
while (1) {
nr = ffz(READ_ONCE(sde->ahg_bits));
if (nr > 31) {
trace_hfi1_ahg_allocate(sde, -ENOSPC);
return -ENOSPC;
}
oldbit = test_and_set_bit(nr, &sde->ahg_bits);
if (!oldbit)
break;
cpu_relax();
}
trace_hfi1_ahg_allocate(sde, nr);
return nr;
}
/**
* sdma_ahg_free - free an AHG entry
* @sde: engine to return AHG entry
* @ahg_index: index to free
*
* This routine frees the indicate AHG entry.
*/
void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
{
if (!sde)
return;
trace_hfi1_ahg_deallocate(sde, ahg_index);
if (ahg_index < 0 || ahg_index > 31)
return;
clear_bit(ahg_index, &sde->ahg_bits);
}
/*
* SPC freeze handling for SDMA engines. Called when the driver knows
* the SPC is going into a freeze but before the freeze is fully
* settled. Generally an error interrupt.
*
* This event will pull the engine out of running so no more entries can be
* added to the engine's queue.
*/
void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
{
int i;
enum sdma_events event = link_down ? sdma_event_e85_link_down :
sdma_event_e80_hw_freeze;
/* set up the wait but do not wait here */
atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
/* tell all engines to stop running and wait */
for (i = 0; i < dd->num_sdma; i++)
sdma_process_event(&dd->per_sdma[i], event);
/* sdma_freeze() will wait for all engines to have stopped */
}
/*
* SPC freeze handling for SDMA engines. Called when the driver knows
* the SPC is fully frozen.
*/
void sdma_freeze(struct hfi1_devdata *dd)
{
int i;
int ret;
/*
* Make sure all engines have moved out of the running state before
* continuing.
*/
ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
atomic_read(&dd->sdma_unfreeze_count) <=
0);
/* interrupted or count is negative, then unloading - just exit */
if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
return;
/* set up the count for the next wait */
atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
/* tell all engines that the SPC is frozen, they can start cleaning */
for (i = 0; i < dd->num_sdma; i++)
sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
/*
* Wait for everyone to finish software clean before exiting. The
* software clean will read engine CSRs, so must be completed before
* the next step, which will clear the engine CSRs.
*/
(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
atomic_read(&dd->sdma_unfreeze_count) <= 0);
/* no need to check results - done no matter what */
}
/*
* SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
*
* The SPC freeze acts like a SDMA halt and a hardware clean combined. All
* that is left is a software clean. We could do it after the SPC is fully
* frozen, but then we'd have to add another state to wait for the unfreeze.
* Instead, just defer the software clean until the unfreeze step.
*/
void sdma_unfreeze(struct hfi1_devdata *dd)
{
int i;
/* tell all engines start freeze clean up */
for (i = 0; i < dd->num_sdma; i++)
sdma_process_event(&dd->per_sdma[i],
sdma_event_e82_hw_unfreeze);
}
/**
* _sdma_engine_progress_schedule() - schedule progress on engine
* @sde: sdma_engine to schedule progress
*
*/
void _sdma_engine_progress_schedule(
struct sdma_engine *sde)
{
trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
/* assume we have selected a good cpu */
write_csr(sde->dd,
CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
sde->progress_mask);
}