| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2008 STMicroelectronics |
| * Copyright (C) 2010 Alessandro Rubini |
| * Copyright (C) 2010 Linus Walleij for ST-Ericsson |
| */ |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/clk.h> |
| #include <linux/jiffies.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/sched_clock.h> |
| #include <asm/mach/time.h> |
| |
| /* |
| * The MTU device hosts four different counters, with 4 set of |
| * registers. These are register names. |
| */ |
| |
| #define MTU_IMSC 0x00 /* Interrupt mask set/clear */ |
| #define MTU_RIS 0x04 /* Raw interrupt status */ |
| #define MTU_MIS 0x08 /* Masked interrupt status */ |
| #define MTU_ICR 0x0C /* Interrupt clear register */ |
| |
| /* per-timer registers take 0..3 as argument */ |
| #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */ |
| #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */ |
| #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */ |
| #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */ |
| |
| /* bits for the control register */ |
| #define MTU_CRn_ENA 0x80 |
| #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */ |
| #define MTU_CRn_PRESCALE_MASK 0x0c |
| #define MTU_CRn_PRESCALE_1 0x00 |
| #define MTU_CRn_PRESCALE_16 0x04 |
| #define MTU_CRn_PRESCALE_256 0x08 |
| #define MTU_CRn_32BITS 0x02 |
| #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/ |
| |
| /* Other registers are usual amba/primecell registers, currently not used */ |
| #define MTU_ITCR 0xff0 |
| #define MTU_ITOP 0xff4 |
| |
| #define MTU_PERIPH_ID0 0xfe0 |
| #define MTU_PERIPH_ID1 0xfe4 |
| #define MTU_PERIPH_ID2 0xfe8 |
| #define MTU_PERIPH_ID3 0xfeC |
| |
| #define MTU_PCELL0 0xff0 |
| #define MTU_PCELL1 0xff4 |
| #define MTU_PCELL2 0xff8 |
| #define MTU_PCELL3 0xffC |
| |
| static void __iomem *mtu_base; |
| static bool clkevt_periodic; |
| static u32 clk_prescale; |
| static u32 nmdk_cycle; /* write-once */ |
| static struct delay_timer mtu_delay_timer; |
| |
| /* |
| * Override the global weak sched_clock symbol with this |
| * local implementation which uses the clocksource to get some |
| * better resolution when scheduling the kernel. |
| */ |
| static u64 notrace nomadik_read_sched_clock(void) |
| { |
| if (unlikely(!mtu_base)) |
| return 0; |
| |
| return -readl(mtu_base + MTU_VAL(0)); |
| } |
| |
| static unsigned long nmdk_timer_read_current_timer(void) |
| { |
| return ~readl_relaxed(mtu_base + MTU_VAL(0)); |
| } |
| |
| /* Clockevent device: use one-shot mode */ |
| static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev) |
| { |
| writel(1 << 1, mtu_base + MTU_IMSC); |
| writel(evt, mtu_base + MTU_LR(1)); |
| /* Load highest value, enable device, enable interrupts */ |
| writel(MTU_CRn_ONESHOT | clk_prescale | |
| MTU_CRn_32BITS | MTU_CRn_ENA, |
| mtu_base + MTU_CR(1)); |
| |
| return 0; |
| } |
| |
| static void nmdk_clkevt_reset(void) |
| { |
| if (clkevt_periodic) { |
| /* Timer: configure load and background-load, and fire it up */ |
| writel(nmdk_cycle, mtu_base + MTU_LR(1)); |
| writel(nmdk_cycle, mtu_base + MTU_BGLR(1)); |
| |
| writel(MTU_CRn_PERIODIC | clk_prescale | |
| MTU_CRn_32BITS | MTU_CRn_ENA, |
| mtu_base + MTU_CR(1)); |
| writel(1 << 1, mtu_base + MTU_IMSC); |
| } else { |
| /* Generate an interrupt to start the clockevent again */ |
| (void) nmdk_clkevt_next(nmdk_cycle, NULL); |
| } |
| } |
| |
| static int nmdk_clkevt_shutdown(struct clock_event_device *evt) |
| { |
| writel(0, mtu_base + MTU_IMSC); |
| /* disable timer */ |
| writel(0, mtu_base + MTU_CR(1)); |
| /* load some high default value */ |
| writel(0xffffffff, mtu_base + MTU_LR(1)); |
| return 0; |
| } |
| |
| static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt) |
| { |
| clkevt_periodic = false; |
| return 0; |
| } |
| |
| static int nmdk_clkevt_set_periodic(struct clock_event_device *evt) |
| { |
| clkevt_periodic = true; |
| nmdk_clkevt_reset(); |
| return 0; |
| } |
| |
| static void nmdk_clksrc_reset(void) |
| { |
| /* Disable */ |
| writel(0, mtu_base + MTU_CR(0)); |
| |
| /* ClockSource: configure load and background-load, and fire it up */ |
| writel(nmdk_cycle, mtu_base + MTU_LR(0)); |
| writel(nmdk_cycle, mtu_base + MTU_BGLR(0)); |
| |
| writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, |
| mtu_base + MTU_CR(0)); |
| } |
| |
| static void nmdk_clkevt_resume(struct clock_event_device *cedev) |
| { |
| nmdk_clkevt_reset(); |
| nmdk_clksrc_reset(); |
| } |
| |
| static struct clock_event_device nmdk_clkevt = { |
| .name = "mtu_1", |
| .features = CLOCK_EVT_FEAT_ONESHOT | |
| CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_DYNIRQ, |
| .rating = 200, |
| .set_state_shutdown = nmdk_clkevt_shutdown, |
| .set_state_periodic = nmdk_clkevt_set_periodic, |
| .set_state_oneshot = nmdk_clkevt_set_oneshot, |
| .set_next_event = nmdk_clkevt_next, |
| .resume = nmdk_clkevt_resume, |
| }; |
| |
| /* |
| * IRQ Handler for timer 1 of the MTU block. |
| */ |
| static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evdev = dev_id; |
| |
| writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */ |
| evdev->event_handler(evdev); |
| return IRQ_HANDLED; |
| } |
| |
| static int __init nmdk_timer_init(void __iomem *base, int irq, |
| struct clk *pclk, struct clk *clk) |
| { |
| unsigned long rate; |
| int ret; |
| |
| mtu_base = base; |
| |
| BUG_ON(clk_prepare_enable(pclk)); |
| BUG_ON(clk_prepare_enable(clk)); |
| |
| /* |
| * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz |
| * for ux500. |
| * Use a divide-by-16 counter if the tick rate is more than 32MHz. |
| * At 32 MHz, the timer (with 32 bit counter) can be programmed |
| * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer |
| * with 16 gives too low timer resolution. |
| */ |
| rate = clk_get_rate(clk); |
| if (rate > 32000000) { |
| rate /= 16; |
| clk_prescale = MTU_CRn_PRESCALE_16; |
| } else { |
| clk_prescale = MTU_CRn_PRESCALE_1; |
| } |
| |
| /* Cycles for periodic mode */ |
| nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ); |
| |
| |
| /* Timer 0 is the free running clocksource */ |
| nmdk_clksrc_reset(); |
| |
| ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0", |
| rate, 200, 32, clocksource_mmio_readl_down); |
| if (ret) { |
| pr_err("timer: failed to initialize clock source %s\n", "mtu_0"); |
| return ret; |
| } |
| |
| sched_clock_register(nomadik_read_sched_clock, 32, rate); |
| |
| /* Timer 1 is used for events, register irq and clockevents */ |
| if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER, |
| "Nomadik Timer Tick", &nmdk_clkevt)) |
| pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick"); |
| nmdk_clkevt.cpumask = cpumask_of(0); |
| nmdk_clkevt.irq = irq; |
| clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU); |
| |
| mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer; |
| mtu_delay_timer.freq = rate; |
| register_current_timer_delay(&mtu_delay_timer); |
| |
| return 0; |
| } |
| |
| static int __init nmdk_timer_of_init(struct device_node *node) |
| { |
| struct clk *pclk; |
| struct clk *clk; |
| void __iomem *base; |
| int irq; |
| |
| base = of_iomap(node, 0); |
| if (!base) { |
| pr_err("Can't remap registers\n"); |
| return -ENXIO; |
| } |
| |
| pclk = of_clk_get_by_name(node, "apb_pclk"); |
| if (IS_ERR(pclk)) { |
| pr_err("could not get apb_pclk\n"); |
| return PTR_ERR(pclk); |
| } |
| |
| clk = of_clk_get_by_name(node, "timclk"); |
| if (IS_ERR(clk)) { |
| pr_err("could not get timclk\n"); |
| return PTR_ERR(clk); |
| } |
| |
| irq = irq_of_parse_and_map(node, 0); |
| if (irq <= 0) { |
| pr_err("Can't parse IRQ\n"); |
| return -EINVAL; |
| } |
| |
| return nmdk_timer_init(base, irq, pclk, clk); |
| } |
| TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu", |
| nmdk_timer_of_init); |