| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_SCHED_H |
| #define _LINUX_SCHED_H |
| |
| /* |
| * Define 'struct task_struct' and provide the main scheduler |
| * APIs (schedule(), wakeup variants, etc.) |
| */ |
| |
| #include <uapi/linux/sched.h> |
| |
| #include <asm/current.h> |
| |
| #include <linux/pid.h> |
| #include <linux/sem.h> |
| #include <linux/shm.h> |
| #include <linux/kmsan_types.h> |
| #include <linux/mutex.h> |
| #include <linux/plist.h> |
| #include <linux/hrtimer.h> |
| #include <linux/irqflags.h> |
| #include <linux/seccomp.h> |
| #include <linux/nodemask.h> |
| #include <linux/rcupdate.h> |
| #include <linux/refcount.h> |
| #include <linux/resource.h> |
| #include <linux/latencytop.h> |
| #include <linux/sched/prio.h> |
| #include <linux/sched/types.h> |
| #include <linux/signal_types.h> |
| #include <linux/syscall_user_dispatch.h> |
| #include <linux/mm_types_task.h> |
| #include <linux/task_io_accounting.h> |
| #include <linux/posix-timers.h> |
| #include <linux/rseq.h> |
| #include <linux/seqlock.h> |
| #include <linux/kcsan.h> |
| #include <linux/rv.h> |
| #include <asm/kmap_size.h> |
| |
| /* task_struct member predeclarations (sorted alphabetically): */ |
| struct audit_context; |
| struct backing_dev_info; |
| struct bio_list; |
| struct blk_plug; |
| struct bpf_local_storage; |
| struct bpf_run_ctx; |
| struct capture_control; |
| struct cfs_rq; |
| struct fs_struct; |
| struct futex_pi_state; |
| struct io_context; |
| struct io_uring_task; |
| struct mempolicy; |
| struct nameidata; |
| struct nsproxy; |
| struct perf_event_context; |
| struct pid_namespace; |
| struct pipe_inode_info; |
| struct rcu_node; |
| struct reclaim_state; |
| struct robust_list_head; |
| struct root_domain; |
| struct rq; |
| struct sched_attr; |
| struct sched_param; |
| struct seq_file; |
| struct sighand_struct; |
| struct signal_struct; |
| struct task_delay_info; |
| struct task_group; |
| |
| /* |
| * Task state bitmask. NOTE! These bits are also |
| * encoded in fs/proc/array.c: get_task_state(). |
| * |
| * We have two separate sets of flags: task->state |
| * is about runnability, while task->exit_state are |
| * about the task exiting. Confusing, but this way |
| * modifying one set can't modify the other one by |
| * mistake. |
| */ |
| |
| /* Used in tsk->state: */ |
| #define TASK_RUNNING 0x00000000 |
| #define TASK_INTERRUPTIBLE 0x00000001 |
| #define TASK_UNINTERRUPTIBLE 0x00000002 |
| #define __TASK_STOPPED 0x00000004 |
| #define __TASK_TRACED 0x00000008 |
| /* Used in tsk->exit_state: */ |
| #define EXIT_DEAD 0x00000010 |
| #define EXIT_ZOMBIE 0x00000020 |
| #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) |
| /* Used in tsk->state again: */ |
| #define TASK_PARKED 0x00000040 |
| #define TASK_DEAD 0x00000080 |
| #define TASK_WAKEKILL 0x00000100 |
| #define TASK_WAKING 0x00000200 |
| #define TASK_NOLOAD 0x00000400 |
| #define TASK_NEW 0x00000800 |
| #define TASK_RTLOCK_WAIT 0x00001000 |
| #define TASK_FREEZABLE 0x00002000 |
| #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP)) |
| #define TASK_FROZEN 0x00008000 |
| #define TASK_STATE_MAX 0x00010000 |
| |
| #define TASK_ANY (TASK_STATE_MAX-1) |
| |
| /* |
| * DO NOT ADD ANY NEW USERS ! |
| */ |
| #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE) |
| |
| /* Convenience macros for the sake of set_current_state: */ |
| #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) |
| #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) |
| #define TASK_TRACED __TASK_TRACED |
| |
| #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) |
| |
| /* Convenience macros for the sake of wake_up(): */ |
| #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) |
| |
| /* get_task_state(): */ |
| #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ |
| TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ |
| __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ |
| TASK_PARKED) |
| |
| #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) |
| |
| #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) |
| #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) |
| #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) |
| |
| /* |
| * Special states are those that do not use the normal wait-loop pattern. See |
| * the comment with set_special_state(). |
| */ |
| #define is_special_task_state(state) \ |
| ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| # define debug_normal_state_change(state_value) \ |
| do { \ |
| WARN_ON_ONCE(is_special_task_state(state_value)); \ |
| current->task_state_change = _THIS_IP_; \ |
| } while (0) |
| |
| # define debug_special_state_change(state_value) \ |
| do { \ |
| WARN_ON_ONCE(!is_special_task_state(state_value)); \ |
| current->task_state_change = _THIS_IP_; \ |
| } while (0) |
| |
| # define debug_rtlock_wait_set_state() \ |
| do { \ |
| current->saved_state_change = current->task_state_change;\ |
| current->task_state_change = _THIS_IP_; \ |
| } while (0) |
| |
| # define debug_rtlock_wait_restore_state() \ |
| do { \ |
| current->task_state_change = current->saved_state_change;\ |
| } while (0) |
| |
| #else |
| # define debug_normal_state_change(cond) do { } while (0) |
| # define debug_special_state_change(cond) do { } while (0) |
| # define debug_rtlock_wait_set_state() do { } while (0) |
| # define debug_rtlock_wait_restore_state() do { } while (0) |
| #endif |
| |
| /* |
| * set_current_state() includes a barrier so that the write of current->state |
| * is correctly serialised wrt the caller's subsequent test of whether to |
| * actually sleep: |
| * |
| * for (;;) { |
| * set_current_state(TASK_UNINTERRUPTIBLE); |
| * if (CONDITION) |
| * break; |
| * |
| * schedule(); |
| * } |
| * __set_current_state(TASK_RUNNING); |
| * |
| * If the caller does not need such serialisation (because, for instance, the |
| * CONDITION test and condition change and wakeup are under the same lock) then |
| * use __set_current_state(). |
| * |
| * The above is typically ordered against the wakeup, which does: |
| * |
| * CONDITION = 1; |
| * wake_up_state(p, TASK_UNINTERRUPTIBLE); |
| * |
| * where wake_up_state()/try_to_wake_up() executes a full memory barrier before |
| * accessing p->state. |
| * |
| * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, |
| * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a |
| * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). |
| * |
| * However, with slightly different timing the wakeup TASK_RUNNING store can |
| * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not |
| * a problem either because that will result in one extra go around the loop |
| * and our @cond test will save the day. |
| * |
| * Also see the comments of try_to_wake_up(). |
| */ |
| #define __set_current_state(state_value) \ |
| do { \ |
| debug_normal_state_change((state_value)); \ |
| WRITE_ONCE(current->__state, (state_value)); \ |
| } while (0) |
| |
| #define set_current_state(state_value) \ |
| do { \ |
| debug_normal_state_change((state_value)); \ |
| smp_store_mb(current->__state, (state_value)); \ |
| } while (0) |
| |
| /* |
| * set_special_state() should be used for those states when the blocking task |
| * can not use the regular condition based wait-loop. In that case we must |
| * serialize against wakeups such that any possible in-flight TASK_RUNNING |
| * stores will not collide with our state change. |
| */ |
| #define set_special_state(state_value) \ |
| do { \ |
| unsigned long flags; /* may shadow */ \ |
| \ |
| raw_spin_lock_irqsave(¤t->pi_lock, flags); \ |
| debug_special_state_change((state_value)); \ |
| WRITE_ONCE(current->__state, (state_value)); \ |
| raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ |
| } while (0) |
| |
| /* |
| * PREEMPT_RT specific variants for "sleeping" spin/rwlocks |
| * |
| * RT's spin/rwlock substitutions are state preserving. The state of the |
| * task when blocking on the lock is saved in task_struct::saved_state and |
| * restored after the lock has been acquired. These operations are |
| * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT |
| * lock related wakeups while the task is blocked on the lock are |
| * redirected to operate on task_struct::saved_state to ensure that these |
| * are not dropped. On restore task_struct::saved_state is set to |
| * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. |
| * |
| * The lock operation looks like this: |
| * |
| * current_save_and_set_rtlock_wait_state(); |
| * for (;;) { |
| * if (try_lock()) |
| * break; |
| * raw_spin_unlock_irq(&lock->wait_lock); |
| * schedule_rtlock(); |
| * raw_spin_lock_irq(&lock->wait_lock); |
| * set_current_state(TASK_RTLOCK_WAIT); |
| * } |
| * current_restore_rtlock_saved_state(); |
| */ |
| #define current_save_and_set_rtlock_wait_state() \ |
| do { \ |
| lockdep_assert_irqs_disabled(); \ |
| raw_spin_lock(¤t->pi_lock); \ |
| current->saved_state = current->__state; \ |
| debug_rtlock_wait_set_state(); \ |
| WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ |
| raw_spin_unlock(¤t->pi_lock); \ |
| } while (0); |
| |
| #define current_restore_rtlock_saved_state() \ |
| do { \ |
| lockdep_assert_irqs_disabled(); \ |
| raw_spin_lock(¤t->pi_lock); \ |
| debug_rtlock_wait_restore_state(); \ |
| WRITE_ONCE(current->__state, current->saved_state); \ |
| current->saved_state = TASK_RUNNING; \ |
| raw_spin_unlock(¤t->pi_lock); \ |
| } while (0); |
| |
| #define get_current_state() READ_ONCE(current->__state) |
| |
| /* |
| * Define the task command name length as enum, then it can be visible to |
| * BPF programs. |
| */ |
| enum { |
| TASK_COMM_LEN = 16, |
| }; |
| |
| extern void scheduler_tick(void); |
| |
| #define MAX_SCHEDULE_TIMEOUT LONG_MAX |
| |
| extern long schedule_timeout(long timeout); |
| extern long schedule_timeout_interruptible(long timeout); |
| extern long schedule_timeout_killable(long timeout); |
| extern long schedule_timeout_uninterruptible(long timeout); |
| extern long schedule_timeout_idle(long timeout); |
| asmlinkage void schedule(void); |
| extern void schedule_preempt_disabled(void); |
| asmlinkage void preempt_schedule_irq(void); |
| #ifdef CONFIG_PREEMPT_RT |
| extern void schedule_rtlock(void); |
| #endif |
| |
| extern int __must_check io_schedule_prepare(void); |
| extern void io_schedule_finish(int token); |
| extern long io_schedule_timeout(long timeout); |
| extern void io_schedule(void); |
| |
| /** |
| * struct prev_cputime - snapshot of system and user cputime |
| * @utime: time spent in user mode |
| * @stime: time spent in system mode |
| * @lock: protects the above two fields |
| * |
| * Stores previous user/system time values such that we can guarantee |
| * monotonicity. |
| */ |
| struct prev_cputime { |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| u64 utime; |
| u64 stime; |
| raw_spinlock_t lock; |
| #endif |
| }; |
| |
| enum vtime_state { |
| /* Task is sleeping or running in a CPU with VTIME inactive: */ |
| VTIME_INACTIVE = 0, |
| /* Task is idle */ |
| VTIME_IDLE, |
| /* Task runs in kernelspace in a CPU with VTIME active: */ |
| VTIME_SYS, |
| /* Task runs in userspace in a CPU with VTIME active: */ |
| VTIME_USER, |
| /* Task runs as guests in a CPU with VTIME active: */ |
| VTIME_GUEST, |
| }; |
| |
| struct vtime { |
| seqcount_t seqcount; |
| unsigned long long starttime; |
| enum vtime_state state; |
| unsigned int cpu; |
| u64 utime; |
| u64 stime; |
| u64 gtime; |
| }; |
| |
| /* |
| * Utilization clamp constraints. |
| * @UCLAMP_MIN: Minimum utilization |
| * @UCLAMP_MAX: Maximum utilization |
| * @UCLAMP_CNT: Utilization clamp constraints count |
| */ |
| enum uclamp_id { |
| UCLAMP_MIN = 0, |
| UCLAMP_MAX, |
| UCLAMP_CNT |
| }; |
| |
| #ifdef CONFIG_SMP |
| extern struct root_domain def_root_domain; |
| extern struct mutex sched_domains_mutex; |
| #endif |
| |
| struct sched_info { |
| #ifdef CONFIG_SCHED_INFO |
| /* Cumulative counters: */ |
| |
| /* # of times we have run on this CPU: */ |
| unsigned long pcount; |
| |
| /* Time spent waiting on a runqueue: */ |
| unsigned long long run_delay; |
| |
| /* Timestamps: */ |
| |
| /* When did we last run on a CPU? */ |
| unsigned long long last_arrival; |
| |
| /* When were we last queued to run? */ |
| unsigned long long last_queued; |
| |
| #endif /* CONFIG_SCHED_INFO */ |
| }; |
| |
| /* |
| * Integer metrics need fixed point arithmetic, e.g., sched/fair |
| * has a few: load, load_avg, util_avg, freq, and capacity. |
| * |
| * We define a basic fixed point arithmetic range, and then formalize |
| * all these metrics based on that basic range. |
| */ |
| # define SCHED_FIXEDPOINT_SHIFT 10 |
| # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) |
| |
| /* Increase resolution of cpu_capacity calculations */ |
| # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT |
| # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) |
| |
| struct load_weight { |
| unsigned long weight; |
| u32 inv_weight; |
| }; |
| |
| /** |
| * struct util_est - Estimation utilization of FAIR tasks |
| * @enqueued: instantaneous estimated utilization of a task/cpu |
| * @ewma: the Exponential Weighted Moving Average (EWMA) |
| * utilization of a task |
| * |
| * Support data structure to track an Exponential Weighted Moving Average |
| * (EWMA) of a FAIR task's utilization. New samples are added to the moving |
| * average each time a task completes an activation. Sample's weight is chosen |
| * so that the EWMA will be relatively insensitive to transient changes to the |
| * task's workload. |
| * |
| * The enqueued attribute has a slightly different meaning for tasks and cpus: |
| * - task: the task's util_avg at last task dequeue time |
| * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU |
| * Thus, the util_est.enqueued of a task represents the contribution on the |
| * estimated utilization of the CPU where that task is currently enqueued. |
| * |
| * Only for tasks we track a moving average of the past instantaneous |
| * estimated utilization. This allows to absorb sporadic drops in utilization |
| * of an otherwise almost periodic task. |
| * |
| * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg |
| * updates. When a task is dequeued, its util_est should not be updated if its |
| * util_avg has not been updated in the meantime. |
| * This information is mapped into the MSB bit of util_est.enqueued at dequeue |
| * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg |
| * for a task) it is safe to use MSB. |
| */ |
| struct util_est { |
| unsigned int enqueued; |
| unsigned int ewma; |
| #define UTIL_EST_WEIGHT_SHIFT 2 |
| #define UTIL_AVG_UNCHANGED 0x80000000 |
| } __attribute__((__aligned__(sizeof(u64)))); |
| |
| /* |
| * The load/runnable/util_avg accumulates an infinite geometric series |
| * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). |
| * |
| * [load_avg definition] |
| * |
| * load_avg = runnable% * scale_load_down(load) |
| * |
| * [runnable_avg definition] |
| * |
| * runnable_avg = runnable% * SCHED_CAPACITY_SCALE |
| * |
| * [util_avg definition] |
| * |
| * util_avg = running% * SCHED_CAPACITY_SCALE |
| * |
| * where runnable% is the time ratio that a sched_entity is runnable and |
| * running% the time ratio that a sched_entity is running. |
| * |
| * For cfs_rq, they are the aggregated values of all runnable and blocked |
| * sched_entities. |
| * |
| * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU |
| * capacity scaling. The scaling is done through the rq_clock_pelt that is used |
| * for computing those signals (see update_rq_clock_pelt()) |
| * |
| * N.B., the above ratios (runnable% and running%) themselves are in the |
| * range of [0, 1]. To do fixed point arithmetics, we therefore scale them |
| * to as large a range as necessary. This is for example reflected by |
| * util_avg's SCHED_CAPACITY_SCALE. |
| * |
| * [Overflow issue] |
| * |
| * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities |
| * with the highest load (=88761), always runnable on a single cfs_rq, |
| * and should not overflow as the number already hits PID_MAX_LIMIT. |
| * |
| * For all other cases (including 32-bit kernels), struct load_weight's |
| * weight will overflow first before we do, because: |
| * |
| * Max(load_avg) <= Max(load.weight) |
| * |
| * Then it is the load_weight's responsibility to consider overflow |
| * issues. |
| */ |
| struct sched_avg { |
| u64 last_update_time; |
| u64 load_sum; |
| u64 runnable_sum; |
| u32 util_sum; |
| u32 period_contrib; |
| unsigned long load_avg; |
| unsigned long runnable_avg; |
| unsigned long util_avg; |
| struct util_est util_est; |
| } ____cacheline_aligned; |
| |
| struct sched_statistics { |
| #ifdef CONFIG_SCHEDSTATS |
| u64 wait_start; |
| u64 wait_max; |
| u64 wait_count; |
| u64 wait_sum; |
| u64 iowait_count; |
| u64 iowait_sum; |
| |
| u64 sleep_start; |
| u64 sleep_max; |
| s64 sum_sleep_runtime; |
| |
| u64 block_start; |
| u64 block_max; |
| s64 sum_block_runtime; |
| |
| u64 exec_max; |
| u64 slice_max; |
| |
| u64 nr_migrations_cold; |
| u64 nr_failed_migrations_affine; |
| u64 nr_failed_migrations_running; |
| u64 nr_failed_migrations_hot; |
| u64 nr_forced_migrations; |
| |
| u64 nr_wakeups; |
| u64 nr_wakeups_sync; |
| u64 nr_wakeups_migrate; |
| u64 nr_wakeups_local; |
| u64 nr_wakeups_remote; |
| u64 nr_wakeups_affine; |
| u64 nr_wakeups_affine_attempts; |
| u64 nr_wakeups_passive; |
| u64 nr_wakeups_idle; |
| |
| #ifdef CONFIG_SCHED_CORE |
| u64 core_forceidle_sum; |
| #endif |
| #endif /* CONFIG_SCHEDSTATS */ |
| } ____cacheline_aligned; |
| |
| struct sched_entity { |
| /* For load-balancing: */ |
| struct load_weight load; |
| struct rb_node run_node; |
| struct list_head group_node; |
| unsigned int on_rq; |
| |
| u64 exec_start; |
| u64 sum_exec_runtime; |
| u64 vruntime; |
| u64 prev_sum_exec_runtime; |
| |
| u64 nr_migrations; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| int depth; |
| struct sched_entity *parent; |
| /* rq on which this entity is (to be) queued: */ |
| struct cfs_rq *cfs_rq; |
| /* rq "owned" by this entity/group: */ |
| struct cfs_rq *my_q; |
| /* cached value of my_q->h_nr_running */ |
| unsigned long runnable_weight; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Per entity load average tracking. |
| * |
| * Put into separate cache line so it does not |
| * collide with read-mostly values above. |
| */ |
| struct sched_avg avg; |
| #endif |
| }; |
| |
| struct sched_rt_entity { |
| struct list_head run_list; |
| unsigned long timeout; |
| unsigned long watchdog_stamp; |
| unsigned int time_slice; |
| unsigned short on_rq; |
| unsigned short on_list; |
| |
| struct sched_rt_entity *back; |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity *parent; |
| /* rq on which this entity is (to be) queued: */ |
| struct rt_rq *rt_rq; |
| /* rq "owned" by this entity/group: */ |
| struct rt_rq *my_q; |
| #endif |
| } __randomize_layout; |
| |
| struct sched_dl_entity { |
| struct rb_node rb_node; |
| |
| /* |
| * Original scheduling parameters. Copied here from sched_attr |
| * during sched_setattr(), they will remain the same until |
| * the next sched_setattr(). |
| */ |
| u64 dl_runtime; /* Maximum runtime for each instance */ |
| u64 dl_deadline; /* Relative deadline of each instance */ |
| u64 dl_period; /* Separation of two instances (period) */ |
| u64 dl_bw; /* dl_runtime / dl_period */ |
| u64 dl_density; /* dl_runtime / dl_deadline */ |
| |
| /* |
| * Actual scheduling parameters. Initialized with the values above, |
| * they are continuously updated during task execution. Note that |
| * the remaining runtime could be < 0 in case we are in overrun. |
| */ |
| s64 runtime; /* Remaining runtime for this instance */ |
| u64 deadline; /* Absolute deadline for this instance */ |
| unsigned int flags; /* Specifying the scheduler behaviour */ |
| |
| /* |
| * Some bool flags: |
| * |
| * @dl_throttled tells if we exhausted the runtime. If so, the |
| * task has to wait for a replenishment to be performed at the |
| * next firing of dl_timer. |
| * |
| * @dl_yielded tells if task gave up the CPU before consuming |
| * all its available runtime during the last job. |
| * |
| * @dl_non_contending tells if the task is inactive while still |
| * contributing to the active utilization. In other words, it |
| * indicates if the inactive timer has been armed and its handler |
| * has not been executed yet. This flag is useful to avoid race |
| * conditions between the inactive timer handler and the wakeup |
| * code. |
| * |
| * @dl_overrun tells if the task asked to be informed about runtime |
| * overruns. |
| */ |
| unsigned int dl_throttled : 1; |
| unsigned int dl_yielded : 1; |
| unsigned int dl_non_contending : 1; |
| unsigned int dl_overrun : 1; |
| |
| /* |
| * Bandwidth enforcement timer. Each -deadline task has its |
| * own bandwidth to be enforced, thus we need one timer per task. |
| */ |
| struct hrtimer dl_timer; |
| |
| /* |
| * Inactive timer, responsible for decreasing the active utilization |
| * at the "0-lag time". When a -deadline task blocks, it contributes |
| * to GRUB's active utilization until the "0-lag time", hence a |
| * timer is needed to decrease the active utilization at the correct |
| * time. |
| */ |
| struct hrtimer inactive_timer; |
| |
| #ifdef CONFIG_RT_MUTEXES |
| /* |
| * Priority Inheritance. When a DEADLINE scheduling entity is boosted |
| * pi_se points to the donor, otherwise points to the dl_se it belongs |
| * to (the original one/itself). |
| */ |
| struct sched_dl_entity *pi_se; |
| #endif |
| }; |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| /* Number of utilization clamp buckets (shorter alias) */ |
| #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT |
| |
| /* |
| * Utilization clamp for a scheduling entity |
| * @value: clamp value "assigned" to a se |
| * @bucket_id: bucket index corresponding to the "assigned" value |
| * @active: the se is currently refcounted in a rq's bucket |
| * @user_defined: the requested clamp value comes from user-space |
| * |
| * The bucket_id is the index of the clamp bucket matching the clamp value |
| * which is pre-computed and stored to avoid expensive integer divisions from |
| * the fast path. |
| * |
| * The active bit is set whenever a task has got an "effective" value assigned, |
| * which can be different from the clamp value "requested" from user-space. |
| * This allows to know a task is refcounted in the rq's bucket corresponding |
| * to the "effective" bucket_id. |
| * |
| * The user_defined bit is set whenever a task has got a task-specific clamp |
| * value requested from userspace, i.e. the system defaults apply to this task |
| * just as a restriction. This allows to relax default clamps when a less |
| * restrictive task-specific value has been requested, thus allowing to |
| * implement a "nice" semantic. For example, a task running with a 20% |
| * default boost can still drop its own boosting to 0%. |
| */ |
| struct uclamp_se { |
| unsigned int value : bits_per(SCHED_CAPACITY_SCALE); |
| unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); |
| unsigned int active : 1; |
| unsigned int user_defined : 1; |
| }; |
| #endif /* CONFIG_UCLAMP_TASK */ |
| |
| union rcu_special { |
| struct { |
| u8 blocked; |
| u8 need_qs; |
| u8 exp_hint; /* Hint for performance. */ |
| u8 need_mb; /* Readers need smp_mb(). */ |
| } b; /* Bits. */ |
| u32 s; /* Set of bits. */ |
| }; |
| |
| enum perf_event_task_context { |
| perf_invalid_context = -1, |
| perf_hw_context = 0, |
| perf_sw_context, |
| perf_nr_task_contexts, |
| }; |
| |
| struct wake_q_node { |
| struct wake_q_node *next; |
| }; |
| |
| struct kmap_ctrl { |
| #ifdef CONFIG_KMAP_LOCAL |
| int idx; |
| pte_t pteval[KM_MAX_IDX]; |
| #endif |
| }; |
| |
| struct task_struct { |
| #ifdef CONFIG_THREAD_INFO_IN_TASK |
| /* |
| * For reasons of header soup (see current_thread_info()), this |
| * must be the first element of task_struct. |
| */ |
| struct thread_info thread_info; |
| #endif |
| unsigned int __state; |
| |
| #ifdef CONFIG_PREEMPT_RT |
| /* saved state for "spinlock sleepers" */ |
| unsigned int saved_state; |
| #endif |
| |
| /* |
| * This begins the randomizable portion of task_struct. Only |
| * scheduling-critical items should be added above here. |
| */ |
| randomized_struct_fields_start |
| |
| void *stack; |
| refcount_t usage; |
| /* Per task flags (PF_*), defined further below: */ |
| unsigned int flags; |
| unsigned int ptrace; |
| |
| #ifdef CONFIG_SMP |
| int on_cpu; |
| struct __call_single_node wake_entry; |
| unsigned int wakee_flips; |
| unsigned long wakee_flip_decay_ts; |
| struct task_struct *last_wakee; |
| |
| /* |
| * recent_used_cpu is initially set as the last CPU used by a task |
| * that wakes affine another task. Waker/wakee relationships can |
| * push tasks around a CPU where each wakeup moves to the next one. |
| * Tracking a recently used CPU allows a quick search for a recently |
| * used CPU that may be idle. |
| */ |
| int recent_used_cpu; |
| int wake_cpu; |
| #endif |
| int on_rq; |
| |
| int prio; |
| int static_prio; |
| int normal_prio; |
| unsigned int rt_priority; |
| |
| struct sched_entity se; |
| struct sched_rt_entity rt; |
| struct sched_dl_entity dl; |
| const struct sched_class *sched_class; |
| |
| #ifdef CONFIG_SCHED_CORE |
| struct rb_node core_node; |
| unsigned long core_cookie; |
| unsigned int core_occupation; |
| #endif |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| struct task_group *sched_task_group; |
| #endif |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| /* |
| * Clamp values requested for a scheduling entity. |
| * Must be updated with task_rq_lock() held. |
| */ |
| struct uclamp_se uclamp_req[UCLAMP_CNT]; |
| /* |
| * Effective clamp values used for a scheduling entity. |
| * Must be updated with task_rq_lock() held. |
| */ |
| struct uclamp_se uclamp[UCLAMP_CNT]; |
| #endif |
| |
| struct sched_statistics stats; |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| /* List of struct preempt_notifier: */ |
| struct hlist_head preempt_notifiers; |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_IO_TRACE |
| unsigned int btrace_seq; |
| #endif |
| |
| unsigned int policy; |
| int nr_cpus_allowed; |
| const cpumask_t *cpus_ptr; |
| cpumask_t *user_cpus_ptr; |
| cpumask_t cpus_mask; |
| void *migration_pending; |
| #ifdef CONFIG_SMP |
| unsigned short migration_disabled; |
| #endif |
| unsigned short migration_flags; |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| int rcu_read_lock_nesting; |
| union rcu_special rcu_read_unlock_special; |
| struct list_head rcu_node_entry; |
| struct rcu_node *rcu_blocked_node; |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| #ifdef CONFIG_TASKS_RCU |
| unsigned long rcu_tasks_nvcsw; |
| u8 rcu_tasks_holdout; |
| u8 rcu_tasks_idx; |
| int rcu_tasks_idle_cpu; |
| struct list_head rcu_tasks_holdout_list; |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| int trc_reader_nesting; |
| int trc_ipi_to_cpu; |
| union rcu_special trc_reader_special; |
| struct list_head trc_holdout_list; |
| struct list_head trc_blkd_node; |
| int trc_blkd_cpu; |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| |
| struct sched_info sched_info; |
| |
| struct list_head tasks; |
| #ifdef CONFIG_SMP |
| struct plist_node pushable_tasks; |
| struct rb_node pushable_dl_tasks; |
| #endif |
| |
| struct mm_struct *mm; |
| struct mm_struct *active_mm; |
| |
| #ifdef SPLIT_RSS_COUNTING |
| struct task_rss_stat rss_stat; |
| #endif |
| int exit_state; |
| int exit_code; |
| int exit_signal; |
| /* The signal sent when the parent dies: */ |
| int pdeath_signal; |
| /* JOBCTL_*, siglock protected: */ |
| unsigned long jobctl; |
| |
| /* Used for emulating ABI behavior of previous Linux versions: */ |
| unsigned int personality; |
| |
| /* Scheduler bits, serialized by scheduler locks: */ |
| unsigned sched_reset_on_fork:1; |
| unsigned sched_contributes_to_load:1; |
| unsigned sched_migrated:1; |
| #ifdef CONFIG_PSI |
| unsigned sched_psi_wake_requeue:1; |
| #endif |
| |
| /* Force alignment to the next boundary: */ |
| unsigned :0; |
| |
| /* Unserialized, strictly 'current' */ |
| |
| /* |
| * This field must not be in the scheduler word above due to wakelist |
| * queueing no longer being serialized by p->on_cpu. However: |
| * |
| * p->XXX = X; ttwu() |
| * schedule() if (p->on_rq && ..) // false |
| * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true |
| * deactivate_task() ttwu_queue_wakelist()) |
| * p->on_rq = 0; p->sched_remote_wakeup = Y; |
| * |
| * guarantees all stores of 'current' are visible before |
| * ->sched_remote_wakeup gets used, so it can be in this word. |
| */ |
| unsigned sched_remote_wakeup:1; |
| |
| /* Bit to tell LSMs we're in execve(): */ |
| unsigned in_execve:1; |
| unsigned in_iowait:1; |
| #ifndef TIF_RESTORE_SIGMASK |
| unsigned restore_sigmask:1; |
| #endif |
| #ifdef CONFIG_MEMCG |
| unsigned in_user_fault:1; |
| #endif |
| #ifdef CONFIG_LRU_GEN |
| /* whether the LRU algorithm may apply to this access */ |
| unsigned in_lru_fault:1; |
| #endif |
| #ifdef CONFIG_COMPAT_BRK |
| unsigned brk_randomized:1; |
| #endif |
| #ifdef CONFIG_CGROUPS |
| /* disallow userland-initiated cgroup migration */ |
| unsigned no_cgroup_migration:1; |
| /* task is frozen/stopped (used by the cgroup freezer) */ |
| unsigned frozen:1; |
| #endif |
| #ifdef CONFIG_BLK_CGROUP |
| unsigned use_memdelay:1; |
| #endif |
| #ifdef CONFIG_PSI |
| /* Stalled due to lack of memory */ |
| unsigned in_memstall:1; |
| #endif |
| #ifdef CONFIG_PAGE_OWNER |
| /* Used by page_owner=on to detect recursion in page tracking. */ |
| unsigned in_page_owner:1; |
| #endif |
| #ifdef CONFIG_EVENTFD |
| /* Recursion prevention for eventfd_signal() */ |
| unsigned in_eventfd:1; |
| #endif |
| #ifdef CONFIG_IOMMU_SVA |
| unsigned pasid_activated:1; |
| #endif |
| #ifdef CONFIG_CPU_SUP_INTEL |
| unsigned reported_split_lock:1; |
| #endif |
| #ifdef CONFIG_TASK_DELAY_ACCT |
| /* delay due to memory thrashing */ |
| unsigned in_thrashing:1; |
| #endif |
| |
| unsigned long atomic_flags; /* Flags requiring atomic access. */ |
| |
| struct restart_block restart_block; |
| |
| pid_t pid; |
| pid_t tgid; |
| |
| #ifdef CONFIG_STACKPROTECTOR |
| /* Canary value for the -fstack-protector GCC feature: */ |
| unsigned long stack_canary; |
| #endif |
| /* |
| * Pointers to the (original) parent process, youngest child, younger sibling, |
| * older sibling, respectively. (p->father can be replaced with |
| * p->real_parent->pid) |
| */ |
| |
| /* Real parent process: */ |
| struct task_struct __rcu *real_parent; |
| |
| /* Recipient of SIGCHLD, wait4() reports: */ |
| struct task_struct __rcu *parent; |
| |
| /* |
| * Children/sibling form the list of natural children: |
| */ |
| struct list_head children; |
| struct list_head sibling; |
| struct task_struct *group_leader; |
| |
| /* |
| * 'ptraced' is the list of tasks this task is using ptrace() on. |
| * |
| * This includes both natural children and PTRACE_ATTACH targets. |
| * 'ptrace_entry' is this task's link on the p->parent->ptraced list. |
| */ |
| struct list_head ptraced; |
| struct list_head ptrace_entry; |
| |
| /* PID/PID hash table linkage. */ |
| struct pid *thread_pid; |
| struct hlist_node pid_links[PIDTYPE_MAX]; |
| struct list_head thread_group; |
| struct list_head thread_node; |
| |
| struct completion *vfork_done; |
| |
| /* CLONE_CHILD_SETTID: */ |
| int __user *set_child_tid; |
| |
| /* CLONE_CHILD_CLEARTID: */ |
| int __user *clear_child_tid; |
| |
| /* PF_KTHREAD | PF_IO_WORKER */ |
| void *worker_private; |
| |
| u64 utime; |
| u64 stime; |
| #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME |
| u64 utimescaled; |
| u64 stimescaled; |
| #endif |
| u64 gtime; |
| struct prev_cputime prev_cputime; |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| struct vtime vtime; |
| #endif |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| atomic_t tick_dep_mask; |
| #endif |
| /* Context switch counts: */ |
| unsigned long nvcsw; |
| unsigned long nivcsw; |
| |
| /* Monotonic time in nsecs: */ |
| u64 start_time; |
| |
| /* Boot based time in nsecs: */ |
| u64 start_boottime; |
| |
| /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ |
| unsigned long min_flt; |
| unsigned long maj_flt; |
| |
| /* Empty if CONFIG_POSIX_CPUTIMERS=n */ |
| struct posix_cputimers posix_cputimers; |
| |
| #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK |
| struct posix_cputimers_work posix_cputimers_work; |
| #endif |
| |
| /* Process credentials: */ |
| |
| /* Tracer's credentials at attach: */ |
| const struct cred __rcu *ptracer_cred; |
| |
| /* Objective and real subjective task credentials (COW): */ |
| const struct cred __rcu *real_cred; |
| |
| /* Effective (overridable) subjective task credentials (COW): */ |
| const struct cred __rcu *cred; |
| |
| #ifdef CONFIG_KEYS |
| /* Cached requested key. */ |
| struct key *cached_requested_key; |
| #endif |
| |
| /* |
| * executable name, excluding path. |
| * |
| * - normally initialized setup_new_exec() |
| * - access it with [gs]et_task_comm() |
| * - lock it with task_lock() |
| */ |
| char comm[TASK_COMM_LEN]; |
| |
| struct nameidata *nameidata; |
| |
| #ifdef CONFIG_SYSVIPC |
| struct sysv_sem sysvsem; |
| struct sysv_shm sysvshm; |
| #endif |
| #ifdef CONFIG_DETECT_HUNG_TASK |
| unsigned long last_switch_count; |
| unsigned long last_switch_time; |
| #endif |
| /* Filesystem information: */ |
| struct fs_struct *fs; |
| |
| /* Open file information: */ |
| struct files_struct *files; |
| |
| #ifdef CONFIG_IO_URING |
| struct io_uring_task *io_uring; |
| #endif |
| |
| /* Namespaces: */ |
| struct nsproxy *nsproxy; |
| |
| /* Signal handlers: */ |
| struct signal_struct *signal; |
| struct sighand_struct __rcu *sighand; |
| sigset_t blocked; |
| sigset_t real_blocked; |
| /* Restored if set_restore_sigmask() was used: */ |
| sigset_t saved_sigmask; |
| struct sigpending pending; |
| unsigned long sas_ss_sp; |
| size_t sas_ss_size; |
| unsigned int sas_ss_flags; |
| |
| struct callback_head *task_works; |
| |
| #ifdef CONFIG_AUDIT |
| #ifdef CONFIG_AUDITSYSCALL |
| struct audit_context *audit_context; |
| #endif |
| kuid_t loginuid; |
| unsigned int sessionid; |
| #endif |
| struct seccomp seccomp; |
| struct syscall_user_dispatch syscall_dispatch; |
| |
| /* Thread group tracking: */ |
| u64 parent_exec_id; |
| u64 self_exec_id; |
| |
| /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ |
| spinlock_t alloc_lock; |
| |
| /* Protection of the PI data structures: */ |
| raw_spinlock_t pi_lock; |
| |
| struct wake_q_node wake_q; |
| |
| #ifdef CONFIG_RT_MUTEXES |
| /* PI waiters blocked on a rt_mutex held by this task: */ |
| struct rb_root_cached pi_waiters; |
| /* Updated under owner's pi_lock and rq lock */ |
| struct task_struct *pi_top_task; |
| /* Deadlock detection and priority inheritance handling: */ |
| struct rt_mutex_waiter *pi_blocked_on; |
| #endif |
| |
| #ifdef CONFIG_DEBUG_MUTEXES |
| /* Mutex deadlock detection: */ |
| struct mutex_waiter *blocked_on; |
| #endif |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| int non_block_count; |
| #endif |
| |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| struct irqtrace_events irqtrace; |
| unsigned int hardirq_threaded; |
| u64 hardirq_chain_key; |
| int softirqs_enabled; |
| int softirq_context; |
| int irq_config; |
| #endif |
| #ifdef CONFIG_PREEMPT_RT |
| int softirq_disable_cnt; |
| #endif |
| |
| #ifdef CONFIG_LOCKDEP |
| # define MAX_LOCK_DEPTH 48UL |
| u64 curr_chain_key; |
| int lockdep_depth; |
| unsigned int lockdep_recursion; |
| struct held_lock held_locks[MAX_LOCK_DEPTH]; |
| #endif |
| |
| #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) |
| unsigned int in_ubsan; |
| #endif |
| |
| /* Journalling filesystem info: */ |
| void *journal_info; |
| |
| /* Stacked block device info: */ |
| struct bio_list *bio_list; |
| |
| /* Stack plugging: */ |
| struct blk_plug *plug; |
| |
| /* VM state: */ |
| struct reclaim_state *reclaim_state; |
| |
| struct backing_dev_info *backing_dev_info; |
| |
| struct io_context *io_context; |
| |
| #ifdef CONFIG_COMPACTION |
| struct capture_control *capture_control; |
| #endif |
| /* Ptrace state: */ |
| unsigned long ptrace_message; |
| kernel_siginfo_t *last_siginfo; |
| |
| struct task_io_accounting ioac; |
| #ifdef CONFIG_PSI |
| /* Pressure stall state */ |
| unsigned int psi_flags; |
| #endif |
| #ifdef CONFIG_TASK_XACCT |
| /* Accumulated RSS usage: */ |
| u64 acct_rss_mem1; |
| /* Accumulated virtual memory usage: */ |
| u64 acct_vm_mem1; |
| /* stime + utime since last update: */ |
| u64 acct_timexpd; |
| #endif |
| #ifdef CONFIG_CPUSETS |
| /* Protected by ->alloc_lock: */ |
| nodemask_t mems_allowed; |
| /* Sequence number to catch updates: */ |
| seqcount_spinlock_t mems_allowed_seq; |
| int cpuset_mem_spread_rotor; |
| int cpuset_slab_spread_rotor; |
| #endif |
| #ifdef CONFIG_CGROUPS |
| /* Control Group info protected by css_set_lock: */ |
| struct css_set __rcu *cgroups; |
| /* cg_list protected by css_set_lock and tsk->alloc_lock: */ |
| struct list_head cg_list; |
| #endif |
| #ifdef CONFIG_X86_CPU_RESCTRL |
| u32 closid; |
| u32 rmid; |
| #endif |
| #ifdef CONFIG_FUTEX |
| struct robust_list_head __user *robust_list; |
| #ifdef CONFIG_COMPAT |
| struct compat_robust_list_head __user *compat_robust_list; |
| #endif |
| struct list_head pi_state_list; |
| struct futex_pi_state *pi_state_cache; |
| struct mutex futex_exit_mutex; |
| unsigned int futex_state; |
| #endif |
| #ifdef CONFIG_PERF_EVENTS |
| struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; |
| struct mutex perf_event_mutex; |
| struct list_head perf_event_list; |
| #endif |
| #ifdef CONFIG_DEBUG_PREEMPT |
| unsigned long preempt_disable_ip; |
| #endif |
| #ifdef CONFIG_NUMA |
| /* Protected by alloc_lock: */ |
| struct mempolicy *mempolicy; |
| short il_prev; |
| short pref_node_fork; |
| #endif |
| #ifdef CONFIG_NUMA_BALANCING |
| int numa_scan_seq; |
| unsigned int numa_scan_period; |
| unsigned int numa_scan_period_max; |
| int numa_preferred_nid; |
| unsigned long numa_migrate_retry; |
| /* Migration stamp: */ |
| u64 node_stamp; |
| u64 last_task_numa_placement; |
| u64 last_sum_exec_runtime; |
| struct callback_head numa_work; |
| |
| /* |
| * This pointer is only modified for current in syscall and |
| * pagefault context (and for tasks being destroyed), so it can be read |
| * from any of the following contexts: |
| * - RCU read-side critical section |
| * - current->numa_group from everywhere |
| * - task's runqueue locked, task not running |
| */ |
| struct numa_group __rcu *numa_group; |
| |
| /* |
| * numa_faults is an array split into four regions: |
| * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer |
| * in this precise order. |
| * |
| * faults_memory: Exponential decaying average of faults on a per-node |
| * basis. Scheduling placement decisions are made based on these |
| * counts. The values remain static for the duration of a PTE scan. |
| * faults_cpu: Track the nodes the process was running on when a NUMA |
| * hinting fault was incurred. |
| * faults_memory_buffer and faults_cpu_buffer: Record faults per node |
| * during the current scan window. When the scan completes, the counts |
| * in faults_memory and faults_cpu decay and these values are copied. |
| */ |
| unsigned long *numa_faults; |
| unsigned long total_numa_faults; |
| |
| /* |
| * numa_faults_locality tracks if faults recorded during the last |
| * scan window were remote/local or failed to migrate. The task scan |
| * period is adapted based on the locality of the faults with different |
| * weights depending on whether they were shared or private faults |
| */ |
| unsigned long numa_faults_locality[3]; |
| |
| unsigned long numa_pages_migrated; |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_RSEQ |
| struct rseq __user *rseq; |
| u32 rseq_sig; |
| /* |
| * RmW on rseq_event_mask must be performed atomically |
| * with respect to preemption. |
| */ |
| unsigned long rseq_event_mask; |
| #endif |
| |
| struct tlbflush_unmap_batch tlb_ubc; |
| |
| union { |
| refcount_t rcu_users; |
| struct rcu_head rcu; |
| }; |
| |
| /* Cache last used pipe for splice(): */ |
| struct pipe_inode_info *splice_pipe; |
| |
| struct page_frag task_frag; |
| |
| #ifdef CONFIG_TASK_DELAY_ACCT |
| struct task_delay_info *delays; |
| #endif |
| |
| #ifdef CONFIG_FAULT_INJECTION |
| int make_it_fail; |
| unsigned int fail_nth; |
| #endif |
| /* |
| * When (nr_dirtied >= nr_dirtied_pause), it's time to call |
| * balance_dirty_pages() for a dirty throttling pause: |
| */ |
| int nr_dirtied; |
| int nr_dirtied_pause; |
| /* Start of a write-and-pause period: */ |
| unsigned long dirty_paused_when; |
| |
| #ifdef CONFIG_LATENCYTOP |
| int latency_record_count; |
| struct latency_record latency_record[LT_SAVECOUNT]; |
| #endif |
| /* |
| * Time slack values; these are used to round up poll() and |
| * select() etc timeout values. These are in nanoseconds. |
| */ |
| u64 timer_slack_ns; |
| u64 default_timer_slack_ns; |
| |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| unsigned int kasan_depth; |
| #endif |
| |
| #ifdef CONFIG_KCSAN |
| struct kcsan_ctx kcsan_ctx; |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| struct irqtrace_events kcsan_save_irqtrace; |
| #endif |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| int kcsan_stack_depth; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_KMSAN |
| struct kmsan_ctx kmsan_ctx; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_KUNIT) |
| struct kunit *kunit_test; |
| #endif |
| |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| /* Index of current stored address in ret_stack: */ |
| int curr_ret_stack; |
| int curr_ret_depth; |
| |
| /* Stack of return addresses for return function tracing: */ |
| struct ftrace_ret_stack *ret_stack; |
| |
| /* Timestamp for last schedule: */ |
| unsigned long long ftrace_timestamp; |
| |
| /* |
| * Number of functions that haven't been traced |
| * because of depth overrun: |
| */ |
| atomic_t trace_overrun; |
| |
| /* Pause tracing: */ |
| atomic_t tracing_graph_pause; |
| #endif |
| |
| #ifdef CONFIG_TRACING |
| /* Bitmask and counter of trace recursion: */ |
| unsigned long trace_recursion; |
| #endif /* CONFIG_TRACING */ |
| |
| #ifdef CONFIG_KCOV |
| /* See kernel/kcov.c for more details. */ |
| |
| /* Coverage collection mode enabled for this task (0 if disabled): */ |
| unsigned int kcov_mode; |
| |
| /* Size of the kcov_area: */ |
| unsigned int kcov_size; |
| |
| /* Buffer for coverage collection: */ |
| void *kcov_area; |
| |
| /* KCOV descriptor wired with this task or NULL: */ |
| struct kcov *kcov; |
| |
| /* KCOV common handle for remote coverage collection: */ |
| u64 kcov_handle; |
| |
| /* KCOV sequence number: */ |
| int kcov_sequence; |
| |
| /* Collect coverage from softirq context: */ |
| unsigned int kcov_softirq; |
| #endif |
| |
| #ifdef CONFIG_MEMCG |
| struct mem_cgroup *memcg_in_oom; |
| gfp_t memcg_oom_gfp_mask; |
| int memcg_oom_order; |
| |
| /* Number of pages to reclaim on returning to userland: */ |
| unsigned int memcg_nr_pages_over_high; |
| |
| /* Used by memcontrol for targeted memcg charge: */ |
| struct mem_cgroup *active_memcg; |
| #endif |
| |
| #ifdef CONFIG_BLK_CGROUP |
| struct request_queue *throttle_queue; |
| #endif |
| |
| #ifdef CONFIG_UPROBES |
| struct uprobe_task *utask; |
| #endif |
| #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) |
| unsigned int sequential_io; |
| unsigned int sequential_io_avg; |
| #endif |
| struct kmap_ctrl kmap_ctrl; |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| unsigned long task_state_change; |
| # ifdef CONFIG_PREEMPT_RT |
| unsigned long saved_state_change; |
| # endif |
| #endif |
| int pagefault_disabled; |
| #ifdef CONFIG_MMU |
| struct task_struct *oom_reaper_list; |
| struct timer_list oom_reaper_timer; |
| #endif |
| #ifdef CONFIG_VMAP_STACK |
| struct vm_struct *stack_vm_area; |
| #endif |
| #ifdef CONFIG_THREAD_INFO_IN_TASK |
| /* A live task holds one reference: */ |
| refcount_t stack_refcount; |
| #endif |
| #ifdef CONFIG_LIVEPATCH |
| int patch_state; |
| #endif |
| #ifdef CONFIG_SECURITY |
| /* Used by LSM modules for access restriction: */ |
| void *security; |
| #endif |
| #ifdef CONFIG_BPF_SYSCALL |
| /* Used by BPF task local storage */ |
| struct bpf_local_storage __rcu *bpf_storage; |
| /* Used for BPF run context */ |
| struct bpf_run_ctx *bpf_ctx; |
| #endif |
| |
| #ifdef CONFIG_GCC_PLUGIN_STACKLEAK |
| unsigned long lowest_stack; |
| unsigned long prev_lowest_stack; |
| #endif |
| |
| #ifdef CONFIG_X86_MCE |
| void __user *mce_vaddr; |
| __u64 mce_kflags; |
| u64 mce_addr; |
| __u64 mce_ripv : 1, |
| mce_whole_page : 1, |
| __mce_reserved : 62; |
| struct callback_head mce_kill_me; |
| int mce_count; |
| #endif |
| |
| #ifdef CONFIG_KRETPROBES |
| struct llist_head kretprobe_instances; |
| #endif |
| #ifdef CONFIG_RETHOOK |
| struct llist_head rethooks; |
| #endif |
| |
| #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH |
| /* |
| * If L1D flush is supported on mm context switch |
| * then we use this callback head to queue kill work |
| * to kill tasks that are not running on SMT disabled |
| * cores |
| */ |
| struct callback_head l1d_flush_kill; |
| #endif |
| |
| #ifdef CONFIG_RV |
| /* |
| * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS. |
| * If we find justification for more monitors, we can think |
| * about adding more or developing a dynamic method. So far, |
| * none of these are justified. |
| */ |
| union rv_task_monitor rv[RV_PER_TASK_MONITORS]; |
| #endif |
| |
| /* |
| * New fields for task_struct should be added above here, so that |
| * they are included in the randomized portion of task_struct. |
| */ |
| randomized_struct_fields_end |
| |
| /* CPU-specific state of this task: */ |
| struct thread_struct thread; |
| |
| /* |
| * WARNING: on x86, 'thread_struct' contains a variable-sized |
| * structure. It *MUST* be at the end of 'task_struct'. |
| * |
| * Do not put anything below here! |
| */ |
| }; |
| |
| static inline struct pid *task_pid(struct task_struct *task) |
| { |
| return task->thread_pid; |
| } |
| |
| /* |
| * the helpers to get the task's different pids as they are seen |
| * from various namespaces |
| * |
| * task_xid_nr() : global id, i.e. the id seen from the init namespace; |
| * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
| * current. |
| * task_xid_nr_ns() : id seen from the ns specified; |
| * |
| * see also pid_nr() etc in include/linux/pid.h |
| */ |
| pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); |
| |
| static inline pid_t task_pid_nr(struct task_struct *tsk) |
| { |
| return tsk->pid; |
| } |
| |
| static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); |
| } |
| |
| static inline pid_t task_pid_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); |
| } |
| |
| |
| static inline pid_t task_tgid_nr(struct task_struct *tsk) |
| { |
| return tsk->tgid; |
| } |
| |
| /** |
| * pid_alive - check that a task structure is not stale |
| * @p: Task structure to be checked. |
| * |
| * Test if a process is not yet dead (at most zombie state) |
| * If pid_alive fails, then pointers within the task structure |
| * can be stale and must not be dereferenced. |
| * |
| * Return: 1 if the process is alive. 0 otherwise. |
| */ |
| static inline int pid_alive(const struct task_struct *p) |
| { |
| return p->thread_pid != NULL; |
| } |
| |
| static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); |
| } |
| |
| static inline pid_t task_pgrp_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); |
| } |
| |
| |
| static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); |
| } |
| |
| static inline pid_t task_session_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); |
| } |
| |
| static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); |
| } |
| |
| static inline pid_t task_tgid_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); |
| } |
| |
| static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| pid_t pid = 0; |
| |
| rcu_read_lock(); |
| if (pid_alive(tsk)) |
| pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); |
| rcu_read_unlock(); |
| |
| return pid; |
| } |
| |
| static inline pid_t task_ppid_nr(const struct task_struct *tsk) |
| { |
| return task_ppid_nr_ns(tsk, &init_pid_ns); |
| } |
| |
| /* Obsolete, do not use: */ |
| static inline pid_t task_pgrp_nr(struct task_struct *tsk) |
| { |
| return task_pgrp_nr_ns(tsk, &init_pid_ns); |
| } |
| |
| #define TASK_REPORT_IDLE (TASK_REPORT + 1) |
| #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) |
| |
| static inline unsigned int __task_state_index(unsigned int tsk_state, |
| unsigned int tsk_exit_state) |
| { |
| unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; |
| |
| BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); |
| |
| if (tsk_state == TASK_IDLE) |
| state = TASK_REPORT_IDLE; |
| |
| /* |
| * We're lying here, but rather than expose a completely new task state |
| * to userspace, we can make this appear as if the task has gone through |
| * a regular rt_mutex_lock() call. |
| */ |
| if (tsk_state == TASK_RTLOCK_WAIT) |
| state = TASK_UNINTERRUPTIBLE; |
| |
| return fls(state); |
| } |
| |
| static inline unsigned int task_state_index(struct task_struct *tsk) |
| { |
| return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); |
| } |
| |
| static inline char task_index_to_char(unsigned int state) |
| { |
| static const char state_char[] = "RSDTtXZPI"; |
| |
| BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); |
| |
| return state_char[state]; |
| } |
| |
| static inline char task_state_to_char(struct task_struct *tsk) |
| { |
| return task_index_to_char(task_state_index(tsk)); |
| } |
| |
| /** |
| * is_global_init - check if a task structure is init. Since init |
| * is free to have sub-threads we need to check tgid. |
| * @tsk: Task structure to be checked. |
| * |
| * Check if a task structure is the first user space task the kernel created. |
| * |
| * Return: 1 if the task structure is init. 0 otherwise. |
| */ |
| static inline int is_global_init(struct task_struct *tsk) |
| { |
| return task_tgid_nr(tsk) == 1; |
| } |
| |
| extern struct pid *cad_pid; |
| |
| /* |
| * Per process flags |
| */ |
| #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ |
| #define PF_IDLE 0x00000002 /* I am an IDLE thread */ |
| #define PF_EXITING 0x00000004 /* Getting shut down */ |
| #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ |
| #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ |
| #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ |
| #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ |
| #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ |
| #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ |
| #define PF_DUMPCORE 0x00000200 /* Dumped core */ |
| #define PF_SIGNALED 0x00000400 /* Killed by a signal */ |
| #define PF_MEMALLOC 0x00000800 /* Allocating memory */ |
| #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ |
| #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ |
| #define PF__HOLE__00004000 0x00004000 |
| #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ |
| #define PF__HOLE__00010000 0x00010000 |
| #define PF_KSWAPD 0x00020000 /* I am kswapd */ |
| #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ |
| #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ |
| #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, |
| * I am cleaning dirty pages from some other bdi. */ |
| #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ |
| #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ |
| #define PF__HOLE__00800000 0x00800000 |
| #define PF__HOLE__01000000 0x01000000 |
| #define PF__HOLE__02000000 0x02000000 |
| #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ |
| #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ |
| #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ |
| #define PF__HOLE__20000000 0x20000000 |
| #define PF__HOLE__40000000 0x40000000 |
| #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ |
| |
| /* |
| * Only the _current_ task can read/write to tsk->flags, but other |
| * tasks can access tsk->flags in readonly mode for example |
| * with tsk_used_math (like during threaded core dumping). |
| * There is however an exception to this rule during ptrace |
| * or during fork: the ptracer task is allowed to write to the |
| * child->flags of its traced child (same goes for fork, the parent |
| * can write to the child->flags), because we're guaranteed the |
| * child is not running and in turn not changing child->flags |
| * at the same time the parent does it. |
| */ |
| #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) |
| #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) |
| #define clear_used_math() clear_stopped_child_used_math(current) |
| #define set_used_math() set_stopped_child_used_math(current) |
| |
| #define conditional_stopped_child_used_math(condition, child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) |
| |
| #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) |
| |
| #define copy_to_stopped_child_used_math(child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) |
| |
| /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ |
| #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) |
| #define used_math() tsk_used_math(current) |
| |
| static __always_inline bool is_percpu_thread(void) |
| { |
| #ifdef CONFIG_SMP |
| return (current->flags & PF_NO_SETAFFINITY) && |
| (current->nr_cpus_allowed == 1); |
| #else |
| return true; |
| #endif |
| } |
| |
| /* Per-process atomic flags. */ |
| #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ |
| #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ |
| #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ |
| #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ |
| #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ |
| #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ |
| #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ |
| #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ |
| |
| #define TASK_PFA_TEST(name, func) \ |
| static inline bool task_##func(struct task_struct *p) \ |
| { return test_bit(PFA_##name, &p->atomic_flags); } |
| |
| #define TASK_PFA_SET(name, func) \ |
| static inline void task_set_##func(struct task_struct *p) \ |
| { set_bit(PFA_##name, &p->atomic_flags); } |
| |
| #define TASK_PFA_CLEAR(name, func) \ |
| static inline void task_clear_##func(struct task_struct *p) \ |
| { clear_bit(PFA_##name, &p->atomic_flags); } |
| |
| TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) |
| TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) |
| |
| TASK_PFA_TEST(SPREAD_PAGE, spread_page) |
| TASK_PFA_SET(SPREAD_PAGE, spread_page) |
| TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) |
| |
| TASK_PFA_TEST(SPREAD_SLAB, spread_slab) |
| TASK_PFA_SET(SPREAD_SLAB, spread_slab) |
| TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) |
| |
| TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) |
| TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) |
| TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) |
| |
| TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) |
| |
| TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| |
| TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) |
| TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) |
| TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) |
| |
| TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| |
| static inline void |
| current_restore_flags(unsigned long orig_flags, unsigned long flags) |
| { |
| current->flags &= ~flags; |
| current->flags |= orig_flags & flags; |
| } |
| |
| extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus); |
| #ifdef CONFIG_SMP |
| extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); |
| extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); |
| extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); |
| extern void release_user_cpus_ptr(struct task_struct *p); |
| extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); |
| extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); |
| extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); |
| #else |
| static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| } |
| static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| if (!cpumask_test_cpu(0, new_mask)) |
| return -EINVAL; |
| return 0; |
| } |
| static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) |
| { |
| if (src->user_cpus_ptr) |
| return -EINVAL; |
| return 0; |
| } |
| static inline void release_user_cpus_ptr(struct task_struct *p) |
| { |
| WARN_ON(p->user_cpus_ptr); |
| } |
| |
| static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) |
| { |
| return 0; |
| } |
| #endif |
| |
| extern int yield_to(struct task_struct *p, bool preempt); |
| extern void set_user_nice(struct task_struct *p, long nice); |
| extern int task_prio(const struct task_struct *p); |
| |
| /** |
| * task_nice - return the nice value of a given task. |
| * @p: the task in question. |
| * |
| * Return: The nice value [ -20 ... 0 ... 19 ]. |
| */ |
| static inline int task_nice(const struct task_struct *p) |
| { |
| return PRIO_TO_NICE((p)->static_prio); |
| } |
| |
| extern int can_nice(const struct task_struct *p, const int nice); |
| extern int task_curr(const struct task_struct *p); |
| extern int idle_cpu(int cpu); |
| extern int available_idle_cpu(int cpu); |
| extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); |
| extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); |
| extern void sched_set_fifo(struct task_struct *p); |
| extern void sched_set_fifo_low(struct task_struct *p); |
| extern void sched_set_normal(struct task_struct *p, int nice); |
| extern int sched_setattr(struct task_struct *, const struct sched_attr *); |
| extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); |
| extern struct task_struct *idle_task(int cpu); |
| |
| /** |
| * is_idle_task - is the specified task an idle task? |
| * @p: the task in question. |
| * |
| * Return: 1 if @p is an idle task. 0 otherwise. |
| */ |
| static __always_inline bool is_idle_task(const struct task_struct *p) |
| { |
| return !!(p->flags & PF_IDLE); |
| } |
| |
| extern struct task_struct *curr_task(int cpu); |
| extern void ia64_set_curr_task(int cpu, struct task_struct *p); |
| |
| void yield(void); |
| |
| union thread_union { |
| #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK |
| struct task_struct task; |
| #endif |
| #ifndef CONFIG_THREAD_INFO_IN_TASK |
| struct thread_info thread_info; |
| #endif |
| unsigned long stack[THREAD_SIZE/sizeof(long)]; |
| }; |
| |
| #ifndef CONFIG_THREAD_INFO_IN_TASK |
| extern struct thread_info init_thread_info; |
| #endif |
| |
| extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; |
| |
| #ifdef CONFIG_THREAD_INFO_IN_TASK |
| # define task_thread_info(task) (&(task)->thread_info) |
| #elif !defined(__HAVE_THREAD_FUNCTIONS) |
| # define task_thread_info(task) ((struct thread_info *)(task)->stack) |
| #endif |
| |
| /* |
| * find a task by one of its numerical ids |
| * |
| * find_task_by_pid_ns(): |
| * finds a task by its pid in the specified namespace |
| * find_task_by_vpid(): |
| * finds a task by its virtual pid |
| * |
| * see also find_vpid() etc in include/linux/pid.h |
| */ |
| |
| extern struct task_struct *find_task_by_vpid(pid_t nr); |
| extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); |
| |
| /* |
| * find a task by its virtual pid and get the task struct |
| */ |
| extern struct task_struct *find_get_task_by_vpid(pid_t nr); |
| |
| extern int wake_up_state(struct task_struct *tsk, unsigned int state); |
| extern int wake_up_process(struct task_struct *tsk); |
| extern void wake_up_new_task(struct task_struct *tsk); |
| |
| #ifdef CONFIG_SMP |
| extern void kick_process(struct task_struct *tsk); |
| #else |
| static inline void kick_process(struct task_struct *tsk) { } |
| #endif |
| |
| extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); |
| |
| static inline void set_task_comm(struct task_struct *tsk, const char *from) |
| { |
| __set_task_comm(tsk, from, false); |
| } |
| |
| extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); |
| #define get_task_comm(buf, tsk) ({ \ |
| BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ |
| __get_task_comm(buf, sizeof(buf), tsk); \ |
| }) |
| |
| #ifdef CONFIG_SMP |
| static __always_inline void scheduler_ipi(void) |
| { |
| /* |
| * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting |
| * TIF_NEED_RESCHED remotely (for the first time) will also send |
| * this IPI. |
| */ |
| preempt_fold_need_resched(); |
| } |
| extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); |
| #else |
| static inline void scheduler_ipi(void) { } |
| static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) |
| { |
| return 1; |
| } |
| #endif |
| |
| /* |
| * Set thread flags in other task's structures. |
| * See asm/thread_info.h for TIF_xxxx flags available: |
| */ |
| static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, |
| bool value) |
| { |
| update_ti_thread_flag(task_thread_info(tsk), flag, value); |
| } |
| |
| static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void set_tsk_need_resched(struct task_struct *tsk) |
| { |
| set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline void clear_tsk_need_resched(struct task_struct *tsk) |
| { |
| clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline int test_tsk_need_resched(struct task_struct *tsk) |
| { |
| return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); |
| } |
| |
| /* |
| * cond_resched() and cond_resched_lock(): latency reduction via |
| * explicit rescheduling in places that are safe. The return |
| * value indicates whether a reschedule was done in fact. |
| * cond_resched_lock() will drop the spinlock before scheduling, |
| */ |
| #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) |
| extern int __cond_resched(void); |
| |
| #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) |
| |
| DECLARE_STATIC_CALL(cond_resched, __cond_resched); |
| |
| static __always_inline int _cond_resched(void) |
| { |
| return static_call_mod(cond_resched)(); |
| } |
| |
| #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) |
| extern int dynamic_cond_resched(void); |
| |
| static __always_inline int _cond_resched(void) |
| { |
| return dynamic_cond_resched(); |
| } |
| |
| #else |
| |
| static inline int _cond_resched(void) |
| { |
| return __cond_resched(); |
| } |
| |
| #endif /* CONFIG_PREEMPT_DYNAMIC */ |
| |
| #else |
| |
| static inline int _cond_resched(void) { return 0; } |
| |
| #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ |
| |
| #define cond_resched() ({ \ |
| __might_resched(__FILE__, __LINE__, 0); \ |
| _cond_resched(); \ |
| }) |
| |
| extern int __cond_resched_lock(spinlock_t *lock); |
| extern int __cond_resched_rwlock_read(rwlock_t *lock); |
| extern int __cond_resched_rwlock_write(rwlock_t *lock); |
| |
| #define MIGHT_RESCHED_RCU_SHIFT 8 |
| #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) |
| |
| #ifndef CONFIG_PREEMPT_RT |
| /* |
| * Non RT kernels have an elevated preempt count due to the held lock, |
| * but are not allowed to be inside a RCU read side critical section |
| */ |
| # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET |
| #else |
| /* |
| * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in |
| * cond_resched*lock() has to take that into account because it checks for |
| * preempt_count() and rcu_preempt_depth(). |
| */ |
| # define PREEMPT_LOCK_RESCHED_OFFSETS \ |
| (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) |
| #endif |
| |
| #define cond_resched_lock(lock) ({ \ |
| __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| __cond_resched_lock(lock); \ |
| }) |
| |
| #define cond_resched_rwlock_read(lock) ({ \ |
| __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| __cond_resched_rwlock_read(lock); \ |
| }) |
| |
| #define cond_resched_rwlock_write(lock) ({ \ |
| __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ |
| __cond_resched_rwlock_write(lock); \ |
| }) |
| |
| static inline void cond_resched_rcu(void) |
| { |
| #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) |
| rcu_read_unlock(); |
| cond_resched(); |
| rcu_read_lock(); |
| #endif |
| } |
| |
| #ifdef CONFIG_PREEMPT_DYNAMIC |
| |
| extern bool preempt_model_none(void); |
| extern bool preempt_model_voluntary(void); |
| extern bool preempt_model_full(void); |
| |
| #else |
| |
| static inline bool preempt_model_none(void) |
| { |
| return IS_ENABLED(CONFIG_PREEMPT_NONE); |
| } |
| static inline bool preempt_model_voluntary(void) |
| { |
| return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); |
| } |
| static inline bool preempt_model_full(void) |
| { |
| return IS_ENABLED(CONFIG_PREEMPT); |
| } |
| |
| #endif |
| |
| static inline bool preempt_model_rt(void) |
| { |
| return IS_ENABLED(CONFIG_PREEMPT_RT); |
| } |
| |
| /* |
| * Does the preemption model allow non-cooperative preemption? |
| * |
| * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with |
| * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the |
| * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the |
| * PREEMPT_NONE model. |
| */ |
| static inline bool preempt_model_preemptible(void) |
| { |
| return preempt_model_full() || preempt_model_rt(); |
| } |
| |
| /* |
| * Does a critical section need to be broken due to another |
| * task waiting?: (technically does not depend on CONFIG_PREEMPTION, |
| * but a general need for low latency) |
| */ |
| static inline int spin_needbreak(spinlock_t *lock) |
| { |
| #ifdef CONFIG_PREEMPTION |
| return spin_is_contended(lock); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Check if a rwlock is contended. |
| * Returns non-zero if there is another task waiting on the rwlock. |
| * Returns zero if the lock is not contended or the system / underlying |
| * rwlock implementation does not support contention detection. |
| * Technically does not depend on CONFIG_PREEMPTION, but a general need |
| * for low latency. |
| */ |
| static inline int rwlock_needbreak(rwlock_t *lock) |
| { |
| #ifdef CONFIG_PREEMPTION |
| return rwlock_is_contended(lock); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static __always_inline bool need_resched(void) |
| { |
| return unlikely(tif_need_resched()); |
| } |
| |
| /* |
| * Wrappers for p->thread_info->cpu access. No-op on UP. |
| */ |
| #ifdef CONFIG_SMP |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return READ_ONCE(task_thread_info(p)->cpu); |
| } |
| |
| extern void set_task_cpu(struct task_struct *p, unsigned int cpu); |
| |
| #else |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| extern bool sched_task_on_rq(struct task_struct *p); |
| extern unsigned long get_wchan(struct task_struct *p); |
| extern struct task_struct *cpu_curr_snapshot(int cpu); |
| |
| /* |
| * In order to reduce various lock holder preemption latencies provide an |
| * interface to see if a vCPU is currently running or not. |
| * |
| * This allows us to terminate optimistic spin loops and block, analogous to |
| * the native optimistic spin heuristic of testing if the lock owner task is |
| * running or not. |
| */ |
| #ifndef vcpu_is_preempted |
| static inline bool vcpu_is_preempted(int cpu) |
| { |
| return false; |
| } |
| #endif |
| |
| extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); |
| extern long sched_getaffinity(pid_t pid, struct cpumask *mask); |
| |
| #ifndef TASK_SIZE_OF |
| #define TASK_SIZE_OF(tsk) TASK_SIZE |
| #endif |
| |
| #ifdef CONFIG_SMP |
| static inline bool owner_on_cpu(struct task_struct *owner) |
| { |
| /* |
| * As lock holder preemption issue, we both skip spinning if |
| * task is not on cpu or its cpu is preempted |
| */ |
| return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); |
| } |
| |
| /* Returns effective CPU energy utilization, as seen by the scheduler */ |
| unsigned long sched_cpu_util(int cpu); |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_RSEQ |
| |
| /* |
| * Map the event mask on the user-space ABI enum rseq_cs_flags |
| * for direct mask checks. |
| */ |
| enum rseq_event_mask_bits { |
| RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, |
| RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, |
| RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, |
| }; |
| |
| enum rseq_event_mask { |
| RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), |
| RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), |
| RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), |
| }; |
| |
| static inline void rseq_set_notify_resume(struct task_struct *t) |
| { |
| if (t->rseq) |
| set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); |
| } |
| |
| void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); |
| |
| static inline void rseq_handle_notify_resume(struct ksignal *ksig, |
| struct pt_regs *regs) |
| { |
| if (current->rseq) |
| __rseq_handle_notify_resume(ksig, regs); |
| } |
| |
| static inline void rseq_signal_deliver(struct ksignal *ksig, |
| struct pt_regs *regs) |
| { |
| preempt_disable(); |
| __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); |
| preempt_enable(); |
| rseq_handle_notify_resume(ksig, regs); |
| } |
| |
| /* rseq_preempt() requires preemption to be disabled. */ |
| static inline void rseq_preempt(struct task_struct *t) |
| { |
| __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); |
| rseq_set_notify_resume(t); |
| } |
| |
| /* rseq_migrate() requires preemption to be disabled. */ |
| static inline void rseq_migrate(struct task_struct *t) |
| { |
| __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); |
| rseq_set_notify_resume(t); |
| } |
| |
| /* |
| * If parent process has a registered restartable sequences area, the |
| * child inherits. Unregister rseq for a clone with CLONE_VM set. |
| */ |
| static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) |
| { |
| if (clone_flags & CLONE_VM) { |
| t->rseq = NULL; |
| t->rseq_sig = 0; |
| t->rseq_event_mask = 0; |
| } else { |
| t->rseq = current->rseq; |
| t->rseq_sig = current->rseq_sig; |
| t->rseq_event_mask = current->rseq_event_mask; |
| } |
| } |
| |
| static inline void rseq_execve(struct task_struct *t) |
| { |
| t->rseq = NULL; |
| t->rseq_sig = 0; |
| t->rseq_event_mask = 0; |
| } |
| |
| #else |
| |
| static inline void rseq_set_notify_resume(struct task_struct *t) |
| { |
| } |
| static inline void rseq_handle_notify_resume(struct ksignal *ksig, |
| struct pt_regs *regs) |
| { |
| } |
| static inline void rseq_signal_deliver(struct ksignal *ksig, |
| struct pt_regs *regs) |
| { |
| } |
| static inline void rseq_preempt(struct task_struct *t) |
| { |
| } |
| static inline void rseq_migrate(struct task_struct *t) |
| { |
| } |
| static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) |
| { |
| } |
| static inline void rseq_execve(struct task_struct *t) |
| { |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_DEBUG_RSEQ |
| |
| void rseq_syscall(struct pt_regs *regs); |
| |
| #else |
| |
| static inline void rseq_syscall(struct pt_regs *regs) |
| { |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_SCHED_CORE |
| extern void sched_core_free(struct task_struct *tsk); |
| extern void sched_core_fork(struct task_struct *p); |
| extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, |
| unsigned long uaddr); |
| #else |
| static inline void sched_core_free(struct task_struct *tsk) { } |
| static inline void sched_core_fork(struct task_struct *p) { } |
| #endif |
| |
| extern void sched_set_stop_task(int cpu, struct task_struct *stop); |
| |
| #endif |